mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-16 20:40:11 +01:00
198 lines
5.5 KiB
C
198 lines
5.5 KiB
C
/*
|
|
* pi.c
|
|
*
|
|
* Compute pi to an arbitrary number of digits. Uses Machin's formula,
|
|
* like everyone else on the planet:
|
|
*
|
|
* pi = 16 * arctan(1/5) - 4 * arctan(1/239)
|
|
*
|
|
* This is pretty effective for up to a few thousand digits, but it
|
|
* gets pretty slow after that.
|
|
*
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Michael J. Fromberger.
|
|
* Portions created by the Initial Developer are Copyright (C) 1999
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
/* $Id: pi.c,v 1.3 2004/04/27 23:04:37 gerv%gerv.net Exp $ */
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <time.h>
|
|
|
|
#include "mpi.h"
|
|
|
|
mp_err arctan(mp_digit mul, mp_digit x, mp_digit prec, mp_int *sum);
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
mp_err res;
|
|
mp_digit ndigits;
|
|
mp_int sum1, sum2;
|
|
clock_t start, stop;
|
|
int out = 0;
|
|
|
|
/* Make the user specify precision on the command line */
|
|
if(argc < 2) {
|
|
fprintf(stderr, "Usage: %s <num-digits>\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
if((ndigits = abs(atoi(argv[1]))) == 0) {
|
|
fprintf(stderr, "%s: you must request at least 1 digit\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
start = clock();
|
|
mp_init(&sum1); mp_init(&sum2);
|
|
|
|
/* sum1 = 16 * arctan(1/5) */
|
|
if((res = arctan(16, 5, ndigits, &sum1)) != MP_OKAY) {
|
|
fprintf(stderr, "%s: arctan: %s\n", argv[0], mp_strerror(res));
|
|
out = 1; goto CLEANUP;
|
|
}
|
|
|
|
/* sum2 = 4 * arctan(1/239) */
|
|
if((res = arctan(4, 239, ndigits, &sum2)) != MP_OKAY) {
|
|
fprintf(stderr, "%s: arctan: %s\n", argv[0], mp_strerror(res));
|
|
out = 1; goto CLEANUP;
|
|
}
|
|
|
|
/* pi = sum1 - sum2 */
|
|
if((res = mp_sub(&sum1, &sum2, &sum1)) != MP_OKAY) {
|
|
fprintf(stderr, "%s: mp_sub: %s\n", argv[0], mp_strerror(res));
|
|
out = 1; goto CLEANUP;
|
|
}
|
|
stop = clock();
|
|
|
|
/* Write the output in decimal */
|
|
{
|
|
char *buf = malloc(mp_radix_size(&sum1, 10));
|
|
|
|
if(buf == NULL) {
|
|
fprintf(stderr, "%s: out of memory\n", argv[0]);
|
|
out = 1; goto CLEANUP;
|
|
}
|
|
mp_todecimal(&sum1, buf);
|
|
printf("%s\n", buf);
|
|
free(buf);
|
|
}
|
|
|
|
fprintf(stderr, "Computation took %.2f sec.\n",
|
|
(double)(stop - start) / CLOCKS_PER_SEC);
|
|
|
|
CLEANUP:
|
|
mp_clear(&sum1);
|
|
mp_clear(&sum2);
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
/* Compute sum := mul * arctan(1/x), to 'prec' digits of precision */
|
|
mp_err arctan(mp_digit mul, mp_digit x, mp_digit prec, mp_int *sum)
|
|
{
|
|
mp_int t, v;
|
|
mp_digit q = 1, rd;
|
|
mp_err res;
|
|
int sign = 1;
|
|
|
|
prec += 3; /* push inaccuracies off the end */
|
|
|
|
mp_init(&t); mp_set(&t, 10);
|
|
mp_init(&v);
|
|
if((res = mp_expt_d(&t, prec, &t)) != MP_OKAY || /* get 10^prec */
|
|
(res = mp_mul_d(&t, mul, &t)) != MP_OKAY || /* ... times mul */
|
|
(res = mp_mul_d(&t, x, &t)) != MP_OKAY) /* ... times x */
|
|
goto CLEANUP;
|
|
|
|
/*
|
|
The extra multiplication by x in the above takes care of what
|
|
would otherwise have to be a special case for 1 / x^1 during the
|
|
first loop iteration. A little sneaky, but effective.
|
|
|
|
We compute arctan(1/x) by the formula:
|
|
|
|
1 1 1 1
|
|
- - ----- + ----- - ----- + ...
|
|
x 3 x^3 5 x^5 7 x^7
|
|
|
|
We multiply through by 'mul' beforehand, which gives us a couple
|
|
more iterations and more precision
|
|
*/
|
|
|
|
x *= x; /* works as long as x < sqrt(RADIX), which it is here */
|
|
|
|
mp_zero(sum);
|
|
|
|
do {
|
|
if((res = mp_div_d(&t, x, &t, &rd)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
if(sign < 0 && rd != 0)
|
|
mp_add_d(&t, 1, &t);
|
|
|
|
if((res = mp_div_d(&t, q, &v, &rd)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
if(sign < 0 && rd != 0)
|
|
mp_add_d(&v, 1, &v);
|
|
|
|
if(sign > 0)
|
|
res = mp_add(sum, &v, sum);
|
|
else
|
|
res = mp_sub(sum, &v, sum);
|
|
|
|
if(res != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
sign *= -1;
|
|
q += 2;
|
|
|
|
} while(mp_cmp_z(&t) != 0);
|
|
|
|
/* Chop off inaccurate low-order digits */
|
|
mp_div_d(sum, 1000, sum, NULL);
|
|
|
|
CLEANUP:
|
|
mp_clear(&v);
|
|
mp_clear(&t);
|
|
|
|
return res;
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
/* HERE THERE BE DRAGONS */
|