RetroZilla/security/nss/lib/freebl/ecl/ecl.c
2015-10-20 23:03:22 -04:00

430 lines
12 KiB
C

/*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include "mpi.h"
#include "mplogic.h"
#include "ecl.h"
#include "ecl-priv.h"
#include "ec2.h"
#include "ecp.h"
#include <stdlib.h>
#include <string.h>
/* Allocate memory for a new ECGroup object. */
ECGroup *
ECGroup_new()
{
mp_err res = MP_OKAY;
ECGroup *group;
group = (ECGroup *) malloc(sizeof(ECGroup));
if (group == NULL)
return NULL;
group->constructed = MP_YES;
group->meth = NULL;
group->text = NULL;
MP_DIGITS(&group->curvea) = 0;
MP_DIGITS(&group->curveb) = 0;
MP_DIGITS(&group->genx) = 0;
MP_DIGITS(&group->geny) = 0;
MP_DIGITS(&group->order) = 0;
group->base_point_mul = NULL;
group->points_mul = NULL;
group->validate_point = NULL;
group->extra1 = NULL;
group->extra2 = NULL;
group->extra_free = NULL;
MP_CHECKOK(mp_init(&group->curvea));
MP_CHECKOK(mp_init(&group->curveb));
MP_CHECKOK(mp_init(&group->genx));
MP_CHECKOK(mp_init(&group->geny));
MP_CHECKOK(mp_init(&group->order));
CLEANUP:
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
/* Construct a generic ECGroup for elliptic curves over prime fields. */
ECGroup *
ECGroup_consGFp(const mp_int *irr, const mp_int *curvea,
const mp_int *curveb, const mp_int *genx,
const mp_int *geny, const mp_int *order, int cofactor)
{
mp_err res = MP_OKAY;
ECGroup *group = NULL;
group = ECGroup_new();
if (group == NULL)
return NULL;
group->meth = GFMethod_consGFp(irr);
if (group->meth == NULL) {
res = MP_MEM;
goto CLEANUP;
}
MP_CHECKOK(mp_copy(curvea, &group->curvea));
MP_CHECKOK(mp_copy(curveb, &group->curveb));
MP_CHECKOK(mp_copy(genx, &group->genx));
MP_CHECKOK(mp_copy(geny, &group->geny));
MP_CHECKOK(mp_copy(order, &group->order));
group->cofactor = cofactor;
group->point_add = &ec_GFp_pt_add_aff;
group->point_sub = &ec_GFp_pt_sub_aff;
group->point_dbl = &ec_GFp_pt_dbl_aff;
group->point_mul = &ec_GFp_pt_mul_jm_wNAF;
group->base_point_mul = NULL;
group->points_mul = &ec_GFp_pts_mul_jac;
group->validate_point = &ec_GFp_validate_point;
CLEANUP:
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
/* Construct a generic ECGroup for elliptic curves over prime fields with
* field arithmetic implemented in Montgomery coordinates. */
ECGroup *
ECGroup_consGFp_mont(const mp_int *irr, const mp_int *curvea,
const mp_int *curveb, const mp_int *genx,
const mp_int *geny, const mp_int *order, int cofactor)
{
mp_err res = MP_OKAY;
ECGroup *group = NULL;
group = ECGroup_new();
if (group == NULL)
return NULL;
group->meth = GFMethod_consGFp_mont(irr);
if (group->meth == NULL) {
res = MP_MEM;
goto CLEANUP;
}
MP_CHECKOK(group->meth->
field_enc(curvea, &group->curvea, group->meth));
MP_CHECKOK(group->meth->
field_enc(curveb, &group->curveb, group->meth));
MP_CHECKOK(group->meth->field_enc(genx, &group->genx, group->meth));
MP_CHECKOK(group->meth->field_enc(geny, &group->geny, group->meth));
MP_CHECKOK(mp_copy(order, &group->order));
group->cofactor = cofactor;
group->point_add = &ec_GFp_pt_add_aff;
group->point_sub = &ec_GFp_pt_sub_aff;
group->point_dbl = &ec_GFp_pt_dbl_aff;
group->point_mul = &ec_GFp_pt_mul_jm_wNAF;
group->base_point_mul = NULL;
group->points_mul = &ec_GFp_pts_mul_jac;
group->validate_point = &ec_GFp_validate_point;
CLEANUP:
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
#ifdef NSS_ECC_MORE_THAN_SUITE_B
/* Construct a generic ECGroup for elliptic curves over binary polynomial
* fields. */
ECGroup *
ECGroup_consGF2m(const mp_int *irr, const unsigned int irr_arr[5],
const mp_int *curvea, const mp_int *curveb,
const mp_int *genx, const mp_int *geny,
const mp_int *order, int cofactor)
{
mp_err res = MP_OKAY;
ECGroup *group = NULL;
group = ECGroup_new();
if (group == NULL)
return NULL;
group->meth = GFMethod_consGF2m(irr, irr_arr);
if (group->meth == NULL) {
res = MP_MEM;
goto CLEANUP;
}
MP_CHECKOK(mp_copy(curvea, &group->curvea));
MP_CHECKOK(mp_copy(curveb, &group->curveb));
MP_CHECKOK(mp_copy(genx, &group->genx));
MP_CHECKOK(mp_copy(geny, &group->geny));
MP_CHECKOK(mp_copy(order, &group->order));
group->cofactor = cofactor;
group->point_add = &ec_GF2m_pt_add_aff;
group->point_sub = &ec_GF2m_pt_sub_aff;
group->point_dbl = &ec_GF2m_pt_dbl_aff;
group->point_mul = &ec_GF2m_pt_mul_mont;
group->base_point_mul = NULL;
group->points_mul = &ec_pts_mul_basic;
group->validate_point = &ec_GF2m_validate_point;
CLEANUP:
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
#endif
/* Construct ECGroup from hex parameters and name, if any. Called by
* ECGroup_fromHex and ECGroup_fromName. */
ECGroup *
ecgroup_fromNameAndHex(const ECCurveName name,
const ECCurveParams * params)
{
mp_int irr, curvea, curveb, genx, geny, order;
int bits;
ECGroup *group = NULL;
mp_err res = MP_OKAY;
/* initialize values */
MP_DIGITS(&irr) = 0;
MP_DIGITS(&curvea) = 0;
MP_DIGITS(&curveb) = 0;
MP_DIGITS(&genx) = 0;
MP_DIGITS(&geny) = 0;
MP_DIGITS(&order) = 0;
MP_CHECKOK(mp_init(&irr));
MP_CHECKOK(mp_init(&curvea));
MP_CHECKOK(mp_init(&curveb));
MP_CHECKOK(mp_init(&genx));
MP_CHECKOK(mp_init(&geny));
MP_CHECKOK(mp_init(&order));
MP_CHECKOK(mp_read_radix(&irr, params->irr, 16));
MP_CHECKOK(mp_read_radix(&curvea, params->curvea, 16));
MP_CHECKOK(mp_read_radix(&curveb, params->curveb, 16));
MP_CHECKOK(mp_read_radix(&genx, params->genx, 16));
MP_CHECKOK(mp_read_radix(&geny, params->geny, 16));
MP_CHECKOK(mp_read_radix(&order, params->order, 16));
/* determine number of bits */
bits = mpl_significant_bits(&irr) - 1;
if (bits < MP_OKAY) {
res = bits;
goto CLEANUP;
}
/* determine which optimizations (if any) to use */
if (params->field == ECField_GFp) {
#ifdef NSS_ECC_MORE_THAN_SUITE_B
switch (name) {
#ifdef ECL_USE_FP
case ECCurve_SECG_PRIME_160R1:
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_secp160r1_fp(group));
break;
#endif
case ECCurve_SECG_PRIME_192R1:
#ifdef ECL_USE_FP
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_nistp192_fp(group));
#else
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_gfp192(group, name));
#endif
break;
case ECCurve_SECG_PRIME_224R1:
#ifdef ECL_USE_FP
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_nistp224_fp(group));
#else
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_gfp224(group, name));
#endif
break;
case ECCurve_SECG_PRIME_256R1:
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_gfp256(group, name));
break;
case ECCurve_SECG_PRIME_521R1:
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_gfp521(group, name));
break;
default:
/* use generic arithmetic */
#endif
group =
ECGroup_consGFp_mont(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
#ifdef NSS_ECC_MORE_THAN_SUITE_B
}
} else if (params->field == ECField_GF2m) {
group = ECGroup_consGF2m(&irr, NULL, &curvea, &curveb, &genx, &geny, &order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
if ((name == ECCurve_NIST_K163) ||
(name == ECCurve_NIST_B163) ||
(name == ECCurve_SECG_CHAR2_163R1)) {
MP_CHECKOK(ec_group_set_gf2m163(group, name));
} else if ((name == ECCurve_SECG_CHAR2_193R1) ||
(name == ECCurve_SECG_CHAR2_193R2)) {
MP_CHECKOK(ec_group_set_gf2m193(group, name));
} else if ((name == ECCurve_NIST_K233) ||
(name == ECCurve_NIST_B233)) {
MP_CHECKOK(ec_group_set_gf2m233(group, name));
}
#endif
} else {
res = MP_UNDEF;
goto CLEANUP;
}
/* set name, if any */
if ((group != NULL) && (params->text != NULL)) {
group->text = strdup(params->text);
if (group->text == NULL) {
res = MP_MEM;
}
}
CLEANUP:
mp_clear(&irr);
mp_clear(&curvea);
mp_clear(&curveb);
mp_clear(&genx);
mp_clear(&geny);
mp_clear(&order);
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
/* Construct ECGroup from hexadecimal representations of parameters. */
ECGroup *
ECGroup_fromHex(const ECCurveParams * params)
{
return ecgroup_fromNameAndHex(ECCurve_noName, params);
}
/* Construct ECGroup from named parameters. */
ECGroup *
ECGroup_fromName(const ECCurveName name)
{
ECGroup *group = NULL;
ECCurveParams *params = NULL;
mp_err res = MP_OKAY;
params = EC_GetNamedCurveParams(name);
if (params == NULL) {
res = MP_UNDEF;
goto CLEANUP;
}
/* construct actual group */
group = ecgroup_fromNameAndHex(name, params);
if (group == NULL) {
res = MP_UNDEF;
goto CLEANUP;
}
CLEANUP:
EC_FreeCurveParams(params);
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
/* Validates an EC public key as described in Section 5.2.2 of X9.62. */
mp_err ECPoint_validate(const ECGroup *group, const mp_int *px, const
mp_int *py)
{
/* 1: Verify that publicValue is not the point at infinity */
/* 2: Verify that the coordinates of publicValue are elements
* of the field.
*/
/* 3: Verify that publicValue is on the curve. */
/* 4: Verify that the order of the curve times the publicValue
* is the point at infinity.
*/
return group->validate_point(px, py, group);
}
/* Free the memory allocated (if any) to an ECGroup object. */
void
ECGroup_free(ECGroup *group)
{
if (group == NULL)
return;
GFMethod_free(group->meth);
if (group->constructed == MP_NO)
return;
mp_clear(&group->curvea);
mp_clear(&group->curveb);
mp_clear(&group->genx);
mp_clear(&group->geny);
mp_clear(&group->order);
if (group->text != NULL)
free(group->text);
if (group->extra_free != NULL)
group->extra_free(group);
free(group);
}