mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-14 11:40:13 +01:00
44b7f056d9
bug1001332, 56b691c003ad, bug1086145, bug1054069, bug1155922, bug991783, bug1125025, bug1162521, bug1162644, bug1132941, bug1164364, bug1166205, bug1166163, bug1166515, bug1138554, bug1167046, bug1167043, bug1169451, bug1172128, bug1170322, bug102794, bug1128184, bug557830, bug1174648, bug1180244, bug1177784, bug1173413, bug1169174, bug1084669, bug951455, bug1183395, bug1177430, bug1183827, bug1160139, bug1154106, bug1142209, bug1185033, bug1193467, bug1182667(with sha512 changes backed out, which breaks VC6 compilation), bug1158489, bug337796
1179 lines
35 KiB
C
1179 lines
35 KiB
C
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/* This file implements moduluar exponentiation using Montgomery's
|
|
* method for modular reduction. This file implements the method
|
|
* described as "Improvement 2" in the paper "A Cryptogrpahic Library for
|
|
* the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr.
|
|
* published in "Advances in Cryptology: Proceedings of EUROCRYPT '90"
|
|
* "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244,
|
|
* published by Springer Verlag.
|
|
*/
|
|
|
|
#define MP_USING_CACHE_SAFE_MOD_EXP 1
|
|
#include <string.h>
|
|
#include "mpi-priv.h"
|
|
#include "mplogic.h"
|
|
#include "mpprime.h"
|
|
#ifdef MP_USING_MONT_MULF
|
|
#include "montmulf.h"
|
|
#endif
|
|
#include <stddef.h> /* ptrdiff_t */
|
|
|
|
/* if MP_CHAR_STORE_SLOW is defined, we */
|
|
/* need to know endianness of this platform. */
|
|
#ifdef MP_CHAR_STORE_SLOW
|
|
#if !defined(MP_IS_BIG_ENDIAN) && !defined(MP_IS_LITTLE_ENDIAN)
|
|
#error "You must define MP_IS_BIG_ENDIAN or MP_IS_LITTLE_ENDIAN\n" \
|
|
" if you define MP_CHAR_STORE_SLOW."
|
|
#endif
|
|
#endif
|
|
|
|
#define STATIC
|
|
|
|
#define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */
|
|
|
|
/*! computes T = REDC(T), 2^b == R
|
|
\param T < RN
|
|
*/
|
|
mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm)
|
|
{
|
|
mp_err res;
|
|
mp_size i;
|
|
|
|
i = (MP_USED(&mmm->N) << 1) + 1;
|
|
MP_CHECKOK( s_mp_pad(T, i) );
|
|
for (i = 0; i < MP_USED(&mmm->N); ++i ) {
|
|
mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime;
|
|
/* T += N * m_i * (MP_RADIX ** i); */
|
|
s_mp_mul_d_add_offset(&mmm->N, m_i, T, i);
|
|
}
|
|
s_mp_clamp(T);
|
|
|
|
/* T /= R */
|
|
s_mp_rshd( T, MP_USED(&mmm->N) );
|
|
|
|
if ((res = s_mp_cmp(T, &mmm->N)) >= 0) {
|
|
/* T = T - N */
|
|
MP_CHECKOK( s_mp_sub(T, &mmm->N) );
|
|
#ifdef DEBUG
|
|
if ((res = mp_cmp(T, &mmm->N)) >= 0) {
|
|
res = MP_UNDEF;
|
|
goto CLEANUP;
|
|
}
|
|
#endif
|
|
}
|
|
res = MP_OKAY;
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
#if !defined(MP_MONT_USE_MP_MUL)
|
|
|
|
/*! c <- REDC( a * b ) mod N
|
|
\param a < N i.e. "reduced"
|
|
\param b < N i.e. "reduced"
|
|
\param mmm modulus N and n0' of N
|
|
*/
|
|
mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
|
|
mp_mont_modulus *mmm)
|
|
{
|
|
mp_digit *pb;
|
|
mp_digit m_i;
|
|
mp_err res;
|
|
mp_size ib; /* "index b": index of current digit of B */
|
|
mp_size useda, usedb;
|
|
|
|
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
|
if (MP_USED(a) < MP_USED(b)) {
|
|
const mp_int *xch = b; /* switch a and b, to do fewer outer loops */
|
|
b = a;
|
|
a = xch;
|
|
}
|
|
|
|
MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
|
|
ib = (MP_USED(&mmm->N) << 1) + 1;
|
|
if((res = s_mp_pad(c, ib)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
useda = MP_USED(a);
|
|
pb = MP_DIGITS(b);
|
|
s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c));
|
|
s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1));
|
|
m_i = MP_DIGIT(c, 0) * mmm->n0prime;
|
|
s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0);
|
|
|
|
/* Outer loop: Digits of b */
|
|
usedb = MP_USED(b);
|
|
for (ib = 1; ib < usedb; ib++) {
|
|
mp_digit b_i = *pb++;
|
|
|
|
/* Inner product: Digits of a */
|
|
if (b_i)
|
|
s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
|
|
m_i = MP_DIGIT(c, ib) * mmm->n0prime;
|
|
s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
|
|
}
|
|
if (usedb < MP_USED(&mmm->N)) {
|
|
for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib ) {
|
|
m_i = MP_DIGIT(c, ib) * mmm->n0prime;
|
|
s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
|
|
}
|
|
}
|
|
s_mp_clamp(c);
|
|
s_mp_rshd( c, MP_USED(&mmm->N) ); /* c /= R */
|
|
if (s_mp_cmp(c, &mmm->N) >= 0) {
|
|
MP_CHECKOK( s_mp_sub(c, &mmm->N) );
|
|
}
|
|
res = MP_OKAY;
|
|
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
STATIC
|
|
mp_err s_mp_to_mont(const mp_int *x, mp_mont_modulus *mmm, mp_int *xMont)
|
|
{
|
|
mp_err res;
|
|
|
|
/* xMont = x * R mod N where N is modulus */
|
|
MP_CHECKOK( mp_copy( x, xMont ) );
|
|
MP_CHECKOK( s_mp_lshd( xMont, MP_USED(&mmm->N) ) ); /* xMont = x << b */
|
|
MP_CHECKOK( mp_div(xMont, &mmm->N, 0, xMont) ); /* mod N */
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
#ifdef MP_USING_MONT_MULF
|
|
|
|
/* the floating point multiply is already cache safe,
|
|
* don't turn on cache safe unless we specifically
|
|
* force it */
|
|
#ifndef MP_FORCE_CACHE_SAFE
|
|
#undef MP_USING_CACHE_SAFE_MOD_EXP
|
|
#endif
|
|
|
|
unsigned int mp_using_mont_mulf = 1;
|
|
|
|
/* computes montgomery square of the integer in mResult */
|
|
#define SQR \
|
|
conv_i32_to_d32_and_d16(dm1, d16Tmp, mResult, nLen); \
|
|
mont_mulf_noconv(mResult, dm1, d16Tmp, \
|
|
dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
|
|
|
|
/* computes montgomery product of x and the integer in mResult */
|
|
#define MUL(x) \
|
|
conv_i32_to_d32(dm1, mResult, nLen); \
|
|
mont_mulf_noconv(mResult, dm1, oddPowers[x], \
|
|
dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
|
|
|
|
/* Do modular exponentiation using floating point multiply code. */
|
|
mp_err mp_exptmod_f(const mp_int * montBase,
|
|
const mp_int * exponent,
|
|
const mp_int * modulus,
|
|
mp_int * result,
|
|
mp_mont_modulus *mmm,
|
|
int nLen,
|
|
mp_size bits_in_exponent,
|
|
mp_size window_bits,
|
|
mp_size odd_ints)
|
|
{
|
|
mp_digit *mResult;
|
|
double *dBuf = 0, *dm1, *dn, *dSqr, *d16Tmp, *dTmp;
|
|
double dn0;
|
|
mp_size i;
|
|
mp_err res;
|
|
int expOff;
|
|
int dSize = 0, oddPowSize, dTmpSize;
|
|
mp_int accum1;
|
|
double *oddPowers[MAX_ODD_INTS];
|
|
|
|
/* function for computing n0prime only works if n0 is odd */
|
|
|
|
MP_DIGITS(&accum1) = 0;
|
|
|
|
for (i = 0; i < MAX_ODD_INTS; ++i)
|
|
oddPowers[i] = 0;
|
|
|
|
MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
|
|
|
|
mp_set(&accum1, 1);
|
|
MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
|
|
MP_CHECKOK( s_mp_pad(&accum1, nLen) );
|
|
|
|
oddPowSize = 2 * nLen + 1;
|
|
dTmpSize = 2 * oddPowSize;
|
|
dSize = sizeof(double) * (nLen * 4 + 1 +
|
|
((odd_ints + 1) * oddPowSize) + dTmpSize);
|
|
dBuf = (double *)malloc(dSize);
|
|
dm1 = dBuf; /* array of d32 */
|
|
dn = dBuf + nLen; /* array of d32 */
|
|
dSqr = dn + nLen; /* array of d32 */
|
|
d16Tmp = dSqr + nLen; /* array of d16 */
|
|
dTmp = d16Tmp + oddPowSize;
|
|
|
|
for (i = 0; i < odd_ints; ++i) {
|
|
oddPowers[i] = dTmp;
|
|
dTmp += oddPowSize;
|
|
}
|
|
mResult = (mp_digit *)(dTmp + dTmpSize); /* size is nLen + 1 */
|
|
|
|
/* Make dn and dn0 */
|
|
conv_i32_to_d32(dn, MP_DIGITS(modulus), nLen);
|
|
dn0 = (double)(mmm->n0prime & 0xffff);
|
|
|
|
/* Make dSqr */
|
|
conv_i32_to_d32_and_d16(dm1, oddPowers[0], MP_DIGITS(montBase), nLen);
|
|
mont_mulf_noconv(mResult, dm1, oddPowers[0],
|
|
dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
|
|
conv_i32_to_d32(dSqr, mResult, nLen);
|
|
|
|
for (i = 1; i < odd_ints; ++i) {
|
|
mont_mulf_noconv(mResult, dSqr, oddPowers[i - 1],
|
|
dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
|
|
conv_i32_to_d16(oddPowers[i], mResult, nLen);
|
|
}
|
|
|
|
s_mp_copy(MP_DIGITS(&accum1), mResult, nLen); /* from, to, len */
|
|
|
|
for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) {
|
|
mp_size smallExp;
|
|
MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
|
|
smallExp = (mp_size)res;
|
|
|
|
if (window_bits == 1) {
|
|
if (!smallExp) {
|
|
SQR;
|
|
} else if (smallExp & 1) {
|
|
SQR; MUL(0);
|
|
} else {
|
|
abort();
|
|
}
|
|
} else if (window_bits == 4) {
|
|
if (!smallExp) {
|
|
SQR; SQR; SQR; SQR;
|
|
} else if (smallExp & 1) {
|
|
SQR; SQR; SQR; SQR; MUL(smallExp/2);
|
|
} else if (smallExp & 2) {
|
|
SQR; SQR; SQR; MUL(smallExp/4); SQR;
|
|
} else if (smallExp & 4) {
|
|
SQR; SQR; MUL(smallExp/8); SQR; SQR;
|
|
} else if (smallExp & 8) {
|
|
SQR; MUL(smallExp/16); SQR; SQR; SQR;
|
|
} else {
|
|
abort();
|
|
}
|
|
} else if (window_bits == 5) {
|
|
if (!smallExp) {
|
|
SQR; SQR; SQR; SQR; SQR;
|
|
} else if (smallExp & 1) {
|
|
SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2);
|
|
} else if (smallExp & 2) {
|
|
SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR;
|
|
} else if (smallExp & 4) {
|
|
SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR;
|
|
} else if (smallExp & 8) {
|
|
SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR;
|
|
} else if (smallExp & 0x10) {
|
|
SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR;
|
|
} else {
|
|
abort();
|
|
}
|
|
} else if (window_bits == 6) {
|
|
if (!smallExp) {
|
|
SQR; SQR; SQR; SQR; SQR; SQR;
|
|
} else if (smallExp & 1) {
|
|
SQR; SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2);
|
|
} else if (smallExp & 2) {
|
|
SQR; SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR;
|
|
} else if (smallExp & 4) {
|
|
SQR; SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR;
|
|
} else if (smallExp & 8) {
|
|
SQR; SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR;
|
|
} else if (smallExp & 0x10) {
|
|
SQR; SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR;
|
|
} else if (smallExp & 0x20) {
|
|
SQR; MUL(smallExp/64); SQR; SQR; SQR; SQR; SQR;
|
|
} else {
|
|
abort();
|
|
}
|
|
} else {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
s_mp_copy(mResult, MP_DIGITS(&accum1), nLen); /* from, to, len */
|
|
|
|
res = s_mp_redc(&accum1, mmm);
|
|
mp_exch(&accum1, result);
|
|
|
|
CLEANUP:
|
|
mp_clear(&accum1);
|
|
if (dBuf) {
|
|
if (dSize)
|
|
memset(dBuf, 0, dSize);
|
|
free(dBuf);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
#undef SQR
|
|
#undef MUL
|
|
#endif
|
|
|
|
#define SQR(a,b) \
|
|
MP_CHECKOK( mp_sqr(a, b) );\
|
|
MP_CHECKOK( s_mp_redc(b, mmm) )
|
|
|
|
#if defined(MP_MONT_USE_MP_MUL)
|
|
#define MUL(x,a,b) \
|
|
MP_CHECKOK( mp_mul(a, oddPowers + (x), b) ); \
|
|
MP_CHECKOK( s_mp_redc(b, mmm) )
|
|
#else
|
|
#define MUL(x,a,b) \
|
|
MP_CHECKOK( s_mp_mul_mont(a, oddPowers + (x), b, mmm) )
|
|
#endif
|
|
|
|
#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
|
|
|
|
/* Do modular exponentiation using integer multiply code. */
|
|
mp_err mp_exptmod_i(const mp_int * montBase,
|
|
const mp_int * exponent,
|
|
const mp_int * modulus,
|
|
mp_int * result,
|
|
mp_mont_modulus *mmm,
|
|
int nLen,
|
|
mp_size bits_in_exponent,
|
|
mp_size window_bits,
|
|
mp_size odd_ints)
|
|
{
|
|
mp_int *pa1, *pa2, *ptmp;
|
|
mp_size i;
|
|
mp_err res;
|
|
int expOff;
|
|
mp_int accum1, accum2, power2, oddPowers[MAX_ODD_INTS];
|
|
|
|
/* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */
|
|
/* oddPowers[i] = base ** (2*i + 1); */
|
|
|
|
MP_DIGITS(&accum1) = 0;
|
|
MP_DIGITS(&accum2) = 0;
|
|
MP_DIGITS(&power2) = 0;
|
|
for (i = 0; i < MAX_ODD_INTS; ++i) {
|
|
MP_DIGITS(oddPowers + i) = 0;
|
|
}
|
|
|
|
MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
|
|
MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
|
|
|
|
MP_CHECKOK( mp_init_copy(&oddPowers[0], montBase) );
|
|
|
|
mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2);
|
|
MP_CHECKOK( mp_sqr(montBase, &power2) ); /* power2 = montBase ** 2 */
|
|
MP_CHECKOK( s_mp_redc(&power2, mmm) );
|
|
|
|
for (i = 1; i < odd_ints; ++i) {
|
|
mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2);
|
|
MP_CHECKOK( mp_mul(oddPowers + (i - 1), &power2, oddPowers + i) );
|
|
MP_CHECKOK( s_mp_redc(oddPowers + i, mmm) );
|
|
}
|
|
|
|
/* set accumulator to montgomery residue of 1 */
|
|
mp_set(&accum1, 1);
|
|
MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
|
|
pa1 = &accum1;
|
|
pa2 = &accum2;
|
|
|
|
for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) {
|
|
mp_size smallExp;
|
|
MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
|
|
smallExp = (mp_size)res;
|
|
|
|
if (window_bits == 1) {
|
|
if (!smallExp) {
|
|
SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 1) {
|
|
SQR(pa1,pa2); MUL(0,pa2,pa1);
|
|
} else {
|
|
abort();
|
|
}
|
|
} else if (window_bits == 4) {
|
|
if (!smallExp) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
} else if (smallExp & 1) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
MUL(smallExp/2, pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 2) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
|
|
MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 4) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/8,pa1,pa2);
|
|
SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 8) {
|
|
SQR(pa1,pa2); MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2);
|
|
SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else {
|
|
abort();
|
|
}
|
|
} else if (window_bits == 5) {
|
|
if (!smallExp) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 1) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); MUL(smallExp/2,pa2,pa1);
|
|
} else if (smallExp & 2) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
MUL(smallExp/4,pa1,pa2); SQR(pa2,pa1);
|
|
} else if (smallExp & 4) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
|
|
MUL(smallExp/8,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
} else if (smallExp & 8) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/16,pa1,pa2);
|
|
SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
} else if (smallExp & 0x10) {
|
|
SQR(pa1,pa2); MUL(smallExp/32,pa2,pa1); SQR(pa1,pa2);
|
|
SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
} else {
|
|
abort();
|
|
}
|
|
} else if (window_bits == 6) {
|
|
if (!smallExp) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); SQR(pa2,pa1);
|
|
} else if (smallExp & 1) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/2,pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 2) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 4) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
MUL(smallExp/8,pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 8) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
|
|
MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 0x10) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/32,pa1,pa2);
|
|
SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 0x20) {
|
|
SQR(pa1,pa2); MUL(smallExp/64,pa2,pa1); SQR(pa1,pa2);
|
|
SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else {
|
|
abort();
|
|
}
|
|
} else {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
res = s_mp_redc(pa1, mmm);
|
|
mp_exch(pa1, result);
|
|
|
|
CLEANUP:
|
|
mp_clear(&accum1);
|
|
mp_clear(&accum2);
|
|
mp_clear(&power2);
|
|
for (i = 0; i < odd_ints; ++i) {
|
|
mp_clear(oddPowers + i);
|
|
}
|
|
return res;
|
|
}
|
|
#undef SQR
|
|
#undef MUL
|
|
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
unsigned int mp_using_cache_safe_exp = 1;
|
|
#endif
|
|
|
|
mp_err mp_set_safe_modexp(int value)
|
|
{
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
mp_using_cache_safe_exp = value;
|
|
return MP_OKAY;
|
|
#else
|
|
if (value == 0) {
|
|
return MP_OKAY;
|
|
}
|
|
return MP_BADARG;
|
|
#endif
|
|
}
|
|
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
#define WEAVE_WORD_SIZE 4
|
|
|
|
#ifndef MP_CHAR_STORE_SLOW
|
|
/*
|
|
* mpi_to_weave takes an array of bignums, a matrix in which each bignum
|
|
* occupies all the columns of a row, and transposes it into a matrix in
|
|
* which each bignum occupies a column of every row. The first row of the
|
|
* input matrix becomes the first column of the output matrix. The n'th
|
|
* row of input becomes the n'th column of output. The input data is said
|
|
* to be "interleaved" or "woven" into the output matrix.
|
|
*
|
|
* The array of bignums is left in this woven form. Each time a single
|
|
* bignum value is needed, it is recreated by fetching the n'th column,
|
|
* forming a single row which is the new bignum.
|
|
*
|
|
* The purpose of this interleaving is make it impossible to determine which
|
|
* of the bignums is being used in any one operation by examining the pattern
|
|
* of cache misses.
|
|
*
|
|
* The weaving function does not transpose the entire input matrix in one call.
|
|
* It transposes 4 rows of mp_ints into their respective columns of output.
|
|
*
|
|
* There are two different implementations of the weaving and unweaving code
|
|
* in this file. One uses byte loads and stores. The second uses loads and
|
|
* stores of mp_weave_word size values. The weaved forms of these two
|
|
* implementations differ. Consequently, each one has its own explanation.
|
|
*
|
|
* Here is the explanation for the byte-at-a-time implementation.
|
|
*
|
|
* This implementation treats each mp_int bignum as an array of bytes,
|
|
* rather than as an array of mp_digits. It stores those bytes as a
|
|
* column of bytes in the output matrix. It doesn't care if the machine
|
|
* uses big-endian or little-endian byte ordering within mp_digits.
|
|
* The first byte of the mp_digit array becomes the first byte in the output
|
|
* column, regardless of whether that byte is the MSB or LSB of the mp_digit.
|
|
*
|
|
* "bignums" is an array of mp_ints.
|
|
* It points to four rows, four mp_ints, a subset of a larger array of mp_ints.
|
|
*
|
|
* "weaved" is the weaved output matrix.
|
|
* The first byte of bignums[0] is stored in weaved[0].
|
|
*
|
|
* "nBignums" is the total number of bignums in the array of which "bignums"
|
|
* is a part.
|
|
*
|
|
* "nDigits" is the size in mp_digits of each mp_int in the "bignums" array.
|
|
* mp_ints that use less than nDigits digits are logically padded with zeros
|
|
* while being stored in the weaved array.
|
|
*/
|
|
mp_err mpi_to_weave(const mp_int *bignums,
|
|
unsigned char *weaved,
|
|
mp_size nDigits, /* in each mp_int of input */
|
|
mp_size nBignums) /* in the entire source array */
|
|
{
|
|
mp_size i;
|
|
unsigned char * endDest = weaved + (nDigits * nBignums * sizeof(mp_digit));
|
|
|
|
for (i=0; i < WEAVE_WORD_SIZE; i++) {
|
|
mp_size used = MP_USED(&bignums[i]);
|
|
unsigned char *pSrc = (unsigned char *)MP_DIGITS(&bignums[i]);
|
|
unsigned char *endSrc = pSrc + (used * sizeof(mp_digit));
|
|
unsigned char *pDest = weaved + i;
|
|
|
|
ARGCHK(MP_SIGN(&bignums[i]) == MP_ZPOS, MP_BADARG);
|
|
ARGCHK(used <= nDigits, MP_BADARG);
|
|
|
|
for (; pSrc < endSrc; pSrc++) {
|
|
*pDest = *pSrc;
|
|
pDest += nBignums;
|
|
}
|
|
while (pDest < endDest) {
|
|
*pDest = 0;
|
|
pDest += nBignums;
|
|
}
|
|
}
|
|
|
|
return MP_OKAY;
|
|
}
|
|
|
|
/* Reverse the operation above for one mp_int.
|
|
* Reconstruct one mp_int from its column in the weaved array.
|
|
* "pSrc" points to the offset into the weave array of the bignum we
|
|
* are going to reconstruct.
|
|
*/
|
|
mp_err weave_to_mpi(mp_int *a, /* output, result */
|
|
const unsigned char *pSrc, /* input, byte matrix */
|
|
mp_size nDigits, /* per mp_int output */
|
|
mp_size nBignums) /* bignums in weaved matrix */
|
|
{
|
|
unsigned char *pDest = (unsigned char *)MP_DIGITS(a);
|
|
unsigned char *endDest = pDest + (nDigits * sizeof(mp_digit));
|
|
|
|
MP_SIGN(a) = MP_ZPOS;
|
|
MP_USED(a) = nDigits;
|
|
|
|
for (; pDest < endDest; pSrc += nBignums, pDest++) {
|
|
*pDest = *pSrc;
|
|
}
|
|
s_mp_clamp(a);
|
|
return MP_OKAY;
|
|
}
|
|
|
|
#else
|
|
|
|
/* Need a primitive that we know is 32 bits long... */
|
|
/* this is true on all modern processors we know of today*/
|
|
typedef unsigned int mp_weave_word;
|
|
|
|
/*
|
|
* on some platforms character stores into memory is very expensive since they
|
|
* generate a read/modify/write operation on the bus. On those platforms
|
|
* we need to do integer writes to the bus. Because of some unrolled code,
|
|
* in this current code the size of mp_weave_word must be four. The code that
|
|
* makes this assumption explicity is called out. (on some platforms a write
|
|
* of 4 bytes still requires a single read-modify-write operation.
|
|
*
|
|
* This function is takes the identical parameters as the function above,
|
|
* however it lays out the final array differently. Where the previous function
|
|
* treats the mpi_int as an byte array, this function treats it as an array of
|
|
* mp_digits where each digit is stored in big endian order.
|
|
*
|
|
* since we need to interleave on a byte by byte basis, we need to collect
|
|
* several mpi structures together into a single PRUint32 before we write. We
|
|
* also need to make sure the PRUint32 is arranged so that the first value of
|
|
* the first array winds up in b[0]. This means construction of that PRUint32
|
|
* is endian specific (even though the layout of the mp_digits in the array
|
|
* is always big endian).
|
|
*
|
|
* The final data is stored as follows :
|
|
*
|
|
* Our same logical array p array, m is sizeof(mp_digit),
|
|
* N is still count and n is now b_size. If we define p[i].digit[j]0 as the
|
|
* most significant byte of the word p[i].digit[j], p[i].digit[j]1 as
|
|
* the next most significant byte of p[i].digit[j], ... and p[i].digit[j]m-1
|
|
* is the least significant byte.
|
|
* Our array would look like:
|
|
* p[0].digit[0]0 p[1].digit[0]0 ... p[N-2].digit[0]0 p[N-1].digit[0]0
|
|
* p[0].digit[0]1 p[1].digit[0]1 ... p[N-2].digit[0]1 p[N-1].digit[0]1
|
|
* . .
|
|
* p[0].digit[0]m-1 p[1].digit[0]m-1 ... p[N-2].digit[0]m-1 p[N-1].digit[0]m-1
|
|
* p[0].digit[1]0 p[1].digit[1]0 ... p[N-2].digit[1]0 p[N-1].digit[1]0
|
|
* . .
|
|
* . .
|
|
* p[0].digit[n-1]m-2 p[1].digit[n-1]m-2 ... p[N-2].digit[n-1]m-2 p[N-1].digit[n-1]m-2
|
|
* p[0].digit[n-1]m-1 p[1].digit[n-1]m-1 ... p[N-2].digit[n-1]m-1 p[N-1].digit[n-1]m-1
|
|
*
|
|
*/
|
|
mp_err mpi_to_weave(const mp_int *a, unsigned char *b,
|
|
mp_size b_size, mp_size count)
|
|
{
|
|
mp_size i;
|
|
mp_digit *digitsa0;
|
|
mp_digit *digitsa1;
|
|
mp_digit *digitsa2;
|
|
mp_digit *digitsa3;
|
|
mp_size useda0;
|
|
mp_size useda1;
|
|
mp_size useda2;
|
|
mp_size useda3;
|
|
mp_weave_word *weaved = (mp_weave_word *)b;
|
|
|
|
count = count/sizeof(mp_weave_word);
|
|
|
|
/* this code pretty much depends on this ! */
|
|
#if MP_ARGCHK == 2
|
|
assert(WEAVE_WORD_SIZE == 4);
|
|
assert(sizeof(mp_weave_word) == 4);
|
|
#endif
|
|
|
|
digitsa0 = MP_DIGITS(&a[0]);
|
|
digitsa1 = MP_DIGITS(&a[1]);
|
|
digitsa2 = MP_DIGITS(&a[2]);
|
|
digitsa3 = MP_DIGITS(&a[3]);
|
|
useda0 = MP_USED(&a[0]);
|
|
useda1 = MP_USED(&a[1]);
|
|
useda2 = MP_USED(&a[2]);
|
|
useda3 = MP_USED(&a[3]);
|
|
|
|
ARGCHK(MP_SIGN(&a[0]) == MP_ZPOS, MP_BADARG);
|
|
ARGCHK(MP_SIGN(&a[1]) == MP_ZPOS, MP_BADARG);
|
|
ARGCHK(MP_SIGN(&a[2]) == MP_ZPOS, MP_BADARG);
|
|
ARGCHK(MP_SIGN(&a[3]) == MP_ZPOS, MP_BADARG);
|
|
ARGCHK(useda0 <= b_size, MP_BADARG);
|
|
ARGCHK(useda1 <= b_size, MP_BADARG);
|
|
ARGCHK(useda2 <= b_size, MP_BADARG);
|
|
ARGCHK(useda3 <= b_size, MP_BADARG);
|
|
|
|
#define SAFE_FETCH(digit, used, word) ((word) < (used) ? (digit[word]) : 0)
|
|
|
|
for (i=0; i < b_size; i++) {
|
|
mp_digit d0 = SAFE_FETCH(digitsa0,useda0,i);
|
|
mp_digit d1 = SAFE_FETCH(digitsa1,useda1,i);
|
|
mp_digit d2 = SAFE_FETCH(digitsa2,useda2,i);
|
|
mp_digit d3 = SAFE_FETCH(digitsa3,useda3,i);
|
|
register mp_weave_word acc;
|
|
|
|
/*
|
|
* ONE_STEP takes the MSB of each of our current digits and places that
|
|
* byte in the appropriate position for writing to the weaved array.
|
|
* On little endian:
|
|
* b3 b2 b1 b0
|
|
* On big endian:
|
|
* b0 b1 b2 b3
|
|
* When the data is written it would always wind up:
|
|
* b[0] = b0
|
|
* b[1] = b1
|
|
* b[2] = b2
|
|
* b[3] = b3
|
|
*
|
|
* Once we've written the MSB, we shift the whole digit up left one
|
|
* byte, putting the Next Most Significant Byte in the MSB position,
|
|
* so we we repeat the next one step that byte will be written.
|
|
* NOTE: This code assumes sizeof(mp_weave_word) and MP_WEAVE_WORD_SIZE
|
|
* is 4.
|
|
*/
|
|
#ifdef MP_IS_LITTLE_ENDIAN
|
|
#define MPI_WEAVE_ONE_STEP \
|
|
acc = (d0 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d0 <<= 8; /*b0*/ \
|
|
acc |= (d1 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d1 <<= 8; /*b1*/ \
|
|
acc |= (d2 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d2 <<= 8; /*b2*/ \
|
|
acc |= (d3 >> (MP_DIGIT_BIT-32)) & 0xff000000; d3 <<= 8; /*b3*/ \
|
|
*weaved = acc; weaved += count;
|
|
#else
|
|
#define MPI_WEAVE_ONE_STEP \
|
|
acc = (d0 >> (MP_DIGIT_BIT-32)) & 0xff000000; d0 <<= 8; /*b0*/ \
|
|
acc |= (d1 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d1 <<= 8; /*b1*/ \
|
|
acc |= (d2 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d2 <<= 8; /*b2*/ \
|
|
acc |= (d3 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d3 <<= 8; /*b3*/ \
|
|
*weaved = acc; weaved += count;
|
|
#endif
|
|
switch (sizeof(mp_digit)) {
|
|
case 32:
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
case 16:
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
case 8:
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
case 4:
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
case 2:
|
|
MPI_WEAVE_ONE_STEP
|
|
case 1:
|
|
MPI_WEAVE_ONE_STEP
|
|
break;
|
|
}
|
|
}
|
|
|
|
return MP_OKAY;
|
|
}
|
|
|
|
/* reverse the operation above for one entry.
|
|
* b points to the offset into the weave array of the power we are
|
|
* calculating */
|
|
mp_err weave_to_mpi(mp_int *a, const unsigned char *b,
|
|
mp_size b_size, mp_size count)
|
|
{
|
|
mp_digit *pb = MP_DIGITS(a);
|
|
mp_digit *end = &pb[b_size];
|
|
|
|
MP_SIGN(a) = MP_ZPOS;
|
|
MP_USED(a) = b_size;
|
|
|
|
for (; pb < end; pb++) {
|
|
register mp_digit digit;
|
|
|
|
digit = *b << 8; b += count;
|
|
#define MPI_UNWEAVE_ONE_STEP digit |= *b; b += count; digit = digit << 8;
|
|
switch (sizeof(mp_digit)) {
|
|
case 32:
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
case 16:
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
case 8:
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
case 4:
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
case 2:
|
|
break;
|
|
}
|
|
digit |= *b; b += count;
|
|
|
|
*pb = digit;
|
|
}
|
|
s_mp_clamp(a);
|
|
return MP_OKAY;
|
|
}
|
|
#endif
|
|
|
|
|
|
#define SQR(a,b) \
|
|
MP_CHECKOK( mp_sqr(a, b) );\
|
|
MP_CHECKOK( s_mp_redc(b, mmm) )
|
|
|
|
#if defined(MP_MONT_USE_MP_MUL)
|
|
#define MUL_NOWEAVE(x,a,b) \
|
|
MP_CHECKOK( mp_mul(a, x, b) ); \
|
|
MP_CHECKOK( s_mp_redc(b, mmm) )
|
|
#else
|
|
#define MUL_NOWEAVE(x,a,b) \
|
|
MP_CHECKOK( s_mp_mul_mont(a, x, b, mmm) )
|
|
#endif
|
|
|
|
#define MUL(x,a,b) \
|
|
MP_CHECKOK( weave_to_mpi(&tmp, powers + (x), nLen, num_powers) ); \
|
|
MUL_NOWEAVE(&tmp,a,b)
|
|
|
|
#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
|
|
#define MP_ALIGN(x,y) ((((ptrdiff_t)(x))+((y)-1))&(((ptrdiff_t)0)-(y)))
|
|
|
|
/* Do modular exponentiation using integer multiply code. */
|
|
mp_err mp_exptmod_safe_i(const mp_int * montBase,
|
|
const mp_int * exponent,
|
|
const mp_int * modulus,
|
|
mp_int * result,
|
|
mp_mont_modulus *mmm,
|
|
int nLen,
|
|
mp_size bits_in_exponent,
|
|
mp_size window_bits,
|
|
mp_size num_powers)
|
|
{
|
|
mp_int *pa1, *pa2, *ptmp;
|
|
mp_size i;
|
|
mp_size first_window;
|
|
mp_err res;
|
|
int expOff;
|
|
mp_int accum1, accum2, accum[WEAVE_WORD_SIZE];
|
|
mp_int tmp;
|
|
unsigned char *powersArray = NULL;
|
|
unsigned char *powers = NULL;
|
|
|
|
MP_DIGITS(&accum1) = 0;
|
|
MP_DIGITS(&accum2) = 0;
|
|
MP_DIGITS(&accum[0]) = 0;
|
|
MP_DIGITS(&accum[1]) = 0;
|
|
MP_DIGITS(&accum[2]) = 0;
|
|
MP_DIGITS(&accum[3]) = 0;
|
|
MP_DIGITS(&tmp) = 0;
|
|
|
|
/* grab the first window value. This allows us to preload accumulator1
|
|
* and save a conversion, some squares and a multiple*/
|
|
MP_CHECKOK( mpl_get_bits(exponent,
|
|
bits_in_exponent-window_bits, window_bits) );
|
|
first_window = (mp_size)res;
|
|
|
|
MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
|
|
MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
|
|
|
|
/* build the first WEAVE_WORD powers inline */
|
|
/* if WEAVE_WORD_SIZE is not 4, this code will have to change */
|
|
if (num_powers > 2) {
|
|
MP_CHECKOK( mp_init_size(&accum[0], 3 * nLen + 2) );
|
|
MP_CHECKOK( mp_init_size(&accum[1], 3 * nLen + 2) );
|
|
MP_CHECKOK( mp_init_size(&accum[2], 3 * nLen + 2) );
|
|
MP_CHECKOK( mp_init_size(&accum[3], 3 * nLen + 2) );
|
|
mp_set(&accum[0], 1);
|
|
MP_CHECKOK( s_mp_to_mont(&accum[0], mmm, &accum[0]) );
|
|
MP_CHECKOK( mp_copy(montBase, &accum[1]) );
|
|
SQR(montBase, &accum[2]);
|
|
MUL_NOWEAVE(montBase, &accum[2], &accum[3]);
|
|
powersArray = (unsigned char *)malloc(num_powers*(nLen*sizeof(mp_digit)+1));
|
|
if (!powersArray) {
|
|
res = MP_MEM;
|
|
goto CLEANUP;
|
|
}
|
|
/* powers[i] = base ** (i); */ \
|
|
powers = (unsigned char *)MP_ALIGN(powersArray,num_powers); \
|
|
MP_CHECKOK( mpi_to_weave(accum, powers, nLen, num_powers) );
|
|
if (first_window < 4) {
|
|
MP_CHECKOK( mp_copy(&accum[first_window], &accum1) );
|
|
first_window = num_powers;
|
|
}
|
|
} else {
|
|
if (first_window == 0) {
|
|
mp_set(&accum1, 1);
|
|
MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
|
|
} else {
|
|
/* assert first_window == 1? */
|
|
MP_CHECKOK( mp_copy(montBase, &accum1) );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* calculate all the powers in the powers array.
|
|
* this adds 2**(k-1)-2 square operations over just calculating the
|
|
* odd powers where k is the window size in the two other mp_modexpt
|
|
* implementations in this file. We will get some of that
|
|
* back by not needing the first 'k' squares and one multiply for the
|
|
* first window.
|
|
* Given the value of 4 for WEAVE_WORD_SIZE, this loop will only execute if
|
|
* num_powers > 2, in which case powers will have been allocated.
|
|
*/
|
|
for (i = WEAVE_WORD_SIZE; i < num_powers; i++) {
|
|
int acc_index = i & (WEAVE_WORD_SIZE-1); /* i % WEAVE_WORD_SIZE */
|
|
if ( i & 1 ) {
|
|
MUL_NOWEAVE(montBase, &accum[acc_index-1] , &accum[acc_index]);
|
|
/* we've filled the array do our 'per array' processing */
|
|
if (acc_index == (WEAVE_WORD_SIZE-1)) {
|
|
MP_CHECKOK( mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE-1),
|
|
nLen, num_powers) );
|
|
|
|
if (first_window <= i) {
|
|
MP_CHECKOK( mp_copy(&accum[first_window & (WEAVE_WORD_SIZE-1)],
|
|
&accum1) );
|
|
first_window = num_powers;
|
|
}
|
|
}
|
|
} else {
|
|
/* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source
|
|
* and target are the same so we need to copy.. After that, the
|
|
* value is overwritten, so we need to fetch it from the stored
|
|
* weave array */
|
|
if (i > 2* WEAVE_WORD_SIZE) {
|
|
MP_CHECKOK(weave_to_mpi(&accum2, powers+i/2, nLen, num_powers));
|
|
SQR(&accum2, &accum[acc_index]);
|
|
} else {
|
|
int half_power_index = (i/2) & (WEAVE_WORD_SIZE-1);
|
|
if (half_power_index == acc_index) {
|
|
/* copy is cheaper than weave_to_mpi */
|
|
MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2));
|
|
SQR(&accum2,&accum[acc_index]);
|
|
} else {
|
|
SQR(&accum[half_power_index],&accum[acc_index]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* if the accum1 isn't set, Then there is something wrong with our logic
|
|
* above and is an internal programming error.
|
|
*/
|
|
#if MP_ARGCHK == 2
|
|
assert(MP_USED(&accum1) != 0);
|
|
#endif
|
|
|
|
/* set accumulator to montgomery residue of 1 */
|
|
pa1 = &accum1;
|
|
pa2 = &accum2;
|
|
|
|
/* tmp is not used if window_bits == 1. */
|
|
if (window_bits != 1) {
|
|
MP_CHECKOK( mp_init_size(&tmp, 3 * nLen + 2) );
|
|
}
|
|
|
|
for (expOff = bits_in_exponent - window_bits*2; expOff >= 0; expOff -= window_bits) {
|
|
mp_size smallExp;
|
|
MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
|
|
smallExp = (mp_size)res;
|
|
|
|
/* handle unroll the loops */
|
|
switch (window_bits) {
|
|
case 1:
|
|
if (!smallExp) {
|
|
SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 1) {
|
|
SQR(pa1,pa2); MUL_NOWEAVE(montBase,pa2,pa1);
|
|
} else {
|
|
abort();
|
|
}
|
|
break;
|
|
case 6:
|
|
SQR(pa1,pa2); SQR(pa2,pa1);
|
|
/* fall through */
|
|
case 4:
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
MUL(smallExp, pa1,pa2); SWAPPA;
|
|
break;
|
|
case 5:
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); MUL(smallExp,pa2,pa1);
|
|
break;
|
|
default:
|
|
abort(); /* could do a loop? */
|
|
}
|
|
}
|
|
|
|
res = s_mp_redc(pa1, mmm);
|
|
mp_exch(pa1, result);
|
|
|
|
CLEANUP:
|
|
mp_clear(&accum1);
|
|
mp_clear(&accum2);
|
|
mp_clear(&accum[0]);
|
|
mp_clear(&accum[1]);
|
|
mp_clear(&accum[2]);
|
|
mp_clear(&accum[3]);
|
|
mp_clear(&tmp);
|
|
/* PORT_Memset(powers,0,num_powers*nLen*sizeof(mp_digit)); */
|
|
free(powersArray);
|
|
return res;
|
|
}
|
|
#undef SQR
|
|
#undef MUL
|
|
#endif
|
|
|
|
mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
|
|
const mp_int *modulus, mp_int *result)
|
|
{
|
|
const mp_int *base;
|
|
mp_size bits_in_exponent, i, window_bits, odd_ints;
|
|
mp_err res;
|
|
int nLen;
|
|
mp_int montBase, goodBase;
|
|
mp_mont_modulus mmm;
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
static unsigned int max_window_bits;
|
|
#endif
|
|
|
|
/* function for computing n0prime only works if n0 is odd */
|
|
if (!mp_isodd(modulus))
|
|
return s_mp_exptmod(inBase, exponent, modulus, result);
|
|
|
|
MP_DIGITS(&montBase) = 0;
|
|
MP_DIGITS(&goodBase) = 0;
|
|
|
|
if (mp_cmp(inBase, modulus) < 0) {
|
|
base = inBase;
|
|
} else {
|
|
MP_CHECKOK( mp_init(&goodBase) );
|
|
base = &goodBase;
|
|
MP_CHECKOK( mp_mod(inBase, modulus, &goodBase) );
|
|
}
|
|
|
|
nLen = MP_USED(modulus);
|
|
MP_CHECKOK( mp_init_size(&montBase, 2 * nLen + 2) );
|
|
|
|
mmm.N = *modulus; /* a copy of the mp_int struct */
|
|
|
|
/* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX
|
|
** where n0 = least significant mp_digit of N, the modulus.
|
|
*/
|
|
mmm.n0prime = 0 - s_mp_invmod_radix( MP_DIGIT(modulus, 0) );
|
|
|
|
MP_CHECKOK( s_mp_to_mont(base, &mmm, &montBase) );
|
|
|
|
bits_in_exponent = mpl_significant_bits(exponent);
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
if (mp_using_cache_safe_exp) {
|
|
if (bits_in_exponent > 780)
|
|
window_bits = 6;
|
|
else if (bits_in_exponent > 256)
|
|
window_bits = 5;
|
|
else if (bits_in_exponent > 20)
|
|
window_bits = 4;
|
|
/* RSA public key exponents are typically under 20 bits (common values
|
|
* are: 3, 17, 65537) and a 4-bit window is inefficient
|
|
*/
|
|
else
|
|
window_bits = 1;
|
|
} else
|
|
#endif
|
|
if (bits_in_exponent > 480)
|
|
window_bits = 6;
|
|
else if (bits_in_exponent > 160)
|
|
window_bits = 5;
|
|
else if (bits_in_exponent > 20)
|
|
window_bits = 4;
|
|
/* RSA public key exponents are typically under 20 bits (common values
|
|
* are: 3, 17, 65537) and a 4-bit window is inefficient
|
|
*/
|
|
else
|
|
window_bits = 1;
|
|
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
/*
|
|
* clamp the window size based on
|
|
* the cache line size.
|
|
*/
|
|
if (!max_window_bits) {
|
|
unsigned long cache_size = s_mpi_getProcessorLineSize();
|
|
/* processor has no cache, use 'fast' code always */
|
|
if (cache_size == 0) {
|
|
mp_using_cache_safe_exp = 0;
|
|
}
|
|
if ((cache_size == 0) || (cache_size >= 64)) {
|
|
max_window_bits = 6;
|
|
} else if (cache_size >= 32) {
|
|
max_window_bits = 5;
|
|
} else if (cache_size >= 16) {
|
|
max_window_bits = 4;
|
|
} else max_window_bits = 1; /* should this be an assert? */
|
|
}
|
|
|
|
/* clamp the window size down before we caclulate bits_in_exponent */
|
|
if (mp_using_cache_safe_exp) {
|
|
if (window_bits > max_window_bits) {
|
|
window_bits = max_window_bits;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
odd_ints = 1 << (window_bits - 1);
|
|
i = bits_in_exponent % window_bits;
|
|
if (i != 0) {
|
|
bits_in_exponent += window_bits - i;
|
|
}
|
|
|
|
#ifdef MP_USING_MONT_MULF
|
|
if (mp_using_mont_mulf) {
|
|
MP_CHECKOK( s_mp_pad(&montBase, nLen) );
|
|
res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen,
|
|
bits_in_exponent, window_bits, odd_ints);
|
|
} else
|
|
#endif
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
if (mp_using_cache_safe_exp) {
|
|
res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen,
|
|
bits_in_exponent, window_bits, 1 << window_bits);
|
|
} else
|
|
#endif
|
|
res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen,
|
|
bits_in_exponent, window_bits, odd_ints);
|
|
|
|
CLEANUP:
|
|
mp_clear(&montBase);
|
|
mp_clear(&goodBase);
|
|
/* Don't mp_clear mmm.N because it is merely a copy of modulus.
|
|
** Just zap it.
|
|
*/
|
|
memset(&mmm, 0, sizeof mmm);
|
|
return res;
|
|
}
|