mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-11 10:20:19 +01:00
44b7f056d9
bug1001332, 56b691c003ad, bug1086145, bug1054069, bug1155922, bug991783, bug1125025, bug1162521, bug1162644, bug1132941, bug1164364, bug1166205, bug1166163, bug1166515, bug1138554, bug1167046, bug1167043, bug1169451, bug1172128, bug1170322, bug102794, bug1128184, bug557830, bug1174648, bug1180244, bug1177784, bug1173413, bug1169174, bug1084669, bug951455, bug1183395, bug1177430, bug1183827, bug1160139, bug1154106, bug1142209, bug1185033, bug1193467, bug1182667(with sha512 changes backed out, which breaks VC6 compilation), bug1158489, bug337796
290 lines
8.7 KiB
C
290 lines
8.7 KiB
C
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "ecp.h"
|
|
#include "ecl-priv.h"
|
|
#include "mplogic.h"
|
|
#include <stdlib.h>
|
|
|
|
#define MAX_SCRATCH 6
|
|
|
|
/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
|
|
* Modified Jacobian coordinates.
|
|
*
|
|
* Assumes input is already field-encoded using field_enc, and returns
|
|
* output that is still field-encoded.
|
|
*
|
|
*/
|
|
static mp_err
|
|
ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz,
|
|
const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz,
|
|
mp_int *raz4, mp_int scratch[], const ECGroup *group)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
mp_int *t0, *t1, *M, *S;
|
|
|
|
t0 = &scratch[0];
|
|
t1 = &scratch[1];
|
|
M = &scratch[2];
|
|
S = &scratch[3];
|
|
|
|
#if MAX_SCRATCH < 4
|
|
#error "Scratch array defined too small "
|
|
#endif
|
|
|
|
/* Check for point at infinity */
|
|
if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
|
|
/* Set r = pt at infinity by setting rz = 0 */
|
|
|
|
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
|
|
goto CLEANUP;
|
|
}
|
|
|
|
/* M = 3 (px^2) + a*(pz^4) */
|
|
MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth));
|
|
|
|
/* rz = 2 * py * pz */
|
|
MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth));
|
|
|
|
/* t0 = 2y^2 , t1 = 8y^4 */
|
|
MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth));
|
|
MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth));
|
|
|
|
/* S = 4 * px * py^2 = 2 * px * t0 */
|
|
MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(S, S, S, group->meth));
|
|
|
|
|
|
/* rx = M^2 - 2S */
|
|
MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth));
|
|
MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
|
|
MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
|
|
|
|
/* ry = M * (S - rx) - t1 */
|
|
MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth));
|
|
MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth));
|
|
|
|
/* ra*z^4 = 2*t1*(apz4) */
|
|
MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth));
|
|
|
|
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
|
|
* (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
|
|
* Uses mixed Modified_Jacobian-affine coordinates. Assumes input is
|
|
* already field-encoded using field_enc, and returns output that is still
|
|
* field-encoded. */
|
|
static mp_err
|
|
ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
|
|
const mp_int *paz4, const mp_int *qx,
|
|
const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz,
|
|
mp_int *raz4, mp_int scratch[], const ECGroup *group)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
mp_int *A, *B, *C, *D, *C2, *C3;
|
|
|
|
A = &scratch[0];
|
|
B = &scratch[1];
|
|
C = &scratch[2];
|
|
D = &scratch[3];
|
|
C2 = &scratch[4];
|
|
C3 = &scratch[5];
|
|
|
|
#if MAX_SCRATCH < 6
|
|
#error "Scratch array defined too small "
|
|
#endif
|
|
|
|
/* If either P or Q is the point at infinity, then return the other
|
|
* point */
|
|
if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
|
|
MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
|
|
MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
|
|
MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
|
|
MP_CHECKOK(group->meth->
|
|
field_mul(raz4, &group->curvea, raz4, group->meth));
|
|
goto CLEANUP;
|
|
}
|
|
if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
|
|
MP_CHECKOK(mp_copy(px, rx));
|
|
MP_CHECKOK(mp_copy(py, ry));
|
|
MP_CHECKOK(mp_copy(pz, rz));
|
|
MP_CHECKOK(mp_copy(paz4, raz4));
|
|
goto CLEANUP;
|
|
}
|
|
|
|
/* A = qx * pz^2, B = qy * pz^3 */
|
|
MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth));
|
|
|
|
/* C = A - px, D = B - py */
|
|
MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth));
|
|
MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth));
|
|
|
|
/* C2 = C^2, C3 = C^3 */
|
|
MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth));
|
|
|
|
/* rz = pz * C */
|
|
MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth));
|
|
|
|
/* C = px * C^2 */
|
|
MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth));
|
|
/* A = D^2 */
|
|
MP_CHECKOK(group->meth->field_sqr(D, A, group->meth));
|
|
|
|
/* rx = D^2 - (C^3 + 2 * (px * C^2)) */
|
|
MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth));
|
|
MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth));
|
|
MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth));
|
|
|
|
/* C3 = py * C^3 */
|
|
MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth));
|
|
|
|
/* ry = D * (px * C^2 - rx) - py * C^3 */
|
|
MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth));
|
|
MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth));
|
|
MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth));
|
|
|
|
/* raz4 = a * rz^4 */
|
|
MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
|
|
MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
|
|
MP_CHECKOK(group->meth->
|
|
field_mul(raz4, &group->curvea, raz4, group->meth));
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
|
|
* curve points P and R can be identical. Uses mixed Modified-Jacobian
|
|
* co-ordinates for doubling and Chudnovsky Jacobian coordinates for
|
|
* additions. Assumes input is already field-encoded using field_enc, and
|
|
* returns output that is still field-encoded. Uses 5-bit window NAF
|
|
* method (algorithm 11) for scalar-point multiplication from Brown,
|
|
* Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
|
|
* Curves Over Prime Fields. */
|
|
mp_err
|
|
ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
|
|
mp_int *rx, mp_int *ry, const ECGroup *group)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
mp_int precomp[16][2], rz, tpx, tpy;
|
|
mp_int raz4;
|
|
mp_int scratch[MAX_SCRATCH];
|
|
signed char *naf = NULL;
|
|
int i, orderBitSize;
|
|
|
|
MP_DIGITS(&rz) = 0;
|
|
MP_DIGITS(&raz4) = 0;
|
|
MP_DIGITS(&tpx) = 0;
|
|
MP_DIGITS(&tpy) = 0;
|
|
for (i = 0; i < 16; i++) {
|
|
MP_DIGITS(&precomp[i][0]) = 0;
|
|
MP_DIGITS(&precomp[i][1]) = 0;
|
|
}
|
|
for (i = 0; i < MAX_SCRATCH; i++) {
|
|
MP_DIGITS(&scratch[i]) = 0;
|
|
}
|
|
|
|
ARGCHK(group != NULL, MP_BADARG);
|
|
ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
|
|
|
|
/* initialize precomputation table */
|
|
MP_CHECKOK(mp_init(&tpx));
|
|
MP_CHECKOK(mp_init(&tpy));;
|
|
MP_CHECKOK(mp_init(&rz));
|
|
MP_CHECKOK(mp_init(&raz4));
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
MP_CHECKOK(mp_init(&precomp[i][0]));
|
|
MP_CHECKOK(mp_init(&precomp[i][1]));
|
|
}
|
|
for (i = 0; i < MAX_SCRATCH; i++) {
|
|
MP_CHECKOK(mp_init(&scratch[i]));
|
|
}
|
|
|
|
/* Set out[8] = P */
|
|
MP_CHECKOK(mp_copy(px, &precomp[8][0]));
|
|
MP_CHECKOK(mp_copy(py, &precomp[8][1]));
|
|
|
|
/* Set (tpx, tpy) = 2P */
|
|
MP_CHECKOK(group->
|
|
point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy,
|
|
group));
|
|
|
|
/* Set 3P, 5P, ..., 15P */
|
|
for (i = 8; i < 15; i++) {
|
|
MP_CHECKOK(group->
|
|
point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy,
|
|
&precomp[i + 1][0], &precomp[i + 1][1],
|
|
group));
|
|
}
|
|
|
|
/* Set -15P, -13P, ..., -P */
|
|
for (i = 0; i < 8; i++) {
|
|
MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0]));
|
|
MP_CHECKOK(group->meth->
|
|
field_neg(&precomp[15 - i][1], &precomp[i][1],
|
|
group->meth));
|
|
}
|
|
|
|
/* R = inf */
|
|
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
|
|
|
|
orderBitSize = mpl_significant_bits(&group->order);
|
|
|
|
/* Allocate memory for NAF */
|
|
naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1));
|
|
if (naf == NULL) {
|
|
res = MP_MEM;
|
|
goto CLEANUP;
|
|
}
|
|
|
|
/* Compute 5NAF */
|
|
ec_compute_wNAF(naf, orderBitSize, n, 5);
|
|
|
|
/* wNAF method */
|
|
for (i = orderBitSize; i >= 0; i--) {
|
|
/* R = 2R */
|
|
ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz,
|
|
&raz4, scratch, group);
|
|
if (naf[i] != 0) {
|
|
ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4,
|
|
&precomp[(naf[i] + 15) / 2][0],
|
|
&precomp[(naf[i] + 15) / 2][1], rx, ry,
|
|
&rz, &raz4, scratch, group);
|
|
}
|
|
}
|
|
|
|
/* convert result S to affine coordinates */
|
|
MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
|
|
|
|
CLEANUP:
|
|
for (i = 0; i < MAX_SCRATCH; i++) {
|
|
mp_clear(&scratch[i]);
|
|
}
|
|
for (i = 0; i < 16; i++) {
|
|
mp_clear(&precomp[i][0]);
|
|
mp_clear(&precomp[i][1]);
|
|
}
|
|
mp_clear(&tpx);
|
|
mp_clear(&tpy);
|
|
mp_clear(&rz);
|
|
mp_clear(&raz4);
|
|
free(naf);
|
|
return res;
|
|
}
|