mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-14 11:40:13 +01:00
44b7f056d9
bug1001332, 56b691c003ad, bug1086145, bug1054069, bug1155922, bug991783, bug1125025, bug1162521, bug1162644, bug1132941, bug1164364, bug1166205, bug1166163, bug1166515, bug1138554, bug1167046, bug1167043, bug1169451, bug1172128, bug1170322, bug102794, bug1128184, bug557830, bug1174648, bug1180244, bug1177784, bug1173413, bug1169174, bug1084669, bug951455, bug1183395, bug1177430, bug1183827, bug1160139, bug1154106, bug1142209, bug1185033, bug1193467, bug1182667(with sha512 changes backed out, which breaks VC6 compilation), bug1158489, bug337796
921 lines
31 KiB
C
921 lines
31 KiB
C
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifdef FREEBL_NO_DEPEND
|
|
#include "stubs.h"
|
|
#endif
|
|
|
|
#include "prerror.h"
|
|
#include "secerr.h"
|
|
|
|
#include "prtypes.h"
|
|
#include "prinit.h"
|
|
#include "blapi.h"
|
|
#include "blapii.h"
|
|
#include "nssilock.h"
|
|
#include "secitem.h"
|
|
#include "sha_fast.h"
|
|
#include "sha256.h"
|
|
#include "secrng.h" /* for RNG_SystemRNG() */
|
|
#include "secmpi.h"
|
|
|
|
/* PRNG_SEEDLEN defined in NIST SP 800-90 section 10.1
|
|
* for SHA-1, SHA-224, and SHA-256 it's 440 bits.
|
|
* for SHA-384 and SHA-512 it's 888 bits */
|
|
#define PRNG_SEEDLEN (440/PR_BITS_PER_BYTE)
|
|
static const PRInt64 PRNG_MAX_ADDITIONAL_BYTES = LL_INIT(0x1, 0x0);
|
|
/* 2^35 bits or 2^32 bytes */
|
|
#define PRNG_MAX_REQUEST_SIZE 0x10000 /* 2^19 bits or 2^16 bytes */
|
|
#define PRNG_ADDITONAL_DATA_CACHE_SIZE (8*1024) /* must be less than
|
|
* PRNG_MAX_ADDITIONAL_BYTES
|
|
*/
|
|
|
|
/* RESEED_COUNT is how many calls to the prng before we need to reseed
|
|
* under normal NIST rules, you must return an error. In the NSS case, we
|
|
* self-reseed with RNG_SystemRNG(). Count can be a large number. For code
|
|
* simplicity, we specify count with 2 components: RESEED_BYTE (which is
|
|
* the same as LOG256(RESEED_COUNT)) and RESEED_VALUE (which is the same as
|
|
* RESEED_COUNT / (256 ^ RESEED_BYTE)). Another way to look at this is
|
|
* RESEED_COUNT = RESEED_VALUE * (256 ^ RESEED_BYTE). For Hash based DRBG
|
|
* we use the maximum count value, 2^48, or RESEED_BYTE=6 and RESEED_VALUE=1
|
|
*/
|
|
#define RESEED_BYTE 6
|
|
#define RESEED_VALUE 1
|
|
|
|
#define PRNG_RESET_RESEED_COUNT(rng) \
|
|
PORT_Memset((rng)->reseed_counter, 0, sizeof (rng)->reseed_counter); \
|
|
(rng)->reseed_counter[RESEED_BYTE] = 1;
|
|
|
|
|
|
/*
|
|
* The actual values of this enum are specified in SP 800-90, 10.1.1.*
|
|
* The spec does not name the types, it only uses bare values
|
|
*/
|
|
typedef enum {
|
|
prngCGenerateType = 0, /* used when creating a new 'C' */
|
|
prngReseedType = 1, /* used in reseeding */
|
|
prngAdditionalDataType = 2, /* used in mixing additional data */
|
|
prngGenerateByteType = 3 /* used when mixing internal state while
|
|
* generating bytes */
|
|
} prngVTypes;
|
|
|
|
/*
|
|
* Global RNG context
|
|
*/
|
|
struct RNGContextStr {
|
|
PZLock *lock; /* Lock to serialize access to global rng */
|
|
/*
|
|
* NOTE, a number of steps in the drbg algorithm need to hash
|
|
* V_type || V. The code, therefore, depends on the V array following
|
|
* immediately after V_type to avoid extra copies. To accomplish this
|
|
* in a way that compiliers can't perturb, we declare V_type and V
|
|
* as a V_Data array and reference them by macros */
|
|
PRUint8 V_Data[PRNG_SEEDLEN+1]; /* internal state variables */
|
|
#define V_type V_Data[0]
|
|
#define V(rng) (((rng)->V_Data)+1)
|
|
#define VSize(rng) ((sizeof (rng)->V_Data) -1)
|
|
PRUint8 C[PRNG_SEEDLEN]; /* internal state variables */
|
|
PRUint8 oldV[PRNG_SEEDLEN]; /* for continuous rng checking */
|
|
/* If we get calls for the PRNG to return less than the length of our
|
|
* hash, we extend the request for a full hash (since we'll be doing
|
|
* the full hash anyway). Future requests for random numbers are fulfilled
|
|
* from the remainder of the bytes we generated. Requests for bytes longer
|
|
* than the hash size are fulfilled directly from the HashGen function
|
|
* of the random number generator. */
|
|
PRUint8 reseed_counter[RESEED_BYTE+1]; /* number of requests since the
|
|
* last reseed. Need only be
|
|
* big enough to hold the whole
|
|
* reseed count */
|
|
PRUint8 data[SHA256_LENGTH]; /* when we request less than a block
|
|
* save the rest of the rng output for
|
|
* another partial block */
|
|
PRUint8 dataAvail; /* # bytes of output available in our cache,
|
|
* [0...SHA256_LENGTH] */
|
|
/* store additional data that has been shovelled off to us by
|
|
* RNG_RandomUpdate. */
|
|
PRUint8 additionalDataCache[PRNG_ADDITONAL_DATA_CACHE_SIZE];
|
|
PRUint32 additionalAvail;
|
|
PRBool isValid; /* false if RNG reaches an invalid state */
|
|
};
|
|
|
|
typedef struct RNGContextStr RNGContext;
|
|
static RNGContext *globalrng = NULL;
|
|
static RNGContext theGlobalRng;
|
|
|
|
|
|
/*
|
|
* The next several functions are derived from the NIST SP 800-90
|
|
* spec. In these functions, an attempt was made to use names consistent
|
|
* with the names in the spec, even if they differ from normal NSS usage.
|
|
*/
|
|
|
|
/*
|
|
* Hash Derive function defined in NISP SP 800-90 Section 10.4.1.
|
|
* This function is used in the Instantiate and Reseed functions.
|
|
*
|
|
* NOTE: requested_bytes cannot overlap with input_string_1 or input_string_2.
|
|
* input_string_1 and input_string_2 are logically concatentated.
|
|
* input_string_1 must be supplied.
|
|
* if input_string_2 is not supplied, NULL should be passed for this parameter.
|
|
*/
|
|
static SECStatus
|
|
prng_Hash_df(PRUint8 *requested_bytes, unsigned int no_of_bytes_to_return,
|
|
const PRUint8 *input_string_1, unsigned int input_string_1_len,
|
|
const PRUint8 *input_string_2, unsigned int input_string_2_len)
|
|
{
|
|
SHA256Context ctx;
|
|
PRUint32 tmp;
|
|
PRUint8 counter;
|
|
|
|
tmp=SHA_HTONL(no_of_bytes_to_return*8);
|
|
|
|
for (counter = 1 ; no_of_bytes_to_return > 0; counter++) {
|
|
unsigned int hash_return_len;
|
|
SHA256_Begin(&ctx);
|
|
SHA256_Update(&ctx, &counter, 1);
|
|
SHA256_Update(&ctx, (unsigned char *)&tmp, sizeof tmp);
|
|
SHA256_Update(&ctx, input_string_1, input_string_1_len);
|
|
if (input_string_2) {
|
|
SHA256_Update(&ctx, input_string_2, input_string_2_len);
|
|
}
|
|
SHA256_End(&ctx, requested_bytes, &hash_return_len,
|
|
no_of_bytes_to_return);
|
|
requested_bytes += hash_return_len;
|
|
no_of_bytes_to_return -= hash_return_len;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
|
|
/*
|
|
* Hash_DRBG Instantiate NIST SP 800-80 10.1.1.2
|
|
*
|
|
* NOTE: bytes & len are entropy || nonce || personalization_string. In
|
|
* normal operation, NSS calculates them all together in a single call.
|
|
*/
|
|
static SECStatus
|
|
prng_instantiate(RNGContext *rng, const PRUint8 *bytes, unsigned int len)
|
|
{
|
|
if (len < PRNG_SEEDLEN) {
|
|
/* if the seedlen is to small, it's probably because we failed to get
|
|
* enough random data */
|
|
PORT_SetError(SEC_ERROR_NEED_RANDOM);
|
|
return SECFailure;
|
|
}
|
|
prng_Hash_df(V(rng), VSize(rng), bytes, len, NULL, 0);
|
|
rng->V_type = prngCGenerateType;
|
|
prng_Hash_df(rng->C,sizeof rng->C,rng->V_Data,sizeof rng->V_Data,NULL,0);
|
|
PRNG_RESET_RESEED_COUNT(rng)
|
|
return SECSuccess;
|
|
}
|
|
|
|
|
|
/*
|
|
* Update the global random number generator with more seeding
|
|
* material. Use the Hash_DRBG reseed algorithm from NIST SP-800-90
|
|
* section 10.1.1.3
|
|
*
|
|
* If entropy is NULL, it is fetched from the noise generator.
|
|
*/
|
|
static SECStatus
|
|
prng_reseed(RNGContext *rng, const PRUint8 *entropy, unsigned int entropy_len,
|
|
const PRUint8 *additional_input, unsigned int additional_input_len)
|
|
{
|
|
PRUint8 noiseData[(sizeof rng->V_Data)+PRNG_SEEDLEN];
|
|
PRUint8 *noise = &noiseData[0];
|
|
|
|
/* if entropy wasn't supplied, fetch it. (normal operation case) */
|
|
if (entropy == NULL) {
|
|
entropy_len = (unsigned int) RNG_SystemRNG(
|
|
&noiseData[sizeof rng->V_Data], PRNG_SEEDLEN);
|
|
} else {
|
|
/* NOTE: this code is only available for testing, not to applications */
|
|
/* if entropy was too big for the stack variable, get it from malloc */
|
|
if (entropy_len > PRNG_SEEDLEN) {
|
|
noise = PORT_Alloc(entropy_len + (sizeof rng->V_Data));
|
|
if (noise == NULL) {
|
|
return SECFailure;
|
|
}
|
|
}
|
|
PORT_Memcpy(&noise[sizeof rng->V_Data],entropy, entropy_len);
|
|
}
|
|
|
|
if (entropy_len < 256/PR_BITS_PER_BYTE) {
|
|
/* noise == &noiseData[0] at this point, so nothing to free */
|
|
PORT_SetError(SEC_ERROR_NEED_RANDOM);
|
|
return SECFailure;
|
|
}
|
|
|
|
rng->V_type = prngReseedType;
|
|
PORT_Memcpy(noise, rng->V_Data, sizeof rng->V_Data);
|
|
prng_Hash_df(V(rng), VSize(rng), noise, (sizeof rng->V_Data) + entropy_len,
|
|
additional_input, additional_input_len);
|
|
/* clear potential CSP */
|
|
PORT_Memset(noise, 0, (sizeof rng->V_Data) + entropy_len);
|
|
rng->V_type = prngCGenerateType;
|
|
prng_Hash_df(rng->C,sizeof rng->C,rng->V_Data,sizeof rng->V_Data,NULL,0);
|
|
PRNG_RESET_RESEED_COUNT(rng)
|
|
|
|
if (noise != &noiseData[0]) {
|
|
PORT_Free(noise);
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* SP 800-90 requires we rerun our health tests on reseed
|
|
*/
|
|
static SECStatus
|
|
prng_reseed_test(RNGContext *rng, const PRUint8 *entropy,
|
|
unsigned int entropy_len, const PRUint8 *additional_input,
|
|
unsigned int additional_input_len)
|
|
{
|
|
SECStatus rv;
|
|
|
|
/* do health checks in FIPS mode */
|
|
rv = PRNGTEST_RunHealthTests();
|
|
if (rv != SECSuccess) {
|
|
/* error set by PRNGTEST_RunHealTests() */
|
|
rng->isValid = PR_FALSE;
|
|
return SECFailure;
|
|
}
|
|
return prng_reseed(rng, entropy, entropy_len,
|
|
additional_input, additional_input_len);
|
|
}
|
|
|
|
/*
|
|
* build some fast inline functions for adding.
|
|
*/
|
|
#define PRNG_ADD_CARRY_ONLY(dest, start, carry) \
|
|
{ \
|
|
int k1; \
|
|
for (k1 = start; carry && k1 >= 0; k1--) { \
|
|
carry = !(++dest[k1]); \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
* NOTE: dest must be an array for the following to work.
|
|
*/
|
|
#define PRNG_ADD_BITS(dest, dest_len, add, len, carry) \
|
|
carry = 0; \
|
|
PORT_Assert((dest_len) >= (len)); \
|
|
{ \
|
|
int k1, k2; \
|
|
for (k1 = dest_len - 1, k2 = len - 1; k2 >= 0; --k1, --k2) { \
|
|
carry += dest[k1] + add[k2]; \
|
|
dest[k1] = (PRUint8) carry; \
|
|
carry >>= 8; \
|
|
} \
|
|
}
|
|
|
|
#define PRNG_ADD_BITS_AND_CARRY(dest, dest_len, add, len, carry) \
|
|
PRNG_ADD_BITS(dest, dest_len, add, len, carry) \
|
|
PRNG_ADD_CARRY_ONLY(dest, dest_len - len, carry)
|
|
|
|
/*
|
|
* This function expands the internal state of the prng to fulfill any number
|
|
* of bytes we need for this request. We only use this call if we need more
|
|
* than can be supplied by a single call to SHA256_HashBuf.
|
|
*
|
|
* This function is specified in NIST SP 800-90 section 10.1.1.4, Hashgen
|
|
*/
|
|
static void
|
|
prng_Hashgen(RNGContext *rng, PRUint8 *returned_bytes,
|
|
unsigned int no_of_returned_bytes)
|
|
{
|
|
PRUint8 data[VSize(rng)];
|
|
|
|
PORT_Memcpy(data, V(rng), VSize(rng));
|
|
while (no_of_returned_bytes) {
|
|
SHA256Context ctx;
|
|
unsigned int len;
|
|
unsigned int carry;
|
|
|
|
SHA256_Begin(&ctx);
|
|
SHA256_Update(&ctx, data, sizeof data);
|
|
SHA256_End(&ctx, returned_bytes, &len, no_of_returned_bytes);
|
|
returned_bytes += len;
|
|
no_of_returned_bytes -= len;
|
|
/* The carry parameter is a bool (increment or not).
|
|
* This increments data if no_of_returned_bytes is not zero */
|
|
carry = no_of_returned_bytes;
|
|
PRNG_ADD_CARRY_ONLY(data, (sizeof data)- 1, carry);
|
|
}
|
|
PORT_Memset(data, 0, sizeof data);
|
|
}
|
|
|
|
/*
|
|
* Generates new random bytes and advances the internal prng state.
|
|
* additional bytes are only used in algorithm testing.
|
|
*
|
|
* This function is specified in NIST SP 800-90 section 10.1.1.4
|
|
*/
|
|
static SECStatus
|
|
prng_generateNewBytes(RNGContext *rng,
|
|
PRUint8 *returned_bytes, unsigned int no_of_returned_bytes,
|
|
const PRUint8 *additional_input,
|
|
unsigned int additional_input_len)
|
|
{
|
|
PRUint8 H[SHA256_LENGTH]; /* both H and w since they
|
|
* aren't used concurrently */
|
|
unsigned int carry;
|
|
|
|
if (!rng->isValid) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
/* This code only triggers during tests, normal
|
|
* prng operation does not use additional_input */
|
|
if (additional_input){
|
|
SHA256Context ctx;
|
|
/* NIST SP 800-90 defines two temporaries in their calculations,
|
|
* w and H. These temporaries are the same lengths, and used
|
|
* at different times, so we use the following macro to collapse
|
|
* them to the same variable, but keeping their unique names for
|
|
* easy comparison to the spec */
|
|
#define w H
|
|
rng->V_type = prngAdditionalDataType;
|
|
SHA256_Begin(&ctx);
|
|
SHA256_Update(&ctx, rng->V_Data, sizeof rng->V_Data);
|
|
SHA256_Update(&ctx, additional_input, additional_input_len);
|
|
SHA256_End(&ctx, w, NULL, sizeof w);
|
|
PRNG_ADD_BITS_AND_CARRY(V(rng), VSize(rng), w, sizeof w, carry)
|
|
PORT_Memset(w, 0, sizeof w);
|
|
#undef w
|
|
}
|
|
|
|
if (no_of_returned_bytes == SHA256_LENGTH) {
|
|
/* short_cut to hashbuf and save a copy and a clear */
|
|
SHA256_HashBuf(returned_bytes, V(rng), VSize(rng) );
|
|
} else {
|
|
prng_Hashgen(rng, returned_bytes, no_of_returned_bytes);
|
|
}
|
|
/* advance our internal state... */
|
|
rng->V_type = prngGenerateByteType;
|
|
SHA256_HashBuf(H, rng->V_Data, sizeof rng->V_Data);
|
|
PRNG_ADD_BITS_AND_CARRY(V(rng), VSize(rng), H, sizeof H, carry)
|
|
PRNG_ADD_BITS(V(rng), VSize(rng), rng->C, sizeof rng->C, carry);
|
|
PRNG_ADD_BITS_AND_CARRY(V(rng), VSize(rng), rng->reseed_counter,
|
|
sizeof rng->reseed_counter, carry)
|
|
carry = 1;
|
|
PRNG_ADD_CARRY_ONLY(rng->reseed_counter,(sizeof rng->reseed_counter)-1, carry);
|
|
|
|
/* continuous rng check */
|
|
if (memcmp(V(rng), rng->oldV, sizeof rng->oldV) == 0) {
|
|
rng->isValid = PR_FALSE;
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
PORT_Memcpy(rng->oldV, V(rng), sizeof rng->oldV);
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* Use NSPR to prevent RNG_RNGInit from being called from separate
|
|
* threads, creating a race condition.
|
|
*/
|
|
static const PRCallOnceType pristineCallOnce;
|
|
static PRCallOnceType coRNGInit;
|
|
static PRStatus rng_init(void)
|
|
{
|
|
PRUint8 bytes[PRNG_SEEDLEN*2]; /* entropy + nonce */
|
|
unsigned int numBytes;
|
|
SECStatus rv = SECSuccess;
|
|
|
|
if (globalrng == NULL) {
|
|
/* bytes needs to have enough space to hold
|
|
* a SHA256 hash value. Blow up at compile time if this isn't true */
|
|
PR_STATIC_ASSERT(sizeof(bytes) >= SHA256_LENGTH);
|
|
/* create a new global RNG context */
|
|
globalrng = &theGlobalRng;
|
|
PORT_Assert(NULL == globalrng->lock);
|
|
/* create a lock for it */
|
|
globalrng->lock = PZ_NewLock(nssILockOther);
|
|
if (globalrng->lock == NULL) {
|
|
globalrng = NULL;
|
|
PORT_SetError(PR_OUT_OF_MEMORY_ERROR);
|
|
return PR_FAILURE;
|
|
}
|
|
|
|
/* Try to get some seed data for the RNG */
|
|
numBytes = (unsigned int) RNG_SystemRNG(bytes, sizeof bytes);
|
|
PORT_Assert(numBytes == 0 || numBytes == sizeof bytes);
|
|
if (numBytes != 0) {
|
|
/* if this is our first call, instantiate, otherwise reseed
|
|
* prng_instantiate gets a new clean state, we want to mix
|
|
* any previous entropy we may have collected */
|
|
if (V(globalrng)[0] == 0) {
|
|
rv = prng_instantiate(globalrng, bytes, numBytes);
|
|
} else {
|
|
rv = prng_reseed_test(globalrng, bytes, numBytes, NULL, 0);
|
|
}
|
|
memset(bytes, 0, numBytes);
|
|
} else {
|
|
PZ_DestroyLock(globalrng->lock);
|
|
globalrng->lock = NULL;
|
|
globalrng = NULL;
|
|
return PR_FAILURE;
|
|
}
|
|
|
|
if (rv != SECSuccess) {
|
|
return PR_FAILURE;
|
|
}
|
|
/* the RNG is in a valid state */
|
|
globalrng->isValid = PR_TRUE;
|
|
|
|
/* fetch one random value so that we can populate rng->oldV for our
|
|
* continous random number test. */
|
|
prng_generateNewBytes(globalrng, bytes, SHA256_LENGTH, NULL, 0);
|
|
|
|
/* Fetch more entropy into the PRNG */
|
|
RNG_SystemInfoForRNG();
|
|
}
|
|
return PR_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Clean up the global RNG context
|
|
*/
|
|
static void
|
|
prng_freeRNGContext(RNGContext *rng)
|
|
{
|
|
PRUint8 inputhash[VSize(rng) + (sizeof rng->C)];
|
|
|
|
/* destroy context lock */
|
|
SKIP_AFTER_FORK(PZ_DestroyLock(globalrng->lock));
|
|
|
|
/* zero global RNG context except for C & V to preserve entropy */
|
|
prng_Hash_df(inputhash, sizeof rng->C, rng->C, sizeof rng->C, NULL, 0);
|
|
prng_Hash_df(&inputhash[sizeof rng->C], VSize(rng), V(rng), VSize(rng),
|
|
NULL, 0);
|
|
memset(rng, 0, sizeof *rng);
|
|
memcpy(rng->C, inputhash, sizeof rng->C);
|
|
memcpy(V(rng), &inputhash[sizeof rng->C], VSize(rng));
|
|
|
|
memset(inputhash, 0, sizeof inputhash);
|
|
}
|
|
|
|
/*
|
|
* Public functions
|
|
*/
|
|
|
|
/*
|
|
* Initialize the global RNG context and give it some seed input taken
|
|
* from the system. This function is thread-safe and will only allow
|
|
* the global context to be initialized once. The seed input is likely
|
|
* small, so it is imperative that RNG_RandomUpdate() be called with
|
|
* additional seed data before the generator is used. A good way to
|
|
* provide the generator with additional entropy is to call
|
|
* RNG_SystemInfoForRNG(). Note that C_Initialize() does exactly that.
|
|
*/
|
|
SECStatus
|
|
RNG_RNGInit(void)
|
|
{
|
|
/* Allow only one call to initialize the context */
|
|
PR_CallOnce(&coRNGInit, rng_init);
|
|
/* Make sure there is a context */
|
|
return (globalrng != NULL) ? SECSuccess : SECFailure;
|
|
}
|
|
|
|
/*
|
|
** Update the global random number generator with more seeding
|
|
** material.
|
|
*/
|
|
SECStatus
|
|
RNG_RandomUpdate(const void *data, size_t bytes)
|
|
{
|
|
SECStatus rv;
|
|
|
|
/* Make sure our assumption that size_t is unsigned is true */
|
|
PR_STATIC_ASSERT(((size_t)-1) > (size_t)1);
|
|
|
|
#if defined(NS_PTR_GT_32) || (defined(NSS_USE_64) && !defined(NS_PTR_LE_32))
|
|
/*
|
|
* NIST 800-90 requires us to verify our inputs. This value can
|
|
* come from the application, so we need to make sure it's within the
|
|
* spec. The spec says it must be less than 2^32 bytes (2^35 bits).
|
|
* This can only happen if size_t is greater than 32 bits (i.e. on
|
|
* most 64 bit platforms). The 90% case (perhaps 100% case), size_t
|
|
* is less than or equal to 32 bits if the platform is not 64 bits, and
|
|
* greater than 32 bits if it is a 64 bit platform. The corner
|
|
* cases are handled with explicit defines NS_PTR_GT_32 and NS_PTR_LE_32.
|
|
*
|
|
* In general, neither NS_PTR_GT_32 nor NS_PTR_LE_32 will need to be
|
|
* defined. If you trip over the next two size ASSERTS at compile time,
|
|
* you will need to define them for your platform.
|
|
*
|
|
* if 'sizeof(size_t) > 4' is triggered it means that we were expecting
|
|
* sizeof(size_t) to be greater than 4, but it wasn't. Setting
|
|
* NS_PTR_LE_32 will correct that mistake.
|
|
*
|
|
* if 'sizeof(size_t) <= 4' is triggered, it means that we were expecting
|
|
* sizeof(size_t) to be less than or equal to 4, but it wasn't. Setting
|
|
* NS_PTR_GT_32 will correct that mistake.
|
|
*/
|
|
|
|
PR_STATIC_ASSERT(sizeof(size_t) > 4);
|
|
|
|
if (bytes > (size_t)PRNG_MAX_ADDITIONAL_BYTES) {
|
|
bytes = PRNG_MAX_ADDITIONAL_BYTES;
|
|
}
|
|
#else
|
|
PR_STATIC_ASSERT(sizeof(size_t) <= 4);
|
|
#endif
|
|
|
|
PZ_Lock(globalrng->lock);
|
|
/* if we're passed more than our additionalDataCache, simply
|
|
* call reseed with that data */
|
|
if (bytes > sizeof (globalrng->additionalDataCache)) {
|
|
rv = prng_reseed_test(globalrng, NULL, 0, data, (unsigned int) bytes);
|
|
/* if we aren't going to fill or overflow the buffer, just cache it */
|
|
} else if (bytes < ((sizeof globalrng->additionalDataCache)
|
|
- globalrng->additionalAvail)) {
|
|
PORT_Memcpy(globalrng->additionalDataCache+globalrng->additionalAvail,
|
|
data, bytes);
|
|
globalrng->additionalAvail += (PRUint32) bytes;
|
|
rv = SECSuccess;
|
|
} else {
|
|
/* we are going to fill or overflow the buffer. In this case we will
|
|
* fill the entropy buffer, reseed with it, start a new buffer with the
|
|
* remainder. We know the remainder will fit in the buffer because
|
|
* we already handled the case where bytes > the size of the buffer.
|
|
*/
|
|
size_t bufRemain = (sizeof globalrng->additionalDataCache)
|
|
- globalrng->additionalAvail;
|
|
/* fill the rest of the buffer */
|
|
if (bufRemain) {
|
|
PORT_Memcpy(globalrng->additionalDataCache
|
|
+globalrng->additionalAvail,
|
|
data, bufRemain);
|
|
data = ((unsigned char *)data) + bufRemain;
|
|
bytes -= bufRemain;
|
|
}
|
|
/* reseed from buffer */
|
|
rv = prng_reseed_test(globalrng, NULL, 0,
|
|
globalrng->additionalDataCache,
|
|
sizeof globalrng->additionalDataCache);
|
|
|
|
/* copy the rest into the cache */
|
|
PORT_Memcpy(globalrng->additionalDataCache, data, bytes);
|
|
globalrng->additionalAvail = (PRUint32) bytes;
|
|
}
|
|
|
|
PZ_Unlock(globalrng->lock);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
** Generate some random bytes, using the global random number generator
|
|
** object.
|
|
*/
|
|
static SECStatus
|
|
prng_GenerateGlobalRandomBytes(RNGContext *rng,
|
|
void *dest, size_t len)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
PRUint8 *output = dest;
|
|
/* check for a valid global RNG context */
|
|
PORT_Assert(rng != NULL);
|
|
if (rng == NULL) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
/* FIPS limits the amount of entropy available in a single request */
|
|
if (len > PRNG_MAX_REQUEST_SIZE) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
/* --- LOCKED --- */
|
|
PZ_Lock(rng->lock);
|
|
/* Check the amount of seed data in the generator. If not enough,
|
|
* don't produce any data.
|
|
*/
|
|
if (rng->reseed_counter[0] >= RESEED_VALUE) {
|
|
rv = prng_reseed_test(rng, NULL, 0, NULL, 0);
|
|
PZ_Unlock(rng->lock);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
RNG_SystemInfoForRNG();
|
|
PZ_Lock(rng->lock);
|
|
}
|
|
/*
|
|
* see if we have enough bytes to fulfill the request.
|
|
*/
|
|
if (len <= rng->dataAvail) {
|
|
memcpy(output, rng->data + ((sizeof rng->data) - rng->dataAvail), len);
|
|
memset(rng->data + ((sizeof rng->data) - rng->dataAvail), 0, len);
|
|
rng->dataAvail -= len;
|
|
rv = SECSuccess;
|
|
/* if we are asking for a small number of bytes, cache the rest of
|
|
* the bytes */
|
|
} else if (len < sizeof rng->data) {
|
|
rv = prng_generateNewBytes(rng, rng->data, sizeof rng->data,
|
|
rng->additionalAvail ? rng->additionalDataCache : NULL,
|
|
rng->additionalAvail);
|
|
rng->additionalAvail = 0;
|
|
if (rv == SECSuccess) {
|
|
memcpy(output, rng->data, len);
|
|
memset(rng->data, 0, len);
|
|
rng->dataAvail = (sizeof rng->data) - len;
|
|
}
|
|
/* we are asking for lots of bytes, just ask the generator to pass them */
|
|
} else {
|
|
rv = prng_generateNewBytes(rng, output, len,
|
|
rng->additionalAvail ? rng->additionalDataCache : NULL,
|
|
rng->additionalAvail);
|
|
rng->additionalAvail = 0;
|
|
}
|
|
PZ_Unlock(rng->lock);
|
|
/* --- UNLOCKED --- */
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
** Generate some random bytes, using the global random number generator
|
|
** object.
|
|
*/
|
|
SECStatus
|
|
RNG_GenerateGlobalRandomBytes(void *dest, size_t len)
|
|
{
|
|
return prng_GenerateGlobalRandomBytes(globalrng, dest, len);
|
|
}
|
|
|
|
void
|
|
RNG_RNGShutdown(void)
|
|
{
|
|
/* check for a valid global RNG context */
|
|
PORT_Assert(globalrng != NULL);
|
|
if (globalrng == NULL) {
|
|
/* Should set a "not initialized" error code. */
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return;
|
|
}
|
|
/* clear */
|
|
prng_freeRNGContext(globalrng);
|
|
globalrng = NULL;
|
|
/* reset the callonce struct to allow a new call to RNG_RNGInit() */
|
|
coRNGInit = pristineCallOnce;
|
|
}
|
|
|
|
/*
|
|
* Test case interface. used by fips testing and power on self test
|
|
*/
|
|
/* make sure the test context is separate from the global context, This
|
|
* allows us to test the internal random number generator without losing
|
|
* entropy we may have previously collected. */
|
|
RNGContext testContext;
|
|
|
|
/*
|
|
* Test vector API. Use NIST SP 800-90 general interface so one of the
|
|
* other NIST SP 800-90 algorithms may be used in the future.
|
|
*/
|
|
SECStatus
|
|
PRNGTEST_Instantiate(const PRUint8 *entropy, unsigned int entropy_len,
|
|
const PRUint8 *nonce, unsigned int nonce_len,
|
|
const PRUint8 *personal_string, unsigned int ps_len)
|
|
{
|
|
int bytes_len = entropy_len + nonce_len + ps_len;
|
|
PRUint8 *bytes = NULL;
|
|
SECStatus rv;
|
|
|
|
if (entropy_len < 256/PR_BITS_PER_BYTE) {
|
|
PORT_SetError(SEC_ERROR_NEED_RANDOM);
|
|
return SECFailure;
|
|
}
|
|
|
|
bytes = PORT_Alloc(bytes_len);
|
|
if (bytes == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
/* concatenate the various inputs, internally NSS only instantiates with
|
|
* a single long string */
|
|
PORT_Memcpy(bytes, entropy, entropy_len);
|
|
if (nonce) {
|
|
PORT_Memcpy(&bytes[entropy_len], nonce, nonce_len);
|
|
} else {
|
|
PORT_Assert(nonce_len == 0);
|
|
}
|
|
if (personal_string) {
|
|
PORT_Memcpy(&bytes[entropy_len+nonce_len], personal_string, ps_len);
|
|
} else {
|
|
PORT_Assert(ps_len == 0);
|
|
}
|
|
rv = prng_instantiate(&testContext, bytes, bytes_len);
|
|
PORT_ZFree(bytes, bytes_len);
|
|
if (rv == SECFailure) {
|
|
return SECFailure;
|
|
}
|
|
testContext.isValid = PR_TRUE;
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
PRNGTEST_Reseed(const PRUint8 *entropy, unsigned int entropy_len,
|
|
const PRUint8 *additional, unsigned int additional_len)
|
|
{
|
|
if (!testContext.isValid) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
/* This magic input tells us to set the reseed count to it's max count,
|
|
* so we can simulate PRNGTEST_Generate reaching max reseed count */
|
|
if ((entropy == NULL) && (entropy_len == 0) &&
|
|
(additional == NULL) && (additional_len == 0)) {
|
|
testContext.reseed_counter[0] = RESEED_VALUE;
|
|
return SECSuccess;
|
|
}
|
|
return prng_reseed(&testContext, entropy, entropy_len, additional,
|
|
additional_len);
|
|
|
|
}
|
|
|
|
SECStatus
|
|
PRNGTEST_Generate(PRUint8 *bytes, unsigned int bytes_len,
|
|
const PRUint8 *additional, unsigned int additional_len)
|
|
{
|
|
SECStatus rv;
|
|
if (!testContext.isValid) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
/* replicate reseed test from prng_GenerateGlobalRandomBytes */
|
|
if (testContext.reseed_counter[0] >= RESEED_VALUE) {
|
|
rv = prng_reseed(&testContext, NULL, 0, NULL, 0);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
}
|
|
return prng_generateNewBytes(&testContext, bytes, bytes_len,
|
|
additional, additional_len);
|
|
|
|
}
|
|
|
|
SECStatus
|
|
PRNGTEST_Uninstantiate()
|
|
{
|
|
if (!testContext.isValid) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
PORT_Memset(&testContext, 0, sizeof testContext);
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
PRNGTEST_RunHealthTests()
|
|
{
|
|
static const PRUint8 entropy[] = {
|
|
0x8e,0x9c,0x0d,0x25,0x75,0x22,0x04,0xf9,
|
|
0xc5,0x79,0x10,0x8b,0x23,0x79,0x37,0x14,
|
|
0x9f,0x2c,0xc7,0x0b,0x39,0xf8,0xee,0xef,
|
|
0x95,0x0c,0x97,0x59,0xfc,0x0a,0x85,0x41,
|
|
0x76,0x9d,0x6d,0x67,0x00,0x4e,0x19,0x12,
|
|
0x02,0x16,0x53,0xea,0xf2,0x73,0xd7,0xd6,
|
|
0x7f,0x7e,0xc8,0xae,0x9c,0x09,0x99,0x7d,
|
|
0xbb,0x9e,0x48,0x7f,0xbb,0x96,0x46,0xb3,
|
|
0x03,0x75,0xf8,0xc8,0x69,0x45,0x3f,0x97,
|
|
0x5e,0x2e,0x48,0xe1,0x5d,0x58,0x97,0x4c };
|
|
static const PRUint8 rng_known_result[] = {
|
|
0x16,0xe1,0x8c,0x57,0x21,0xd8,0xf1,0x7e,
|
|
0x5a,0xa0,0x16,0x0b,0x7e,0xa6,0x25,0xb4,
|
|
0x24,0x19,0xdb,0x54,0xfa,0x35,0x13,0x66,
|
|
0xbb,0xaa,0x2a,0x1b,0x22,0x33,0x2e,0x4a,
|
|
0x14,0x07,0x9d,0x52,0xfc,0x73,0x61,0x48,
|
|
0xac,0xc1,0x22,0xfc,0xa4,0xfc,0xac,0xa4,
|
|
0xdb,0xda,0x5b,0x27,0x33,0xc4,0xb3 };
|
|
static const PRUint8 reseed_entropy[] = {
|
|
0xc6,0x0b,0x0a,0x30,0x67,0x07,0xf4,0xe2,
|
|
0x24,0xa7,0x51,0x6f,0x5f,0x85,0x3e,0x5d,
|
|
0x67,0x97,0xb8,0x3b,0x30,0x9c,0x7a,0xb1,
|
|
0x52,0xc6,0x1b,0xc9,0x46,0xa8,0x62,0x79 };
|
|
static const PRUint8 additional_input[] = {
|
|
0x86,0x82,0x28,0x98,0xe7,0xcb,0x01,0x14,
|
|
0xae,0x87,0x4b,0x1d,0x99,0x1b,0xc7,0x41,
|
|
0x33,0xff,0x33,0x66,0x40,0x95,0x54,0xc6,
|
|
0x67,0x4d,0x40,0x2a,0x1f,0xf9,0xeb,0x65 };
|
|
static const PRUint8 rng_reseed_result[] = {
|
|
0x02,0x0c,0xc6,0x17,0x86,0x49,0xba,0xc4,
|
|
0x7b,0x71,0x35,0x05,0xf0,0xdb,0x4a,0xc2,
|
|
0x2c,0x38,0xc1,0xa4,0x42,0xe5,0x46,0x4a,
|
|
0x7d,0xf0,0xbe,0x47,0x88,0xb8,0x0e,0xc6,
|
|
0x25,0x2b,0x1d,0x13,0xef,0xa6,0x87,0x96,
|
|
0xa3,0x7d,0x5b,0x80,0xc2,0x38,0x76,0x61,
|
|
0xc7,0x80,0x5d,0x0f,0x05,0x76,0x85 };
|
|
static const PRUint8 rng_no_reseed_result[] = {
|
|
0xc4,0x40,0x41,0x8c,0xbf,0x2f,0x70,0x23,
|
|
0x88,0xf2,0x7b,0x30,0xc3,0xca,0x1e,0xf3,
|
|
0xef,0x53,0x81,0x5d,0x30,0xed,0x4c,0xf1,
|
|
0xff,0x89,0xa5,0xee,0x92,0xf8,0xc0,0x0f,
|
|
0x88,0x53,0xdf,0xb6,0x76,0xf0,0xaa,0xd3,
|
|
0x2e,0x1d,0x64,0x37,0x3e,0xe8,0x4a,0x02,
|
|
0xff,0x0a,0x7f,0xe5,0xe9,0x2b,0x6d };
|
|
|
|
SECStatus rng_status = SECSuccess;
|
|
PR_STATIC_ASSERT(sizeof(rng_known_result) >= sizeof(rng_reseed_result));
|
|
PRUint8 result[sizeof(rng_known_result)];
|
|
|
|
/********************************************/
|
|
/* First test instantiate error path. */
|
|
/* In this case we supply enough entropy, */
|
|
/* but not enough seed. This will trigger */
|
|
/* the code that checks for a entropy */
|
|
/* source failure. */
|
|
/********************************************/
|
|
rng_status = PRNGTEST_Instantiate(entropy, 256/PR_BITS_PER_BYTE,
|
|
NULL, 0, NULL, 0);
|
|
if (rng_status == SECSuccess) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
if (PORT_GetError() != SEC_ERROR_NEED_RANDOM) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
/* we failed with the proper error code, we can continue */
|
|
|
|
/********************************************/
|
|
/* Generate random bytes with a known seed. */
|
|
/********************************************/
|
|
rng_status = PRNGTEST_Instantiate(entropy, sizeof entropy,
|
|
NULL, 0, NULL, 0);
|
|
if (rng_status != SECSuccess) {
|
|
/* Error set by PRNGTEST_Instantiate */
|
|
return SECFailure;
|
|
}
|
|
rng_status = PRNGTEST_Generate(result, sizeof rng_known_result, NULL, 0);
|
|
if ( ( rng_status != SECSuccess) ||
|
|
( PORT_Memcmp( result, rng_known_result,
|
|
sizeof rng_known_result ) != 0 ) ) {
|
|
PRNGTEST_Uninstantiate();
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
rng_status = PRNGTEST_Reseed(reseed_entropy, sizeof reseed_entropy,
|
|
additional_input, sizeof additional_input);
|
|
if (rng_status != SECSuccess) {
|
|
/* Error set by PRNG_Reseed */
|
|
PRNGTEST_Uninstantiate();
|
|
return SECFailure;
|
|
}
|
|
rng_status = PRNGTEST_Generate(result, sizeof rng_reseed_result, NULL, 0);
|
|
if ( ( rng_status != SECSuccess) ||
|
|
( PORT_Memcmp( result, rng_reseed_result,
|
|
sizeof rng_reseed_result ) != 0 ) ) {
|
|
PRNGTEST_Uninstantiate();
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
/* This magic forces the reseed count to it's max count, so we can see if
|
|
* PRNGTEST_Generate will actually when it reaches it's count */
|
|
rng_status = PRNGTEST_Reseed(NULL, 0, NULL, 0);
|
|
if (rng_status != SECSuccess) {
|
|
PRNGTEST_Uninstantiate();
|
|
/* Error set by PRNG_Reseed */
|
|
return SECFailure;
|
|
}
|
|
/* This generate should now reseed */
|
|
rng_status = PRNGTEST_Generate(result, sizeof rng_reseed_result, NULL, 0);
|
|
if ( ( rng_status != SECSuccess) ||
|
|
/* NOTE we fail if the result is equal to the no_reseed_result.
|
|
* no_reseed_result is the value we would have gotten if we didn't
|
|
* do an automatic reseed in PRNGTEST_Generate */
|
|
( PORT_Memcmp( result, rng_no_reseed_result,
|
|
sizeof rng_no_reseed_result ) == 0 ) ) {
|
|
PRNGTEST_Uninstantiate();
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
/* make sure reseed fails when we don't supply enough entropy */
|
|
rng_status = PRNGTEST_Reseed(reseed_entropy, 4, NULL, 0);
|
|
if (rng_status == SECSuccess) {
|
|
PRNGTEST_Uninstantiate();
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
if (PORT_GetError() != SEC_ERROR_NEED_RANDOM) {
|
|
PRNGTEST_Uninstantiate();
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
rng_status = PRNGTEST_Uninstantiate();
|
|
if (rng_status != SECSuccess) {
|
|
/* Error set by PRNG_Uninstantiate */
|
|
return rng_status;
|
|
}
|
|
/* make sure uninstantiate fails if the contest is not initiated (also tests
|
|
* if the context was cleared in the previous Uninstantiate) */
|
|
rng_status = PRNGTEST_Uninstantiate();
|
|
if (rng_status == SECSuccess) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
if (PORT_GetError() != SEC_ERROR_LIBRARY_FAILURE) {
|
|
return rng_status;
|
|
}
|
|
|
|
return SECSuccess;
|
|
}
|