mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-16 20:40:11 +01:00
193 lines
5.4 KiB
C
193 lines
5.4 KiB
C
/*
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is the elliptic curve math library.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Sun Microsystems, Inc.
|
|
* Portions created by the Initial Developer are Copyright (C) 2003
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
/* Uses Montgomery reduction for field arithmetic. See mpi/mpmontg.c for
|
|
* code implementation. */
|
|
|
|
#include "mpi.h"
|
|
#include "mplogic.h"
|
|
#include "mpi-priv.h"
|
|
#include "ecl-priv.h"
|
|
#include "ecp.h"
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
|
|
/* Construct a generic GFMethod for arithmetic over prime fields with
|
|
* irreducible irr. */
|
|
GFMethod *
|
|
GFMethod_consGFp_mont(const mp_int *irr)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
int i;
|
|
GFMethod *meth = NULL;
|
|
mp_mont_modulus *mmm;
|
|
|
|
meth = GFMethod_consGFp(irr);
|
|
if (meth == NULL)
|
|
return NULL;
|
|
|
|
mmm = (mp_mont_modulus *) malloc(sizeof(mp_mont_modulus));
|
|
if (mmm == NULL) {
|
|
res = MP_MEM;
|
|
goto CLEANUP;
|
|
}
|
|
|
|
meth->field_mul = &ec_GFp_mul_mont;
|
|
meth->field_sqr = &ec_GFp_sqr_mont;
|
|
meth->field_div = &ec_GFp_div_mont;
|
|
meth->field_enc = &ec_GFp_enc_mont;
|
|
meth->field_dec = &ec_GFp_dec_mont;
|
|
meth->extra1 = mmm;
|
|
meth->extra2 = NULL;
|
|
meth->extra_free = &ec_GFp_extra_free_mont;
|
|
|
|
mmm->N = meth->irr;
|
|
i = mpl_significant_bits(&meth->irr);
|
|
i += MP_DIGIT_BIT - 1;
|
|
mmm->b = i - i % MP_DIGIT_BIT;
|
|
mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0));
|
|
|
|
CLEANUP:
|
|
if (res != MP_OKAY) {
|
|
GFMethod_free(meth);
|
|
return NULL;
|
|
}
|
|
return meth;
|
|
}
|
|
|
|
/* Wrapper functions for generic prime field arithmetic. */
|
|
|
|
/* Field multiplication using Montgomery reduction. */
|
|
mp_err
|
|
ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
|
|
const GFMethod *meth)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
|
|
#ifdef MP_MONT_USE_MP_MUL
|
|
/* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont
|
|
* is not implemented and we have to use mp_mul and s_mp_redc directly
|
|
*/
|
|
MP_CHECKOK(mp_mul(a, b, r));
|
|
MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
|
|
#else
|
|
mp_int s;
|
|
|
|
MP_DIGITS(&s) = 0;
|
|
/* s_mp_mul_mont doesn't allow source and destination to be the same */
|
|
if ((a == r) || (b == r)) {
|
|
MP_CHECKOK(mp_init(&s));
|
|
MP_CHECKOK(s_mp_mul_mont
|
|
(a, b, &s, (mp_mont_modulus *) meth->extra1));
|
|
MP_CHECKOK(mp_copy(&s, r));
|
|
mp_clear(&s);
|
|
} else {
|
|
return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1);
|
|
}
|
|
#endif
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
/* Field squaring using Montgomery reduction. */
|
|
mp_err
|
|
ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
|
|
{
|
|
return ec_GFp_mul_mont(a, a, r, meth);
|
|
}
|
|
|
|
/* Field division using Montgomery reduction. */
|
|
mp_err
|
|
ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
|
|
const GFMethod *meth)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
|
|
/* if A=aZ represents a encoded in montgomery coordinates with Z and #
|
|
* and \ respectively represent multiplication and division in
|
|
* montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv =
|
|
* (1/b)Z = (1/B)(Z^2) where B # Binv = Z */
|
|
MP_CHECKOK(ec_GFp_div(a, b, r, meth));
|
|
MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
|
|
if (a == NULL) {
|
|
MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
|
|
}
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
/* Encode a field element in Montgomery form. See s_mp_to_mont in
|
|
* mpi/mpmontg.c */
|
|
mp_err
|
|
ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
|
|
{
|
|
mp_mont_modulus *mmm;
|
|
mp_err res = MP_OKAY;
|
|
|
|
mmm = (mp_mont_modulus *) meth->extra1;
|
|
MP_CHECKOK(mpl_lsh(a, r, mmm->b));
|
|
MP_CHECKOK(mp_mod(r, &mmm->N, r));
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
/* Decode a field element from Montgomery form. */
|
|
mp_err
|
|
ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
|
|
if (a != r) {
|
|
MP_CHECKOK(mp_copy(a, r));
|
|
}
|
|
MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
/* Free the memory allocated to the extra fields of Montgomery GFMethod
|
|
* object. */
|
|
void
|
|
ec_GFp_extra_free_mont(GFMethod *meth)
|
|
{
|
|
if (meth->extra1 != NULL) {
|
|
free(meth->extra1);
|
|
meth->extra1 = NULL;
|
|
}
|
|
}
|