mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-15 04:00:12 +01:00
6712ac7edb
bug1221620, bug1244324, bug1241034, bug1206283, bug1241037, bug1245528, bug1293334, bug1306103, bug1345089, bug1344380
13022 lines
419 KiB
C
13022 lines
419 KiB
C
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* SSL3 Protocol
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/* TODO(ekr): Implement HelloVerifyRequest on server side. OK for now. */
|
|
|
|
#include "cert.h"
|
|
#include "ssl.h"
|
|
#include "cryptohi.h" /* for DSAU_ stuff */
|
|
#include "keyhi.h"
|
|
#include "secder.h"
|
|
#include "secitem.h"
|
|
#include "sechash.h"
|
|
|
|
#include "sslimpl.h"
|
|
#include "sslproto.h"
|
|
#include "sslerr.h"
|
|
#include "prtime.h"
|
|
#include "prinrval.h"
|
|
#include "prerror.h"
|
|
#include "pratom.h"
|
|
#include "prthread.h"
|
|
#include "nss.h"
|
|
#include "nssoptions.h"
|
|
|
|
#include "pk11func.h"
|
|
#include "secmod.h"
|
|
#ifndef NO_PKCS11_BYPASS
|
|
#include "blapi.h"
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#ifdef NSS_ENABLE_ZLIB
|
|
#include "zlib.h"
|
|
#endif
|
|
|
|
#ifndef PK11_SETATTRS
|
|
#define PK11_SETATTRS(x,id,v,l) (x)->type = (id); \
|
|
(x)->pValue=(v); (x)->ulValueLen = (l);
|
|
#endif
|
|
|
|
static SECStatus ssl3_AuthCertificate(sslSocket *ss);
|
|
static void ssl3_CleanupPeerCerts(sslSocket *ss);
|
|
static PK11SymKey *ssl3_GenerateRSAPMS(sslSocket *ss, ssl3CipherSpec *spec,
|
|
PK11SlotInfo * serverKeySlot);
|
|
static SECStatus ssl3_DeriveMasterSecret(sslSocket *ss, PK11SymKey *pms);
|
|
static SECStatus ssl3_DeriveConnectionKeysPKCS11(sslSocket *ss);
|
|
static SECStatus ssl3_HandshakeFailure( sslSocket *ss);
|
|
static SECStatus ssl3_InitState( sslSocket *ss);
|
|
static SECStatus ssl3_SendCertificate( sslSocket *ss);
|
|
static SECStatus ssl3_SendCertificateStatus( sslSocket *ss);
|
|
static SECStatus ssl3_SendEmptyCertificate( sslSocket *ss);
|
|
static SECStatus ssl3_SendCertificateRequest(sslSocket *ss);
|
|
static SECStatus ssl3_SendNextProto( sslSocket *ss);
|
|
static SECStatus ssl3_SendFinished( sslSocket *ss, PRInt32 flags);
|
|
static SECStatus ssl3_SendServerHello( sslSocket *ss);
|
|
static SECStatus ssl3_SendServerHelloDone( sslSocket *ss);
|
|
static SECStatus ssl3_SendServerKeyExchange( sslSocket *ss);
|
|
static SECStatus ssl3_UpdateHandshakeHashes( sslSocket *ss,
|
|
const unsigned char *b,
|
|
unsigned int l);
|
|
static SECStatus ssl3_ComputeHandshakeHashes(sslSocket *ss,
|
|
ssl3CipherSpec *spec,
|
|
SSL3Hashes *hashes,
|
|
PRUint32 sender);
|
|
static SECStatus ssl3_FlushHandshakeMessages(sslSocket *ss, PRInt32 flags);
|
|
|
|
static SECStatus Null_Cipher(void *ctx, unsigned char *output, int *outputLen,
|
|
int maxOutputLen, const unsigned char *input,
|
|
int inputLen);
|
|
#ifndef NO_PKCS11_BYPASS
|
|
static SECStatus ssl3_CipherGCMBypass(ssl3KeyMaterial *keys, PRBool doDecrypt,
|
|
unsigned char *out, int *outlen, int maxout,
|
|
const unsigned char *in, int inlen,
|
|
const unsigned char *additionalData,
|
|
int additionalDataLen, SSLCipherAlgorithm calg);
|
|
#endif
|
|
|
|
#define MAX_SEND_BUF_LENGTH 32000 /* watch for 16-bit integer overflow */
|
|
#define MIN_SEND_BUF_LENGTH 4000
|
|
|
|
/* This list of SSL3 cipher suites is sorted in descending order of
|
|
* precedence (desirability). It only includes cipher suites we implement.
|
|
* This table is modified by SSL3_SetPolicy(). The ordering of cipher suites
|
|
* in this table must match the ordering in SSL_ImplementedCiphers (sslenum.c)
|
|
*
|
|
* Important: See bug 946147 before enabling, reordering, or adding any cipher
|
|
* suites to this list.
|
|
*/
|
|
static ssl3CipherSuiteCfg cipherSuites[ssl_V3_SUITES_IMPLEMENTED] = {
|
|
/* cipher_suite policy enabled isPresent */
|
|
|
|
#ifndef NSS_DISABLE_ECC
|
|
{ TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
/* TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA is out of order to work around
|
|
* bug 946147.
|
|
*/
|
|
{ TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDHE_RSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
{ TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_DHE_DSS_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_DHE_RSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_DHE_DSS_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_DHE_DSS_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_DHE_RSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_DHE_DSS_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_DHE_DSS_WITH_AES_256_CBC_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_DHE_DSS_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
|
|
#ifndef NSS_DISABLE_ECC
|
|
{ TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDH_ECDSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDH_RSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
/* RSA */
|
|
{ TLS_RSA_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_RSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_RSA_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_RSA_WITH_CAMELLIA_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_RSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_RSA_WITH_AES_256_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_RSA_WITH_CAMELLIA_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_RSA_WITH_SEED_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_RSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_RSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
{ TLS_RSA_WITH_RC4_128_MD5, SSL_ALLOWED, PR_TRUE, PR_FALSE},
|
|
|
|
/* 56-bit DES "domestic" cipher suites */
|
|
{ TLS_DHE_RSA_WITH_DES_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_DHE_DSS_WITH_DES_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ SSL_RSA_FIPS_WITH_DES_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_RSA_WITH_DES_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
|
|
/* export ciphersuites with 1024-bit public key exchange keys */
|
|
{ TLS_RSA_EXPORT1024_WITH_RC4_56_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
|
|
/* export ciphersuites with 512-bit public key exchange keys */
|
|
{ TLS_RSA_EXPORT_WITH_RC4_40_MD5, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
|
|
/* ciphersuites with no encryption */
|
|
#ifndef NSS_DISABLE_ECC
|
|
{ TLS_ECDHE_ECDSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDHE_RSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDH_RSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_ECDH_ECDSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
#endif /* NSS_DISABLE_ECC */
|
|
{ TLS_RSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_RSA_WITH_NULL_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
{ TLS_RSA_WITH_NULL_MD5, SSL_ALLOWED, PR_FALSE, PR_FALSE},
|
|
};
|
|
|
|
static const SSLSignatureAndHashAlg defaultSignatureAlgorithms[] = {
|
|
{ssl_hash_sha256, ssl_sign_rsa},
|
|
{ssl_hash_sha384, ssl_sign_rsa},
|
|
{ssl_hash_sha512, ssl_sign_rsa},
|
|
{ssl_hash_sha1, ssl_sign_rsa},
|
|
#ifndef NSS_DISABLE_ECC
|
|
{ssl_hash_sha256, ssl_sign_ecdsa},
|
|
{ssl_hash_sha384, ssl_sign_ecdsa},
|
|
{ssl_hash_sha512, ssl_sign_ecdsa},
|
|
{ssl_hash_sha1, ssl_sign_ecdsa},
|
|
#endif
|
|
{ssl_hash_sha256, ssl_sign_dsa},
|
|
{ssl_hash_sha1, ssl_sign_dsa}
|
|
};
|
|
PR_STATIC_ASSERT(PR_ARRAY_SIZE(defaultSignatureAlgorithms) <=
|
|
MAX_SIGNATURE_ALGORITHMS);
|
|
|
|
/* Verify that SSL_ImplementedCiphers and cipherSuites are in consistent order.
|
|
*/
|
|
#ifdef DEBUG
|
|
void ssl3_CheckCipherSuiteOrderConsistency()
|
|
{
|
|
unsigned int i;
|
|
|
|
/* Note that SSL_ImplementedCiphers has more elements than cipherSuites
|
|
* because it SSL_ImplementedCiphers includes SSL 2.0 cipher suites.
|
|
*/
|
|
PORT_Assert(SSL_NumImplementedCiphers >= PR_ARRAY_SIZE(cipherSuites));
|
|
|
|
for (i = 0; i < PR_ARRAY_SIZE(cipherSuites); ++i) {
|
|
PORT_Assert(SSL_ImplementedCiphers[i] == cipherSuites[i].cipher_suite);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* This list of SSL3 compression methods is sorted in descending order of
|
|
* precedence (desirability). It only includes compression methods we
|
|
* implement.
|
|
*/
|
|
static const /*SSLCompressionMethod*/ PRUint8 compressions [] = {
|
|
#ifdef NSS_ENABLE_ZLIB
|
|
ssl_compression_deflate,
|
|
#endif
|
|
ssl_compression_null
|
|
};
|
|
|
|
static const int compressionMethodsCount =
|
|
sizeof(compressions) / sizeof(compressions[0]);
|
|
|
|
/* compressionEnabled returns true iff the compression algorithm is enabled
|
|
* for the given SSL socket. */
|
|
static PRBool
|
|
compressionEnabled(sslSocket *ss, SSLCompressionMethod compression)
|
|
{
|
|
switch (compression) {
|
|
case ssl_compression_null:
|
|
return PR_TRUE; /* Always enabled */
|
|
#ifdef NSS_ENABLE_ZLIB
|
|
case ssl_compression_deflate:
|
|
if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) {
|
|
return ss->opt.enableDeflate;
|
|
}
|
|
return PR_FALSE;
|
|
#endif
|
|
default:
|
|
return PR_FALSE;
|
|
}
|
|
}
|
|
|
|
static const /*SSL3ClientCertificateType */ PRUint8 certificate_types [] = {
|
|
ct_RSA_sign,
|
|
#ifndef NSS_DISABLE_ECC
|
|
ct_ECDSA_sign,
|
|
#endif /* NSS_DISABLE_ECC */
|
|
ct_DSS_sign,
|
|
};
|
|
|
|
#define EXPORT_RSA_KEY_LENGTH 64 /* bytes */
|
|
|
|
|
|
/* This global item is used only in servers. It is is initialized by
|
|
** SSL_ConfigSecureServer(), and is used in ssl3_SendCertificateRequest().
|
|
*/
|
|
CERTDistNames *ssl3_server_ca_list = NULL;
|
|
static SSL3Statistics ssl3stats;
|
|
|
|
/* indexed by SSL3BulkCipher */
|
|
static const ssl3BulkCipherDef bulk_cipher_defs[] = {
|
|
/* |--------- Lengths --------| */
|
|
/* cipher calg k s type i b t n */
|
|
/* e e v l a o */
|
|
/* y c | o g n */
|
|
/* | r | c | c */
|
|
/* | e | k | e */
|
|
/* | t | | | | */
|
|
{cipher_null, calg_null, 0, 0, type_stream, 0, 0, 0, 0},
|
|
{cipher_rc4, calg_rc4, 16,16, type_stream, 0, 0, 0, 0},
|
|
{cipher_rc4_40, calg_rc4, 16, 5, type_stream, 0, 0, 0, 0},
|
|
{cipher_rc4_56, calg_rc4, 16, 7, type_stream, 0, 0, 0, 0},
|
|
{cipher_rc2, calg_rc2, 16,16, type_block, 8, 8, 0, 0},
|
|
{cipher_rc2_40, calg_rc2, 16, 5, type_block, 8, 8, 0, 0},
|
|
{cipher_des, calg_des, 8, 8, type_block, 8, 8, 0, 0},
|
|
{cipher_3des, calg_3des, 24,24, type_block, 8, 8, 0, 0},
|
|
{cipher_des40, calg_des, 8, 5, type_block, 8, 8, 0, 0},
|
|
{cipher_idea, calg_idea, 16,16, type_block, 8, 8, 0, 0},
|
|
{cipher_aes_128, calg_aes, 16,16, type_block, 16,16, 0, 0},
|
|
{cipher_aes_256, calg_aes, 32,32, type_block, 16,16, 0, 0},
|
|
{cipher_camellia_128, calg_camellia, 16,16, type_block, 16,16, 0, 0},
|
|
{cipher_camellia_256, calg_camellia, 32,32, type_block, 16,16, 0, 0},
|
|
{cipher_seed, calg_seed, 16,16, type_block, 16,16, 0, 0},
|
|
{cipher_aes_128_gcm, calg_aes_gcm, 16,16, type_aead, 4, 0,16, 8},
|
|
{cipher_camellia_128_gcm, calg_camellia_gcm, 16,16, type_aead, 4, 0,16, 8},
|
|
{cipher_missing, calg_null, 0, 0, type_stream, 0, 0, 0, 0},
|
|
};
|
|
|
|
static const ssl3KEADef kea_defs[] =
|
|
{ /* indexed by SSL3KeyExchangeAlgorithm */
|
|
/* kea exchKeyType signKeyType is_limited limit tls_keygen ephemeral */
|
|
{kea_null, kt_null, sign_null, PR_FALSE, 0, PR_FALSE, PR_FALSE},
|
|
{kea_rsa, kt_rsa, sign_rsa, PR_FALSE, 0, PR_FALSE, PR_FALSE},
|
|
{kea_rsa_export, kt_rsa, sign_rsa, PR_TRUE, 512, PR_FALSE, PR_FALSE},
|
|
{kea_rsa_export_1024,kt_rsa, sign_rsa, PR_TRUE, 1024, PR_FALSE, PR_FALSE},
|
|
{kea_dh_dss, kt_dh, sign_dsa, PR_FALSE, 0, PR_FALSE, PR_FALSE},
|
|
{kea_dh_dss_export, kt_dh, sign_dsa, PR_TRUE, 512, PR_FALSE, PR_FALSE},
|
|
{kea_dh_rsa, kt_dh, sign_rsa, PR_FALSE, 0, PR_FALSE, PR_FALSE},
|
|
{kea_dh_rsa_export, kt_dh, sign_rsa, PR_TRUE, 512, PR_FALSE, PR_FALSE},
|
|
{kea_dhe_dss, kt_dh, sign_dsa, PR_FALSE, 0, PR_FALSE, PR_TRUE},
|
|
{kea_dhe_dss_export, kt_dh, sign_dsa, PR_TRUE, 512, PR_FALSE, PR_TRUE},
|
|
{kea_dhe_rsa, kt_dh, sign_rsa, PR_FALSE, 0, PR_FALSE, PR_TRUE},
|
|
{kea_dhe_rsa_export, kt_dh, sign_rsa, PR_TRUE, 512, PR_FALSE, PR_TRUE},
|
|
{kea_dh_anon, kt_dh, sign_null, PR_FALSE, 0, PR_FALSE, PR_TRUE},
|
|
{kea_dh_anon_export, kt_dh, sign_null, PR_TRUE, 512, PR_FALSE, PR_TRUE},
|
|
{kea_rsa_fips, kt_rsa, sign_rsa, PR_FALSE, 0, PR_TRUE, PR_FALSE},
|
|
#ifndef NSS_DISABLE_ECC
|
|
{kea_ecdh_ecdsa, kt_ecdh, sign_ecdsa, PR_FALSE, 0, PR_FALSE, PR_FALSE},
|
|
{kea_ecdhe_ecdsa, kt_ecdh, sign_ecdsa, PR_FALSE, 0, PR_FALSE, PR_TRUE},
|
|
{kea_ecdh_rsa, kt_ecdh, sign_rsa, PR_FALSE, 0, PR_FALSE, PR_FALSE},
|
|
{kea_ecdhe_rsa, kt_ecdh, sign_rsa, PR_FALSE, 0, PR_FALSE, PR_TRUE},
|
|
{kea_ecdh_anon, kt_ecdh, sign_null, PR_FALSE, 0, PR_FALSE, PR_TRUE},
|
|
#endif /* NSS_DISABLE_ECC */
|
|
};
|
|
|
|
/* must use ssl_LookupCipherSuiteDef to access */
|
|
static const ssl3CipherSuiteDef cipher_suite_defs[] =
|
|
{
|
|
/* cipher_suite bulk_cipher_alg mac_alg key_exchange_alg */
|
|
|
|
{TLS_NULL_WITH_NULL_NULL, cipher_null, mac_null, kea_null},
|
|
{TLS_RSA_WITH_NULL_MD5, cipher_null, mac_md5, kea_rsa},
|
|
{TLS_RSA_WITH_NULL_SHA, cipher_null, mac_sha, kea_rsa},
|
|
{TLS_RSA_WITH_NULL_SHA256, cipher_null, hmac_sha256, kea_rsa},
|
|
{TLS_RSA_EXPORT_WITH_RC4_40_MD5,cipher_rc4_40, mac_md5, kea_rsa_export},
|
|
{TLS_RSA_WITH_RC4_128_MD5, cipher_rc4, mac_md5, kea_rsa},
|
|
{TLS_RSA_WITH_RC4_128_SHA, cipher_rc4, mac_sha, kea_rsa},
|
|
{TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5,
|
|
cipher_rc2_40, mac_md5, kea_rsa_export},
|
|
#if 0 /* not implemented */
|
|
{TLS_RSA_WITH_IDEA_CBC_SHA, cipher_idea, mac_sha, kea_rsa},
|
|
{TLS_RSA_EXPORT_WITH_DES40_CBC_SHA,
|
|
cipher_des40, mac_sha, kea_rsa_export},
|
|
#endif
|
|
{TLS_RSA_WITH_DES_CBC_SHA, cipher_des, mac_sha, kea_rsa},
|
|
{TLS_RSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, mac_sha, kea_rsa},
|
|
{TLS_DHE_DSS_WITH_DES_CBC_SHA, cipher_des, mac_sha, kea_dhe_dss},
|
|
{TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
|
|
cipher_3des, mac_sha, kea_dhe_dss},
|
|
{TLS_DHE_DSS_WITH_RC4_128_SHA, cipher_rc4, mac_sha, kea_dhe_dss},
|
|
#if 0 /* not implemented */
|
|
{TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA,
|
|
cipher_des40, mac_sha, kea_dh_dss_export},
|
|
{TLS_DH_DSS_DES_CBC_SHA, cipher_des, mac_sha, kea_dh_dss},
|
|
{TLS_DH_DSS_3DES_CBC_SHA, cipher_3des, mac_sha, kea_dh_dss},
|
|
{TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA,
|
|
cipher_des40, mac_sha, kea_dh_rsa_export},
|
|
{TLS_DH_RSA_DES_CBC_SHA, cipher_des, mac_sha, kea_dh_rsa},
|
|
{TLS_DH_RSA_3DES_CBC_SHA, cipher_3des, mac_sha, kea_dh_rsa},
|
|
{TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA,
|
|
cipher_des40, mac_sha, kea_dh_dss_export},
|
|
{TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA,
|
|
cipher_des40, mac_sha, kea_dh_rsa_export},
|
|
#endif
|
|
{TLS_DHE_RSA_WITH_DES_CBC_SHA, cipher_des, mac_sha, kea_dhe_rsa},
|
|
{TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
|
|
cipher_3des, mac_sha, kea_dhe_rsa},
|
|
#if 0
|
|
{SSL_DH_ANON_EXPORT_RC4_40_MD5, cipher_rc4_40, mac_md5, kea_dh_anon_export},
|
|
{TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA,
|
|
cipher_des40, mac_sha, kea_dh_anon_export},
|
|
{TLS_DH_anon_WITH_DES_CBC_SHA, cipher_des, mac_sha, kea_dh_anon},
|
|
{TLS_DH_anon_WITH_3DES_CBC_SHA, cipher_3des, mac_sha, kea_dh_anon},
|
|
#endif
|
|
|
|
|
|
/* New TLS cipher suites */
|
|
{TLS_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_rsa},
|
|
{TLS_RSA_WITH_AES_128_CBC_SHA256, cipher_aes_128, hmac_sha256, kea_rsa},
|
|
{TLS_DHE_DSS_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_dhe_dss},
|
|
{TLS_DHE_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_dhe_rsa},
|
|
{TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, cipher_aes_128, hmac_sha256, kea_dhe_rsa},
|
|
{TLS_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_rsa},
|
|
{TLS_RSA_WITH_AES_256_CBC_SHA256, cipher_aes_256, hmac_sha256, kea_rsa},
|
|
{TLS_DHE_DSS_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_dhe_dss},
|
|
{TLS_DHE_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_dhe_rsa},
|
|
{TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, cipher_aes_256, hmac_sha256, kea_dhe_rsa},
|
|
#if 0
|
|
{TLS_DH_DSS_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_dh_dss},
|
|
{TLS_DH_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_dh_rsa},
|
|
{TLS_DH_anon_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_dh_anon},
|
|
{TLS_DH_DSS_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_dh_dss},
|
|
{TLS_DH_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_dh_rsa},
|
|
{TLS_DH_anon_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_dh_anon},
|
|
#endif
|
|
|
|
{TLS_RSA_WITH_SEED_CBC_SHA, cipher_seed, mac_sha, kea_rsa},
|
|
|
|
{TLS_RSA_WITH_CAMELLIA_128_CBC_SHA, cipher_camellia_128, mac_sha, kea_rsa},
|
|
{TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA,
|
|
cipher_camellia_128, mac_sha, kea_dhe_dss},
|
|
{TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA,
|
|
cipher_camellia_128, mac_sha, kea_dhe_rsa},
|
|
{TLS_RSA_WITH_CAMELLIA_256_CBC_SHA, cipher_camellia_256, mac_sha, kea_rsa},
|
|
{TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA,
|
|
cipher_camellia_256, mac_sha, kea_dhe_dss},
|
|
{TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA,
|
|
cipher_camellia_256, mac_sha, kea_dhe_rsa},
|
|
|
|
{TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA,
|
|
cipher_des, mac_sha,kea_rsa_export_1024},
|
|
{TLS_RSA_EXPORT1024_WITH_RC4_56_SHA,
|
|
cipher_rc4_56, mac_sha,kea_rsa_export_1024},
|
|
|
|
{SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA, cipher_3des, mac_sha, kea_rsa_fips},
|
|
{SSL_RSA_FIPS_WITH_DES_CBC_SHA, cipher_des, mac_sha, kea_rsa_fips},
|
|
|
|
{TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, mac_aead, kea_dhe_rsa},
|
|
{TLS_RSA_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, mac_aead, kea_rsa},
|
|
{TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, mac_aead, kea_ecdhe_rsa},
|
|
{TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, mac_aead, kea_ecdhe_ecdsa},
|
|
{TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256, cipher_camellia_128_gcm, mac_aead, kea_ecdhe_rsa},
|
|
{TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256, cipher_camellia_128_gcm, mac_aead, kea_ecdhe_ecdsa},
|
|
|
|
{TLS_DHE_DSS_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, mac_aead, kea_dhe_dss},
|
|
{TLS_DHE_DSS_WITH_AES_128_CBC_SHA256, cipher_aes_128, hmac_sha256, kea_dhe_dss},
|
|
{TLS_DHE_DSS_WITH_AES_256_CBC_SHA256, cipher_aes_256, hmac_sha256, kea_dhe_dss},
|
|
|
|
#ifndef NSS_DISABLE_ECC
|
|
{TLS_ECDH_ECDSA_WITH_NULL_SHA, cipher_null, mac_sha, kea_ecdh_ecdsa},
|
|
{TLS_ECDH_ECDSA_WITH_RC4_128_SHA, cipher_rc4, mac_sha, kea_ecdh_ecdsa},
|
|
{TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, mac_sha, kea_ecdh_ecdsa},
|
|
{TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_ecdh_ecdsa},
|
|
{TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_ecdh_ecdsa},
|
|
|
|
{TLS_ECDHE_ECDSA_WITH_NULL_SHA, cipher_null, mac_sha, kea_ecdhe_ecdsa},
|
|
{TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, cipher_rc4, mac_sha, kea_ecdhe_ecdsa},
|
|
{TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, mac_sha, kea_ecdhe_ecdsa},
|
|
{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_ecdhe_ecdsa},
|
|
{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, cipher_aes_128, hmac_sha256, kea_ecdhe_ecdsa},
|
|
{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_ecdhe_ecdsa},
|
|
|
|
{TLS_ECDH_RSA_WITH_NULL_SHA, cipher_null, mac_sha, kea_ecdh_rsa},
|
|
{TLS_ECDH_RSA_WITH_RC4_128_SHA, cipher_rc4, mac_sha, kea_ecdh_rsa},
|
|
{TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, mac_sha, kea_ecdh_rsa},
|
|
{TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_ecdh_rsa},
|
|
{TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_ecdh_rsa},
|
|
|
|
{TLS_ECDHE_RSA_WITH_NULL_SHA, cipher_null, mac_sha, kea_ecdhe_rsa},
|
|
{TLS_ECDHE_RSA_WITH_RC4_128_SHA, cipher_rc4, mac_sha, kea_ecdhe_rsa},
|
|
{TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, mac_sha, kea_ecdhe_rsa},
|
|
{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_ecdhe_rsa},
|
|
{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, cipher_aes_128, hmac_sha256, kea_ecdhe_rsa},
|
|
{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_ecdhe_rsa},
|
|
|
|
#if 0
|
|
{TLS_ECDH_anon_WITH_NULL_SHA, cipher_null, mac_sha, kea_ecdh_anon},
|
|
{TLS_ECDH_anon_WITH_RC4_128_SHA, cipher_rc4, mac_sha, kea_ecdh_anon},
|
|
{TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA, cipher_3des, mac_sha, kea_ecdh_anon},
|
|
{TLS_ECDH_anon_WITH_AES_128_CBC_SHA, cipher_aes_128, mac_sha, kea_ecdh_anon},
|
|
{TLS_ECDH_anon_WITH_AES_256_CBC_SHA, cipher_aes_256, mac_sha, kea_ecdh_anon},
|
|
#endif
|
|
#endif /* NSS_DISABLE_ECC */
|
|
};
|
|
|
|
static const CK_MECHANISM_TYPE kea_alg_defs[] = {
|
|
0x80000000L,
|
|
CKM_RSA_PKCS,
|
|
CKM_DH_PKCS_DERIVE,
|
|
CKM_KEA_KEY_DERIVE,
|
|
CKM_ECDH1_DERIVE
|
|
};
|
|
|
|
typedef struct SSLCipher2MechStr {
|
|
SSLCipherAlgorithm calg;
|
|
CK_MECHANISM_TYPE cmech;
|
|
} SSLCipher2Mech;
|
|
|
|
/* indexed by type SSLCipherAlgorithm */
|
|
static const SSLCipher2Mech alg2Mech[] = {
|
|
/* calg, cmech */
|
|
{ calg_null , (CK_MECHANISM_TYPE)0x80000000L },
|
|
{ calg_rc4 , CKM_RC4 },
|
|
{ calg_rc2 , CKM_RC2_CBC },
|
|
{ calg_des , CKM_DES_CBC },
|
|
{ calg_3des , CKM_DES3_CBC },
|
|
{ calg_idea , CKM_IDEA_CBC },
|
|
{ calg_fortezza , CKM_SKIPJACK_CBC64 },
|
|
{ calg_aes , CKM_AES_CBC },
|
|
{ calg_camellia , CKM_CAMELLIA_CBC },
|
|
{ calg_seed , CKM_SEED_CBC },
|
|
{ calg_aes_gcm , CKM_AES_GCM },
|
|
{ calg_camellia_gcm , CKM_CAMELLIA_GCM },
|
|
/* { calg_init , (CK_MECHANISM_TYPE)0x7fffffffL } */
|
|
};
|
|
|
|
#define mmech_invalid (CK_MECHANISM_TYPE)0x80000000L
|
|
#define mmech_md5 CKM_SSL3_MD5_MAC
|
|
#define mmech_sha CKM_SSL3_SHA1_MAC
|
|
#define mmech_md5_hmac CKM_MD5_HMAC
|
|
#define mmech_sha_hmac CKM_SHA_1_HMAC
|
|
#define mmech_sha256_hmac CKM_SHA256_HMAC
|
|
|
|
static const ssl3MACDef mac_defs[] = { /* indexed by SSL3MACAlgorithm */
|
|
/* pad_size is only used for SSL 3.0 MAC. See RFC 6101 Sec. 5.2.3.1. */
|
|
/* mac mmech pad_size mac_size */
|
|
{ mac_null, mmech_invalid, 0, 0 },
|
|
{ mac_md5, mmech_md5, 48, MD5_LENGTH },
|
|
{ mac_sha, mmech_sha, 40, SHA1_LENGTH},
|
|
{hmac_md5, mmech_md5_hmac, 0, MD5_LENGTH },
|
|
{hmac_sha, mmech_sha_hmac, 0, SHA1_LENGTH},
|
|
{hmac_sha256, mmech_sha256_hmac, 0, SHA256_LENGTH},
|
|
{ mac_aead, mmech_invalid, 0, 0 },
|
|
};
|
|
|
|
/* indexed by SSL3BulkCipher */
|
|
const char * const ssl3_cipherName[] = {
|
|
"NULL",
|
|
"RC4",
|
|
"RC4-40",
|
|
"RC4-56",
|
|
"RC2-CBC",
|
|
"RC2-CBC-40",
|
|
"DES-CBC",
|
|
"3DES-EDE-CBC",
|
|
"DES-CBC-40",
|
|
"IDEA-CBC",
|
|
"AES-128",
|
|
"AES-256",
|
|
"Camellia-128",
|
|
"Camellia-256",
|
|
"SEED-CBC",
|
|
"AES-128-GCM",
|
|
"Camellia-128-GCM",
|
|
"missing"
|
|
};
|
|
|
|
#ifndef NSS_DISABLE_ECC
|
|
/* The ECCWrappedKeyInfo structure defines how various pieces of
|
|
* information are laid out within wrappedSymmetricWrappingkey
|
|
* for ECDH key exchange. Since wrappedSymmetricWrappingkey is
|
|
* a 512-byte buffer (see sslimpl.h), the variable length field
|
|
* in ECCWrappedKeyInfo can be at most (512 - 8) = 504 bytes.
|
|
*
|
|
* XXX For now, NSS only supports named elliptic curves of size 571 bits
|
|
* or smaller. The public value will fit within 145 bytes and EC params
|
|
* will fit within 12 bytes. We'll need to revisit this when NSS
|
|
* supports arbitrary curves.
|
|
*/
|
|
#define MAX_EC_WRAPPED_KEY_BUFLEN 504
|
|
|
|
typedef struct ECCWrappedKeyInfoStr {
|
|
PRUint16 size; /* EC public key size in bits */
|
|
PRUint16 encodedParamLen; /* length (in bytes) of DER encoded EC params */
|
|
PRUint16 pubValueLen; /* length (in bytes) of EC public value */
|
|
PRUint16 wrappedKeyLen; /* length (in bytes) of the wrapped key */
|
|
PRUint8 var[MAX_EC_WRAPPED_KEY_BUFLEN]; /* this buffer contains the */
|
|
/* EC public-key params, the EC public value and the wrapped key */
|
|
} ECCWrappedKeyInfo;
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
#if defined(TRACE)
|
|
|
|
static char *
|
|
ssl3_DecodeHandshakeType(int msgType)
|
|
{
|
|
char * rv;
|
|
static char line[40];
|
|
|
|
switch(msgType) {
|
|
case hello_request: rv = "hello_request (0)"; break;
|
|
case client_hello: rv = "client_hello (1)"; break;
|
|
case server_hello: rv = "server_hello (2)"; break;
|
|
case hello_verify_request: rv = "hello_verify_request (3)"; break;
|
|
case certificate: rv = "certificate (11)"; break;
|
|
case server_key_exchange: rv = "server_key_exchange (12)"; break;
|
|
case certificate_request: rv = "certificate_request (13)"; break;
|
|
case server_hello_done: rv = "server_hello_done (14)"; break;
|
|
case certificate_verify: rv = "certificate_verify (15)"; break;
|
|
case client_key_exchange: rv = "client_key_exchange (16)"; break;
|
|
case finished: rv = "finished (20)"; break;
|
|
default:
|
|
sprintf(line, "*UNKNOWN* handshake type! (%d)", msgType);
|
|
rv = line;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
static char *
|
|
ssl3_DecodeContentType(int msgType)
|
|
{
|
|
char * rv;
|
|
static char line[40];
|
|
|
|
switch(msgType) {
|
|
case content_change_cipher_spec:
|
|
rv = "change_cipher_spec (20)"; break;
|
|
case content_alert: rv = "alert (21)"; break;
|
|
case content_handshake: rv = "handshake (22)"; break;
|
|
case content_application_data:
|
|
rv = "application_data (23)"; break;
|
|
default:
|
|
sprintf(line, "*UNKNOWN* record type! (%d)", msgType);
|
|
rv = line;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
#endif
|
|
|
|
SSL3Statistics *
|
|
SSL_GetStatistics(void)
|
|
{
|
|
return &ssl3stats;
|
|
}
|
|
|
|
typedef struct tooLongStr {
|
|
#if defined(IS_LITTLE_ENDIAN)
|
|
PRInt32 low;
|
|
PRInt32 high;
|
|
#else
|
|
PRInt32 high;
|
|
PRInt32 low;
|
|
#endif
|
|
} tooLong;
|
|
|
|
void SSL_AtomicIncrementLong(long * x)
|
|
{
|
|
if ((sizeof *x) == sizeof(PRInt32)) {
|
|
PR_ATOMIC_INCREMENT((PRInt32 *)x);
|
|
} else {
|
|
tooLong * tl = (tooLong *)x;
|
|
if (PR_ATOMIC_INCREMENT(&tl->low) == 0)
|
|
PR_ATOMIC_INCREMENT(&tl->high);
|
|
}
|
|
}
|
|
|
|
static PRBool
|
|
ssl3_CipherSuiteAllowedForVersionRange(
|
|
ssl3CipherSuite cipherSuite,
|
|
const SSLVersionRange *vrange)
|
|
{
|
|
switch (cipherSuite) {
|
|
/* See RFC 4346 A.5. Export cipher suites must not be used in TLS 1.1 or
|
|
* later. This set of cipher suites is similar to, but different from, the
|
|
* set of cipher suites considered exportable by SSL_IsExportCipherSuite.
|
|
*/
|
|
case TLS_RSA_EXPORT_WITH_RC4_40_MD5:
|
|
case TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5:
|
|
/* TLS_RSA_EXPORT_WITH_DES40_CBC_SHA: never implemented
|
|
* TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA: never implemented
|
|
* TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA: never implemented
|
|
* TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA: never implemented
|
|
* TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA: never implemented
|
|
* TLS_DH_anon_EXPORT_WITH_RC4_40_MD5: never implemented
|
|
* TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA: never implemented
|
|
*/
|
|
return vrange->min <= SSL_LIBRARY_VERSION_TLS_1_0;
|
|
|
|
case TLS_DHE_RSA_WITH_AES_256_CBC_SHA256:
|
|
case TLS_RSA_WITH_AES_256_CBC_SHA256:
|
|
case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256:
|
|
case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256:
|
|
case TLS_DHE_RSA_WITH_AES_128_CBC_SHA256:
|
|
case TLS_RSA_WITH_AES_128_CBC_SHA256:
|
|
case TLS_RSA_WITH_AES_128_GCM_SHA256:
|
|
case TLS_DHE_DSS_WITH_AES_128_CBC_SHA256:
|
|
case TLS_DHE_DSS_WITH_AES_256_CBC_SHA256:
|
|
case TLS_RSA_WITH_NULL_SHA256:
|
|
return vrange->max == SSL_LIBRARY_VERSION_TLS_1_2;
|
|
|
|
case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:
|
|
case TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256:
|
|
case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256:
|
|
case TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256:
|
|
case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256:
|
|
case TLS_DHE_DSS_WITH_AES_128_GCM_SHA256:
|
|
return vrange->max >= SSL_LIBRARY_VERSION_TLS_1_2;
|
|
|
|
/* RFC 4492: ECC cipher suites need TLS extensions to negotiate curves and
|
|
* point formats.*/
|
|
case TLS_ECDH_ECDSA_WITH_NULL_SHA:
|
|
case TLS_ECDH_ECDSA_WITH_RC4_128_SHA:
|
|
case TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA:
|
|
case TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA:
|
|
case TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA:
|
|
case TLS_ECDHE_ECDSA_WITH_NULL_SHA:
|
|
case TLS_ECDHE_ECDSA_WITH_RC4_128_SHA:
|
|
case TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA:
|
|
case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA:
|
|
case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA:
|
|
case TLS_ECDH_RSA_WITH_NULL_SHA:
|
|
case TLS_ECDH_RSA_WITH_RC4_128_SHA:
|
|
case TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA:
|
|
case TLS_ECDH_RSA_WITH_AES_128_CBC_SHA:
|
|
case TLS_ECDH_RSA_WITH_AES_256_CBC_SHA:
|
|
case TLS_ECDHE_RSA_WITH_NULL_SHA:
|
|
case TLS_ECDHE_RSA_WITH_RC4_128_SHA:
|
|
case TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA:
|
|
case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA:
|
|
case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA:
|
|
return vrange->max >= SSL_LIBRARY_VERSION_TLS_1_0 &&
|
|
vrange->min < SSL_LIBRARY_VERSION_TLS_1_3;
|
|
|
|
default:
|
|
return vrange->min < SSL_LIBRARY_VERSION_TLS_1_3;
|
|
}
|
|
}
|
|
|
|
/* return pointer to ssl3CipherSuiteDef for suite, or NULL */
|
|
/* XXX This does a linear search. A binary search would be better. */
|
|
static const ssl3CipherSuiteDef *
|
|
ssl_LookupCipherSuiteDef(ssl3CipherSuite suite)
|
|
{
|
|
int cipher_suite_def_len =
|
|
sizeof(cipher_suite_defs) / sizeof(cipher_suite_defs[0]);
|
|
int i;
|
|
|
|
for (i = 0; i < cipher_suite_def_len; i++) {
|
|
if (cipher_suite_defs[i].cipher_suite == suite)
|
|
return &cipher_suite_defs[i];
|
|
}
|
|
PORT_Assert(PR_FALSE); /* We should never get here. */
|
|
PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE);
|
|
return NULL;
|
|
}
|
|
|
|
/* Find the cipher configuration struct associate with suite */
|
|
/* XXX This does a linear search. A binary search would be better. */
|
|
static ssl3CipherSuiteCfg *
|
|
ssl_LookupCipherSuiteCfg(ssl3CipherSuite suite, ssl3CipherSuiteCfg *suites)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) {
|
|
if (suites[i].cipher_suite == suite)
|
|
return &suites[i];
|
|
}
|
|
/* return NULL and let the caller handle it. */
|
|
PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Initialize the suite->isPresent value for config_match
|
|
* Returns count of enabled ciphers supported by extant tokens,
|
|
* regardless of policy or user preference.
|
|
* If this returns zero, the user cannot do SSL v3.
|
|
*/
|
|
int
|
|
ssl3_config_match_init(sslSocket *ss)
|
|
{
|
|
ssl3CipherSuiteCfg * suite;
|
|
const ssl3CipherSuiteDef *cipher_def;
|
|
SSLCipherAlgorithm cipher_alg;
|
|
CK_MECHANISM_TYPE cipher_mech;
|
|
SSL3KEAType exchKeyType;
|
|
int i;
|
|
int numPresent = 0;
|
|
int numEnabled = 0;
|
|
PRBool isServer;
|
|
sslServerCerts *svrAuth;
|
|
|
|
PORT_Assert(ss);
|
|
if (!ss) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return 0;
|
|
}
|
|
if (SSL3_ALL_VERSIONS_DISABLED(&ss->vrange)) {
|
|
return 0;
|
|
}
|
|
isServer = (PRBool)(ss->sec.isServer != 0);
|
|
|
|
for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) {
|
|
suite = &ss->cipherSuites[i];
|
|
if (suite->enabled) {
|
|
++numEnabled;
|
|
/* We need the cipher defs to see if we have a token that can handle
|
|
* this cipher. It isn't part of the static definition.
|
|
*/
|
|
cipher_def = ssl_LookupCipherSuiteDef(suite->cipher_suite);
|
|
if (!cipher_def) {
|
|
suite->isPresent = PR_FALSE;
|
|
continue;
|
|
}
|
|
cipher_alg = bulk_cipher_defs[cipher_def->bulk_cipher_alg].calg;
|
|
PORT_Assert( alg2Mech[cipher_alg].calg == cipher_alg);
|
|
cipher_mech = alg2Mech[cipher_alg].cmech;
|
|
exchKeyType =
|
|
kea_defs[cipher_def->key_exchange_alg].exchKeyType;
|
|
#ifdef NSS_DISABLE_ECC
|
|
svrAuth = ss->serverCerts + exchKeyType;
|
|
#else
|
|
/* XXX SSLKEAType isn't really a good choice for
|
|
* indexing certificates. It doesn't work for
|
|
* (EC)DHE-* ciphers. Here we use a hack to ensure
|
|
* that the server uses an RSA cert for (EC)DHE-RSA.
|
|
*/
|
|
switch (cipher_def->key_exchange_alg) {
|
|
case kea_dhe_dss:
|
|
svrAuth = ss->serverCerts + ssl_kea_dh;
|
|
break;
|
|
case kea_ecdhe_rsa:
|
|
case kea_dhe_rsa:
|
|
svrAuth = ss->serverCerts + kt_rsa;
|
|
break;
|
|
case kea_ecdh_ecdsa:
|
|
case kea_ecdh_rsa:
|
|
/*
|
|
* XXX We ought to have different indices for
|
|
* ECDSA- and RSA-signed EC certificates so
|
|
* we could support both key exchange mechanisms
|
|
* simultaneously. For now, both of them use
|
|
* whatever is in the certificate slot for kt_ecdh
|
|
*/
|
|
case kea_dhe_dss_export:
|
|
case kea_dhe_rsa_export:
|
|
default:
|
|
svrAuth = ss->serverCerts + exchKeyType;
|
|
break;
|
|
}
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
/* Mark the suites that are backed by real tokens, certs and keys */
|
|
suite->isPresent = (PRBool)
|
|
(((exchKeyType == kt_null) ||
|
|
((!isServer || (svrAuth->serverKeyPair &&
|
|
svrAuth->SERVERKEY &&
|
|
svrAuth->serverCertChain)) &&
|
|
PK11_TokenExists(kea_alg_defs[exchKeyType]))) &&
|
|
((cipher_alg == calg_null) || PK11_TokenExists(cipher_mech)));
|
|
if (suite->isPresent)
|
|
++numPresent;
|
|
}
|
|
}
|
|
PORT_Assert(numPresent > 0 || numEnabled == 0);
|
|
if (numPresent <= 0) {
|
|
PORT_SetError(SSL_ERROR_NO_CIPHERS_SUPPORTED);
|
|
}
|
|
return numPresent;
|
|
}
|
|
|
|
|
|
/* return PR_TRUE if suite matches policy, enabled state and is applicable to
|
|
* the given version range. */
|
|
/* It would be a REALLY BAD THING (tm) if we ever permitted the use
|
|
** of a cipher that was NOT_ALLOWED. So, if this is ever called with
|
|
** policy == SSL_NOT_ALLOWED, report no match.
|
|
*/
|
|
/* adjust suite enabled to the availability of a token that can do the
|
|
* cipher suite. */
|
|
static PRBool
|
|
config_match(ssl3CipherSuiteCfg *suite, int policy, PRBool enabled,
|
|
const SSLVersionRange *vrange, const sslSocket *ss)
|
|
{
|
|
const ssl3CipherSuiteDef *cipher_def;
|
|
|
|
PORT_Assert(policy != SSL_NOT_ALLOWED && enabled != PR_FALSE);
|
|
if (policy == SSL_NOT_ALLOWED || !enabled)
|
|
return PR_FALSE;
|
|
|
|
cipher_def = ssl_LookupCipherSuiteDef(suite->cipher_suite);
|
|
PORT_Assert(cipher_def != NULL);
|
|
|
|
PORT_Assert(ss != NULL);
|
|
if (ss->sec.isServer && !ss->opt.enableServerDhe &&
|
|
kea_defs[cipher_def->key_exchange_alg].exchKeyType == ssl_kea_dh)
|
|
return PR_FALSE;
|
|
|
|
return (PRBool)(suite->enabled &&
|
|
suite->isPresent &&
|
|
suite->policy != SSL_NOT_ALLOWED &&
|
|
suite->policy <= policy &&
|
|
ssl3_CipherSuiteAllowedForVersionRange(
|
|
suite->cipher_suite, vrange));
|
|
}
|
|
|
|
/* return number of cipher suites that match policy, enabled state and are
|
|
* applicable for the configured protocol version range. */
|
|
/* called from ssl3_SendClientHello and ssl3_ConstructV2CipherSpecsHack */
|
|
static int
|
|
count_cipher_suites(sslSocket *ss, int policy, PRBool enabled)
|
|
{
|
|
int i, count = 0;
|
|
|
|
if (SSL3_ALL_VERSIONS_DISABLED(&ss->vrange)) {
|
|
return 0;
|
|
}
|
|
for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) {
|
|
if (config_match(&ss->cipherSuites[i], policy, enabled, &ss->vrange, ss))
|
|
count++;
|
|
}
|
|
if (count <= 0) {
|
|
PORT_SetError(SSL_ERROR_SSL_DISABLED);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Null compression, mac and encryption functions
|
|
*/
|
|
|
|
static SECStatus
|
|
Null_Cipher(void *ctx, unsigned char *output, int *outputLen, int maxOutputLen,
|
|
const unsigned char *input, int inputLen)
|
|
{
|
|
if (inputLen > maxOutputLen) {
|
|
*outputLen = 0; /* Match PK11_CipherOp in setting outputLen */
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
*outputLen = inputLen;
|
|
if (input != output)
|
|
PORT_Memcpy(output, input, inputLen);
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* SSL3 Utility functions
|
|
*/
|
|
|
|
/* allowLargerPeerVersion controls whether the function will select the
|
|
* highest enabled SSL version or fail when peerVersion is greater than the
|
|
* highest enabled version.
|
|
*
|
|
* If allowLargerPeerVersion is true, peerVersion is the peer's highest
|
|
* enabled version rather than the peer's selected version.
|
|
*/
|
|
SECStatus
|
|
ssl3_NegotiateVersion(sslSocket *ss, SSL3ProtocolVersion peerVersion,
|
|
PRBool allowLargerPeerVersion)
|
|
{
|
|
if (SSL3_ALL_VERSIONS_DISABLED(&ss->vrange)) {
|
|
PORT_SetError(SSL_ERROR_SSL_DISABLED);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (peerVersion < ss->vrange.min ||
|
|
(peerVersion > ss->vrange.max && !allowLargerPeerVersion)) {
|
|
PORT_SetError(SSL_ERROR_UNSUPPORTED_VERSION);
|
|
return SECFailure;
|
|
}
|
|
|
|
ss->version = PR_MIN(peerVersion, ss->vrange.max);
|
|
PORT_Assert(ssl3_VersionIsSupported(ss->protocolVariant, ss->version));
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_GetNewRandom(SSL3Random *random)
|
|
{
|
|
SECStatus rv;
|
|
|
|
/* first 4 bytes are reserverd for time */
|
|
rv = PK11_GenerateRandom(random->rand, SSL3_RANDOM_LENGTH);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_GENERATE_RANDOM_FAILURE);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* Called by ssl3_SendServerKeyExchange and ssl3_SendCertificateVerify */
|
|
SECStatus
|
|
ssl3_SignHashes(SSL3Hashes *hash, SECKEYPrivateKey *key, SECItem *buf,
|
|
PRBool isTLS)
|
|
{
|
|
SECStatus rv = SECFailure;
|
|
PRBool doDerEncode = PR_FALSE;
|
|
int signatureLen;
|
|
SECItem hashItem;
|
|
|
|
buf->data = NULL;
|
|
|
|
switch (key->keyType) {
|
|
case rsaKey:
|
|
hashItem.data = hash->u.raw;
|
|
hashItem.len = hash->len;
|
|
break;
|
|
case dsaKey:
|
|
doDerEncode = isTLS;
|
|
/* ssl_hash_none is used to specify the MD5/SHA1 concatenated hash.
|
|
* In that case, we use just the SHA1 part. */
|
|
if (hash->hashAlg == ssl_hash_none) {
|
|
hashItem.data = hash->u.s.sha;
|
|
hashItem.len = sizeof(hash->u.s.sha);
|
|
} else {
|
|
hashItem.data = hash->u.raw;
|
|
hashItem.len = hash->len;
|
|
}
|
|
break;
|
|
#ifndef NSS_DISABLE_ECC
|
|
case ecKey:
|
|
doDerEncode = PR_TRUE;
|
|
/* ssl_hash_none is used to specify the MD5/SHA1 concatenated hash.
|
|
* In that case, we use just the SHA1 part. */
|
|
if (hash->hashAlg == ssl_hash_none) {
|
|
hashItem.data = hash->u.s.sha;
|
|
hashItem.len = sizeof(hash->u.s.sha);
|
|
} else {
|
|
hashItem.data = hash->u.raw;
|
|
hashItem.len = hash->len;
|
|
}
|
|
break;
|
|
#endif /* NSS_DISABLE_ECC */
|
|
default:
|
|
PORT_SetError(SEC_ERROR_INVALID_KEY);
|
|
goto done;
|
|
}
|
|
PRINT_BUF(60, (NULL, "hash(es) to be signed", hashItem.data, hashItem.len));
|
|
|
|
if (hash->hashAlg == ssl_hash_none) {
|
|
signatureLen = PK11_SignatureLen(key);
|
|
if (signatureLen <= 0) {
|
|
PORT_SetError(SEC_ERROR_INVALID_KEY);
|
|
goto done;
|
|
}
|
|
|
|
buf->len = (unsigned)signatureLen;
|
|
buf->data = (unsigned char *)PORT_Alloc(signatureLen);
|
|
if (!buf->data)
|
|
goto done; /* error code was set. */
|
|
|
|
rv = PK11_Sign(key, buf, &hashItem);
|
|
} else {
|
|
SECOidTag hashOID = ssl3_TLSHashAlgorithmToOID(hash->hashAlg);
|
|
rv = SGN_Digest(key, hashOID, buf, &hashItem);
|
|
}
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SIGN_HASHES_FAILURE);
|
|
} else if (doDerEncode) {
|
|
SECItem derSig = {siBuffer, NULL, 0};
|
|
|
|
/* This also works for an ECDSA signature */
|
|
rv = DSAU_EncodeDerSigWithLen(&derSig, buf, buf->len);
|
|
if (rv == SECSuccess) {
|
|
PORT_Free(buf->data); /* discard unencoded signature. */
|
|
*buf = derSig; /* give caller encoded signature. */
|
|
} else if (derSig.data) {
|
|
PORT_Free(derSig.data);
|
|
}
|
|
}
|
|
|
|
PRINT_BUF(60, (NULL, "signed hashes", (unsigned char*)buf->data, buf->len));
|
|
done:
|
|
if (rv != SECSuccess && buf->data) {
|
|
PORT_Free(buf->data);
|
|
buf->data = NULL;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* Called from ssl3_HandleServerKeyExchange, ssl3_HandleCertificateVerify */
|
|
SECStatus
|
|
ssl3_VerifySignedHashes(SSL3Hashes *hash, CERTCertificate *cert,
|
|
SECItem *buf, PRBool isTLS, void *pwArg)
|
|
{
|
|
SECKEYPublicKey * key;
|
|
SECItem * signature = NULL;
|
|
SECStatus rv;
|
|
SECItem hashItem;
|
|
SECOidTag encAlg;
|
|
SECOidTag hashAlg;
|
|
|
|
|
|
PRINT_BUF(60, (NULL, "check signed hashes",
|
|
buf->data, buf->len));
|
|
|
|
key = CERT_ExtractPublicKey(cert);
|
|
if (key == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
hashAlg = ssl3_TLSHashAlgorithmToOID(hash->hashAlg);
|
|
switch (key->keyType) {
|
|
case rsaKey:
|
|
encAlg = SEC_OID_PKCS1_RSA_ENCRYPTION;
|
|
hashItem.data = hash->u.raw;
|
|
hashItem.len = hash->len;
|
|
break;
|
|
case dsaKey:
|
|
encAlg = SEC_OID_ANSIX9_DSA_SIGNATURE;
|
|
/* ssl_hash_none is used to specify the MD5/SHA1 concatenated hash.
|
|
* In that case, we use just the SHA1 part. */
|
|
if (hash->hashAlg == ssl_hash_none) {
|
|
hashItem.data = hash->u.s.sha;
|
|
hashItem.len = sizeof(hash->u.s.sha);
|
|
} else {
|
|
hashItem.data = hash->u.raw;
|
|
hashItem.len = hash->len;
|
|
}
|
|
/* Allow DER encoded DSA signatures in SSL 3.0 */
|
|
if (isTLS || buf->len != SECKEY_SignatureLen(key)) {
|
|
signature = DSAU_DecodeDerSigToLen(buf, SECKEY_SignatureLen(key));
|
|
if (!signature) {
|
|
PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE);
|
|
return SECFailure;
|
|
}
|
|
buf = signature;
|
|
}
|
|
break;
|
|
|
|
#ifndef NSS_DISABLE_ECC
|
|
case ecKey:
|
|
encAlg = SEC_OID_ANSIX962_EC_PUBLIC_KEY;
|
|
/* ssl_hash_none is used to specify the MD5/SHA1 concatenated hash.
|
|
* In that case, we use just the SHA1 part.
|
|
* ECDSA signatures always encode the integers r and s using ASN.1
|
|
* (unlike DSA where ASN.1 encoding is used with TLS but not with
|
|
* SSL3). So we can use VFY_VerifyDigestDirect for ECDSA.
|
|
*/
|
|
if (hash->hashAlg == ssl_hash_none) {
|
|
hashAlg = SEC_OID_SHA1;
|
|
hashItem.data = hash->u.s.sha;
|
|
hashItem.len = sizeof(hash->u.s.sha);
|
|
} else {
|
|
hashItem.data = hash->u.raw;
|
|
hashItem.len = hash->len;
|
|
}
|
|
break;
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
default:
|
|
SECKEY_DestroyPublicKey(key);
|
|
PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG);
|
|
return SECFailure;
|
|
}
|
|
|
|
PRINT_BUF(60, (NULL, "hash(es) to be verified",
|
|
hashItem.data, hashItem.len));
|
|
|
|
if (hashAlg == SEC_OID_UNKNOWN || key->keyType == dsaKey) {
|
|
/* VFY_VerifyDigestDirect requires DSA signatures to be DER-encoded.
|
|
* DSA signatures are DER-encoded in TLS but not in SSL3 and the code
|
|
* above always removes the DER encoding of DSA signatures when
|
|
* present. Thus DSA signatures are always verified with PK11_Verify.
|
|
*/
|
|
rv = PK11_Verify(key, buf, &hashItem, pwArg);
|
|
} else {
|
|
rv = VFY_VerifyDigestDirect(&hashItem, key, buf, encAlg, hashAlg,
|
|
pwArg);
|
|
}
|
|
SECKEY_DestroyPublicKey(key);
|
|
if (signature) {
|
|
SECITEM_FreeItem(signature, PR_TRUE);
|
|
}
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
|
|
/* Caller must set hiLevel error code. */
|
|
/* Called from ssl3_ComputeExportRSAKeyHash
|
|
* ssl3_ComputeDHKeyHash
|
|
* which are called from ssl3_HandleServerKeyExchange.
|
|
*
|
|
* hashAlg: ssl_hash_none indicates the pre-1.2, MD5/SHA1 combination hash.
|
|
*/
|
|
SECStatus
|
|
ssl3_ComputeCommonKeyHash(SSLHashType hashAlg,
|
|
PRUint8 * hashBuf, unsigned int bufLen,
|
|
SSL3Hashes *hashes, PRBool bypassPKCS11)
|
|
{
|
|
SECStatus rv;
|
|
SECOidTag hashOID;
|
|
|
|
#ifndef NO_PKCS11_BYPASS
|
|
if (bypassPKCS11) {
|
|
if (hashAlg == ssl_hash_none) {
|
|
MD5_HashBuf (hashes->u.s.md5, hashBuf, bufLen);
|
|
SHA1_HashBuf(hashes->u.s.sha, hashBuf, bufLen);
|
|
hashes->len = MD5_LENGTH + SHA1_LENGTH;
|
|
} else if (hashAlg == ssl_hash_sha1) {
|
|
SHA1_HashBuf(hashes->u.raw, hashBuf, bufLen);
|
|
hashes->len = SHA1_LENGTH;
|
|
} else if (hashAlg == ssl_hash_sha256) {
|
|
SHA256_HashBuf(hashes->u.raw, hashBuf, bufLen);
|
|
hashes->len = SHA256_LENGTH;
|
|
} else if (hashAlg == ssl_hash_sha384) {
|
|
SHA384_HashBuf(hashes->u.raw, hashBuf, bufLen);
|
|
hashes->len = SHA384_LENGTH;
|
|
} else if (hashAlg == ssl_hash_sha512) {
|
|
SHA512_HashBuf(hashes->u.raw, hashBuf, bufLen);
|
|
hashes->len = SHA512_LENGTH;
|
|
} else {
|
|
PORT_SetError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
if (hashAlg == ssl_hash_none) {
|
|
rv = PK11_HashBuf(SEC_OID_MD5, hashes->u.s.md5, hashBuf, bufLen);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
|
|
return rv;
|
|
}
|
|
rv = PK11_HashBuf(SEC_OID_SHA1, hashes->u.s.sha, hashBuf, bufLen);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
|
|
return rv;
|
|
}
|
|
hashes->len = MD5_LENGTH + SHA1_LENGTH;
|
|
} else {
|
|
hashOID = ssl3_TLSHashAlgorithmToOID(hashAlg);
|
|
hashes->len = HASH_ResultLenByOidTag(hashOID);
|
|
if (hashes->len == 0 || hashes->len > sizeof(hashes->u.raw)) {
|
|
ssl_MapLowLevelError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
rv = PK11_HashBuf(hashOID, hashes->u.raw, hashBuf, bufLen);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
|
|
return rv;
|
|
}
|
|
}
|
|
}
|
|
hashes->hashAlg = hashAlg;
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* Caller must set hiLevel error code.
|
|
** Called from ssl3_SendServerKeyExchange and
|
|
** ssl3_HandleServerKeyExchange.
|
|
*/
|
|
static SECStatus
|
|
ssl3_ComputeExportRSAKeyHash(SSLHashType hashAlg,
|
|
SECItem modulus, SECItem publicExponent,
|
|
SSL3Random *client_rand, SSL3Random *server_rand,
|
|
SSL3Hashes *hashes, PRBool bypassPKCS11)
|
|
{
|
|
PRUint8 * hashBuf;
|
|
PRUint8 * pBuf;
|
|
SECStatus rv = SECSuccess;
|
|
unsigned int bufLen;
|
|
PRUint8 buf[2*SSL3_RANDOM_LENGTH + 2 + 4096/8 + 2 + 4096/8];
|
|
|
|
bufLen = 2*SSL3_RANDOM_LENGTH + 2 + modulus.len + 2 + publicExponent.len;
|
|
if (bufLen <= sizeof buf) {
|
|
hashBuf = buf;
|
|
} else {
|
|
hashBuf = PORT_Alloc(bufLen);
|
|
if (!hashBuf) {
|
|
return SECFailure;
|
|
}
|
|
}
|
|
|
|
memcpy(hashBuf, client_rand, SSL3_RANDOM_LENGTH);
|
|
pBuf = hashBuf + SSL3_RANDOM_LENGTH;
|
|
memcpy(pBuf, server_rand, SSL3_RANDOM_LENGTH);
|
|
pBuf += SSL3_RANDOM_LENGTH;
|
|
pBuf[0] = (PRUint8)(modulus.len >> 8);
|
|
pBuf[1] = (PRUint8)(modulus.len);
|
|
pBuf += 2;
|
|
memcpy(pBuf, modulus.data, modulus.len);
|
|
pBuf += modulus.len;
|
|
pBuf[0] = (PRUint8)(publicExponent.len >> 8);
|
|
pBuf[1] = (PRUint8)(publicExponent.len);
|
|
pBuf += 2;
|
|
memcpy(pBuf, publicExponent.data, publicExponent.len);
|
|
pBuf += publicExponent.len;
|
|
PORT_Assert((unsigned int)(pBuf - hashBuf) == bufLen);
|
|
|
|
rv = ssl3_ComputeCommonKeyHash(hashAlg, hashBuf, bufLen, hashes,
|
|
bypassPKCS11);
|
|
|
|
PRINT_BUF(95, (NULL, "RSAkey hash: ", hashBuf, bufLen));
|
|
if (hashAlg == ssl_hash_none) {
|
|
PRINT_BUF(95, (NULL, "RSAkey hash: MD5 result",
|
|
hashes->u.s.md5, MD5_LENGTH));
|
|
PRINT_BUF(95, (NULL, "RSAkey hash: SHA1 result",
|
|
hashes->u.s.sha, SHA1_LENGTH));
|
|
} else {
|
|
PRINT_BUF(95, (NULL, "RSAkey hash: result",
|
|
hashes->u.raw, hashes->len));
|
|
}
|
|
|
|
if (hashBuf != buf && hashBuf != NULL)
|
|
PORT_Free(hashBuf);
|
|
return rv;
|
|
}
|
|
|
|
/* Caller must set hiLevel error code. */
|
|
/* Called from ssl3_HandleServerKeyExchange. */
|
|
static SECStatus
|
|
ssl3_ComputeDHKeyHash(SSLHashType hashAlg,
|
|
SECItem dh_p, SECItem dh_g, SECItem dh_Ys,
|
|
SSL3Random *client_rand, SSL3Random *server_rand,
|
|
SSL3Hashes *hashes, PRBool bypassPKCS11)
|
|
{
|
|
PRUint8 * hashBuf;
|
|
PRUint8 * pBuf;
|
|
SECStatus rv = SECSuccess;
|
|
unsigned int bufLen;
|
|
PRUint8 buf[2*SSL3_RANDOM_LENGTH + 2 + 4096/8 + 2 + 4096/8];
|
|
|
|
bufLen = 2*SSL3_RANDOM_LENGTH + 2 + dh_p.len + 2 + dh_g.len + 2 + dh_Ys.len;
|
|
if (bufLen <= sizeof buf) {
|
|
hashBuf = buf;
|
|
} else {
|
|
hashBuf = PORT_Alloc(bufLen);
|
|
if (!hashBuf) {
|
|
return SECFailure;
|
|
}
|
|
}
|
|
|
|
memcpy(hashBuf, client_rand, SSL3_RANDOM_LENGTH);
|
|
pBuf = hashBuf + SSL3_RANDOM_LENGTH;
|
|
memcpy(pBuf, server_rand, SSL3_RANDOM_LENGTH);
|
|
pBuf += SSL3_RANDOM_LENGTH;
|
|
pBuf[0] = (PRUint8)(dh_p.len >> 8);
|
|
pBuf[1] = (PRUint8)(dh_p.len);
|
|
pBuf += 2;
|
|
memcpy(pBuf, dh_p.data, dh_p.len);
|
|
pBuf += dh_p.len;
|
|
pBuf[0] = (PRUint8)(dh_g.len >> 8);
|
|
pBuf[1] = (PRUint8)(dh_g.len);
|
|
pBuf += 2;
|
|
memcpy(pBuf, dh_g.data, dh_g.len);
|
|
pBuf += dh_g.len;
|
|
pBuf[0] = (PRUint8)(dh_Ys.len >> 8);
|
|
pBuf[1] = (PRUint8)(dh_Ys.len);
|
|
pBuf += 2;
|
|
memcpy(pBuf, dh_Ys.data, dh_Ys.len);
|
|
pBuf += dh_Ys.len;
|
|
PORT_Assert((unsigned int)(pBuf - hashBuf) == bufLen);
|
|
|
|
rv = ssl3_ComputeCommonKeyHash(hashAlg, hashBuf, bufLen, hashes,
|
|
bypassPKCS11);
|
|
|
|
PRINT_BUF(95, (NULL, "DHkey hash: ", hashBuf, bufLen));
|
|
if (hashAlg == ssl_hash_none) {
|
|
PRINT_BUF(95, (NULL, "DHkey hash: MD5 result",
|
|
hashes->u.s.md5, MD5_LENGTH));
|
|
PRINT_BUF(95, (NULL, "DHkey hash: SHA1 result",
|
|
hashes->u.s.sha, SHA1_LENGTH));
|
|
} else {
|
|
PRINT_BUF(95, (NULL, "DHkey hash: result",
|
|
hashes->u.raw, hashes->len));
|
|
}
|
|
|
|
if (hashBuf != buf && hashBuf != NULL)
|
|
PORT_Free(hashBuf);
|
|
return rv;
|
|
}
|
|
|
|
static void
|
|
ssl3_BumpSequenceNumber(SSL3SequenceNumber *num)
|
|
{
|
|
num->low++;
|
|
if (num->low == 0)
|
|
num->high++;
|
|
}
|
|
|
|
/* Called twice, only from ssl3_DestroyCipherSpec (immediately below). */
|
|
static void
|
|
ssl3_CleanupKeyMaterial(ssl3KeyMaterial *mat)
|
|
{
|
|
if (mat->write_key != NULL) {
|
|
PK11_FreeSymKey(mat->write_key);
|
|
mat->write_key = NULL;
|
|
}
|
|
if (mat->write_mac_key != NULL) {
|
|
PK11_FreeSymKey(mat->write_mac_key);
|
|
mat->write_mac_key = NULL;
|
|
}
|
|
if (mat->write_mac_context != NULL) {
|
|
PK11_DestroyContext(mat->write_mac_context, PR_TRUE);
|
|
mat->write_mac_context = NULL;
|
|
}
|
|
}
|
|
|
|
/* Called from ssl3_SendChangeCipherSpecs() and
|
|
** ssl3_HandleChangeCipherSpecs()
|
|
** ssl3_DestroySSL3Info
|
|
** Caller must hold SpecWriteLock.
|
|
*/
|
|
void
|
|
ssl3_DestroyCipherSpec(ssl3CipherSpec *spec, PRBool freeSrvName)
|
|
{
|
|
PRBool freeit = (PRBool)(!spec->bypassCiphers);
|
|
/* PORT_Assert( ss->opt.noLocks || ssl_HaveSpecWriteLock(ss)); Don't have ss! */
|
|
if (spec->destroy) {
|
|
spec->destroy(spec->encodeContext, freeit);
|
|
spec->destroy(spec->decodeContext, freeit);
|
|
spec->encodeContext = NULL; /* paranoia */
|
|
spec->decodeContext = NULL;
|
|
}
|
|
if (spec->destroyCompressContext && spec->compressContext) {
|
|
spec->destroyCompressContext(spec->compressContext, 1);
|
|
spec->compressContext = NULL;
|
|
}
|
|
if (spec->destroyDecompressContext && spec->decompressContext) {
|
|
spec->destroyDecompressContext(spec->decompressContext, 1);
|
|
spec->decompressContext = NULL;
|
|
}
|
|
if (freeSrvName && spec->srvVirtName.data) {
|
|
SECITEM_FreeItem(&spec->srvVirtName, PR_FALSE);
|
|
}
|
|
if (spec->master_secret != NULL) {
|
|
PK11_FreeSymKey(spec->master_secret);
|
|
spec->master_secret = NULL;
|
|
}
|
|
spec->msItem.data = NULL;
|
|
spec->msItem.len = 0;
|
|
ssl3_CleanupKeyMaterial(&spec->client);
|
|
ssl3_CleanupKeyMaterial(&spec->server);
|
|
spec->bypassCiphers = PR_FALSE;
|
|
spec->destroy=NULL;
|
|
spec->destroyCompressContext = NULL;
|
|
spec->destroyDecompressContext = NULL;
|
|
}
|
|
|
|
/* Fill in the pending cipher spec with info from the selected ciphersuite.
|
|
** This is as much initialization as we can do without having key material.
|
|
** Called from ssl3_HandleServerHello(), ssl3_SendServerHello()
|
|
** Caller must hold the ssl3 handshake lock.
|
|
** Acquires & releases SpecWriteLock.
|
|
*/
|
|
static SECStatus
|
|
ssl3_SetupPendingCipherSpec(sslSocket *ss)
|
|
{
|
|
ssl3CipherSpec * pwSpec;
|
|
ssl3CipherSpec * cwSpec;
|
|
ssl3CipherSuite suite = ss->ssl3.hs.cipher_suite;
|
|
SSL3MACAlgorithm mac;
|
|
SSL3BulkCipher cipher;
|
|
SSL3KeyExchangeAlgorithm kea;
|
|
const ssl3CipherSuiteDef *suite_def;
|
|
PRBool isTLS;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
ssl_GetSpecWriteLock(ss); /*******************************/
|
|
|
|
pwSpec = ss->ssl3.pwSpec;
|
|
PORT_Assert(pwSpec == ss->ssl3.prSpec);
|
|
|
|
/* This hack provides maximal interoperability with SSL 3 servers. */
|
|
cwSpec = ss->ssl3.cwSpec;
|
|
if (cwSpec->mac_def->mac == mac_null) {
|
|
/* SSL records are not being MACed. */
|
|
cwSpec->version = ss->version;
|
|
}
|
|
|
|
pwSpec->version = ss->version;
|
|
isTLS = (PRBool)(pwSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: Set XXX Pending Cipher Suite to 0x%04x",
|
|
SSL_GETPID(), ss->fd, suite));
|
|
|
|
suite_def = ssl_LookupCipherSuiteDef(suite);
|
|
if (suite_def == NULL) {
|
|
ssl_ReleaseSpecWriteLock(ss);
|
|
return SECFailure; /* error code set by ssl_LookupCipherSuiteDef */
|
|
}
|
|
|
|
if (IS_DTLS(ss)) {
|
|
/* Double-check that we did not pick an RC4 suite */
|
|
PORT_Assert((suite_def->bulk_cipher_alg != cipher_rc4) &&
|
|
(suite_def->bulk_cipher_alg != cipher_rc4_40) &&
|
|
(suite_def->bulk_cipher_alg != cipher_rc4_56));
|
|
}
|
|
|
|
cipher = suite_def->bulk_cipher_alg;
|
|
kea = suite_def->key_exchange_alg;
|
|
mac = suite_def->mac_alg;
|
|
if (mac <= ssl_mac_sha && mac != ssl_mac_null && isTLS)
|
|
mac += 2;
|
|
|
|
ss->ssl3.hs.suite_def = suite_def;
|
|
ss->ssl3.hs.kea_def = &kea_defs[kea];
|
|
PORT_Assert(ss->ssl3.hs.kea_def->kea == kea);
|
|
|
|
pwSpec->cipher_def = &bulk_cipher_defs[cipher];
|
|
PORT_Assert(pwSpec->cipher_def->cipher == cipher);
|
|
|
|
pwSpec->mac_def = &mac_defs[mac];
|
|
PORT_Assert(pwSpec->mac_def->mac == mac);
|
|
|
|
ss->sec.keyBits = pwSpec->cipher_def->key_size * BPB;
|
|
ss->sec.secretKeyBits = pwSpec->cipher_def->secret_key_size * BPB;
|
|
ss->sec.cipherType = cipher;
|
|
|
|
pwSpec->encodeContext = NULL;
|
|
pwSpec->decodeContext = NULL;
|
|
|
|
pwSpec->mac_size = pwSpec->mac_def->mac_size;
|
|
|
|
pwSpec->compression_method = ss->ssl3.hs.compression;
|
|
pwSpec->compressContext = NULL;
|
|
pwSpec->decompressContext = NULL;
|
|
|
|
ssl_ReleaseSpecWriteLock(ss); /*******************************/
|
|
return SECSuccess;
|
|
}
|
|
|
|
#ifdef NSS_ENABLE_ZLIB
|
|
#define SSL3_DEFLATE_CONTEXT_SIZE sizeof(z_stream)
|
|
|
|
static SECStatus
|
|
ssl3_MapZlibError(int zlib_error)
|
|
{
|
|
switch (zlib_error) {
|
|
case Z_OK:
|
|
return SECSuccess;
|
|
default:
|
|
return SECFailure;
|
|
}
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_DeflateInit(void *void_context)
|
|
{
|
|
z_stream *context = void_context;
|
|
context->zalloc = NULL;
|
|
context->zfree = NULL;
|
|
context->opaque = NULL;
|
|
|
|
return ssl3_MapZlibError(deflateInit(context, Z_DEFAULT_COMPRESSION));
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_InflateInit(void *void_context)
|
|
{
|
|
z_stream *context = void_context;
|
|
context->zalloc = NULL;
|
|
context->zfree = NULL;
|
|
context->opaque = NULL;
|
|
context->next_in = NULL;
|
|
context->avail_in = 0;
|
|
|
|
return ssl3_MapZlibError(inflateInit(context));
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_DeflateCompress(void *void_context, unsigned char *out, int *out_len,
|
|
int maxout, const unsigned char *in, int inlen)
|
|
{
|
|
z_stream *context = void_context;
|
|
|
|
if (!inlen) {
|
|
*out_len = 0;
|
|
return SECSuccess;
|
|
}
|
|
|
|
context->next_in = (unsigned char*) in;
|
|
context->avail_in = inlen;
|
|
context->next_out = out;
|
|
context->avail_out = maxout;
|
|
if (deflate(context, Z_SYNC_FLUSH) != Z_OK) {
|
|
return SECFailure;
|
|
}
|
|
if (context->avail_out == 0) {
|
|
/* We ran out of space! */
|
|
SSL_TRC(3, ("%d: SSL3[%d] Ran out of buffer while compressing",
|
|
SSL_GETPID()));
|
|
return SECFailure;
|
|
}
|
|
|
|
*out_len = maxout - context->avail_out;
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_DeflateDecompress(void *void_context, unsigned char *out, int *out_len,
|
|
int maxout, const unsigned char *in, int inlen)
|
|
{
|
|
z_stream *context = void_context;
|
|
|
|
if (!inlen) {
|
|
*out_len = 0;
|
|
return SECSuccess;
|
|
}
|
|
|
|
context->next_in = (unsigned char*) in;
|
|
context->avail_in = inlen;
|
|
context->next_out = out;
|
|
context->avail_out = maxout;
|
|
if (inflate(context, Z_SYNC_FLUSH) != Z_OK) {
|
|
PORT_SetError(SSL_ERROR_DECOMPRESSION_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
*out_len = maxout - context->avail_out;
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_DestroyCompressContext(void *void_context, PRBool unused)
|
|
{
|
|
deflateEnd(void_context);
|
|
PORT_Free(void_context);
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_DestroyDecompressContext(void *void_context, PRBool unused)
|
|
{
|
|
inflateEnd(void_context);
|
|
PORT_Free(void_context);
|
|
return SECSuccess;
|
|
}
|
|
|
|
#endif /* NSS_ENABLE_ZLIB */
|
|
|
|
/* Initialize the compression functions and contexts for the given
|
|
* CipherSpec. */
|
|
static SECStatus
|
|
ssl3_InitCompressionContext(ssl3CipherSpec *pwSpec)
|
|
{
|
|
/* Setup the compression functions */
|
|
switch (pwSpec->compression_method) {
|
|
case ssl_compression_null:
|
|
pwSpec->compressor = NULL;
|
|
pwSpec->decompressor = NULL;
|
|
pwSpec->compressContext = NULL;
|
|
pwSpec->decompressContext = NULL;
|
|
pwSpec->destroyCompressContext = NULL;
|
|
pwSpec->destroyDecompressContext = NULL;
|
|
break;
|
|
#ifdef NSS_ENABLE_ZLIB
|
|
case ssl_compression_deflate:
|
|
pwSpec->compressor = ssl3_DeflateCompress;
|
|
pwSpec->decompressor = ssl3_DeflateDecompress;
|
|
pwSpec->compressContext = PORT_Alloc(SSL3_DEFLATE_CONTEXT_SIZE);
|
|
pwSpec->decompressContext = PORT_Alloc(SSL3_DEFLATE_CONTEXT_SIZE);
|
|
pwSpec->destroyCompressContext = ssl3_DestroyCompressContext;
|
|
pwSpec->destroyDecompressContext = ssl3_DestroyDecompressContext;
|
|
ssl3_DeflateInit(pwSpec->compressContext);
|
|
ssl3_InflateInit(pwSpec->decompressContext);
|
|
break;
|
|
#endif /* NSS_ENABLE_ZLIB */
|
|
default:
|
|
PORT_Assert(0);
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
#ifndef NO_PKCS11_BYPASS
|
|
/* Initialize encryption contexts for pending spec.
|
|
* MAC contexts are set up when computing the mac, not here.
|
|
* Master Secret already is derived in spec->msItem
|
|
* Caller holds Spec write lock.
|
|
*/
|
|
static SECStatus
|
|
ssl3_InitPendingContextsBypass(sslSocket *ss)
|
|
{
|
|
ssl3CipherSpec * pwSpec;
|
|
const ssl3BulkCipherDef *cipher_def;
|
|
void * serverContext = NULL;
|
|
void * clientContext = NULL;
|
|
BLapiInitContextFunc initFn = (BLapiInitContextFunc)NULL;
|
|
int mode = 0;
|
|
unsigned int optArg1 = 0;
|
|
unsigned int optArg2 = 0;
|
|
PRBool server_encrypts = ss->sec.isServer;
|
|
SSLCipherAlgorithm calg;
|
|
SECStatus rv;
|
|
|
|
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
PORT_Assert(ss->opt.noLocks || ssl_HaveSpecWriteLock(ss));
|
|
PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec);
|
|
|
|
pwSpec = ss->ssl3.pwSpec;
|
|
cipher_def = pwSpec->cipher_def;
|
|
|
|
calg = cipher_def->calg;
|
|
|
|
if ( cipher_def->type == type_aead ) {
|
|
pwSpec->encode = NULL;
|
|
pwSpec->decode = NULL;
|
|
pwSpec->destroy = NULL;
|
|
pwSpec->encodeContext = NULL;
|
|
pwSpec->decodeContext = NULL;
|
|
pwSpec->aead = ssl3_CipherGCMBypass;
|
|
ssl3_InitCompressionContext(pwSpec);
|
|
return SECSuccess;
|
|
}
|
|
|
|
serverContext = pwSpec->server.cipher_context;
|
|
clientContext = pwSpec->client.cipher_context;
|
|
|
|
switch (calg) {
|
|
case ssl_calg_null:
|
|
pwSpec->encode = Null_Cipher;
|
|
pwSpec->decode = Null_Cipher;
|
|
pwSpec->destroy = NULL;
|
|
goto success;
|
|
|
|
case ssl_calg_rc4:
|
|
initFn = (BLapiInitContextFunc)RC4_InitContext;
|
|
pwSpec->encode = (SSLCipher) RC4_Encrypt;
|
|
pwSpec->decode = (SSLCipher) RC4_Decrypt;
|
|
pwSpec->destroy = (SSLDestroy) RC4_DestroyContext;
|
|
break;
|
|
case ssl_calg_rc2:
|
|
initFn = (BLapiInitContextFunc)RC2_InitContext;
|
|
mode = NSS_RC2_CBC;
|
|
optArg1 = cipher_def->key_size;
|
|
pwSpec->encode = (SSLCipher) RC2_Encrypt;
|
|
pwSpec->decode = (SSLCipher) RC2_Decrypt;
|
|
pwSpec->destroy = (SSLDestroy) RC2_DestroyContext;
|
|
break;
|
|
case ssl_calg_des:
|
|
initFn = (BLapiInitContextFunc)DES_InitContext;
|
|
mode = NSS_DES_CBC;
|
|
optArg1 = server_encrypts;
|
|
pwSpec->encode = (SSLCipher) DES_Encrypt;
|
|
pwSpec->decode = (SSLCipher) DES_Decrypt;
|
|
pwSpec->destroy = (SSLDestroy) DES_DestroyContext;
|
|
break;
|
|
case ssl_calg_3des:
|
|
initFn = (BLapiInitContextFunc)DES_InitContext;
|
|
mode = NSS_DES_EDE3_CBC;
|
|
optArg1 = server_encrypts;
|
|
pwSpec->encode = (SSLCipher) DES_Encrypt;
|
|
pwSpec->decode = (SSLCipher) DES_Decrypt;
|
|
pwSpec->destroy = (SSLDestroy) DES_DestroyContext;
|
|
break;
|
|
case ssl_calg_aes:
|
|
initFn = (BLapiInitContextFunc)AES_InitContext;
|
|
mode = NSS_AES_CBC;
|
|
optArg1 = server_encrypts;
|
|
optArg2 = AES_BLOCK_SIZE;
|
|
pwSpec->encode = (SSLCipher) AES_Encrypt;
|
|
pwSpec->decode = (SSLCipher) AES_Decrypt;
|
|
pwSpec->destroy = (SSLDestroy) AES_DestroyContext;
|
|
break;
|
|
|
|
case ssl_calg_camellia:
|
|
initFn = (BLapiInitContextFunc)Camellia_InitContext;
|
|
mode = NSS_CAMELLIA_CBC;
|
|
optArg1 = server_encrypts;
|
|
optArg2 = CAMELLIA_BLOCK_SIZE;
|
|
pwSpec->encode = (SSLCipher) Camellia_Encrypt;
|
|
pwSpec->decode = (SSLCipher) Camellia_Decrypt;
|
|
pwSpec->destroy = (SSLDestroy) Camellia_DestroyContext;
|
|
break;
|
|
|
|
case ssl_calg_seed:
|
|
initFn = (BLapiInitContextFunc)SEED_InitContext;
|
|
mode = NSS_SEED_CBC;
|
|
optArg1 = server_encrypts;
|
|
optArg2 = SEED_BLOCK_SIZE;
|
|
pwSpec->encode = (SSLCipher) SEED_Encrypt;
|
|
pwSpec->decode = (SSLCipher) SEED_Decrypt;
|
|
pwSpec->destroy = (SSLDestroy) SEED_DestroyContext;
|
|
break;
|
|
|
|
case ssl_calg_idea:
|
|
case ssl_calg_fortezza :
|
|
default:
|
|
PORT_Assert(0);
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
goto bail_out;
|
|
}
|
|
rv = (*initFn)(serverContext,
|
|
pwSpec->server.write_key_item.data,
|
|
pwSpec->server.write_key_item.len,
|
|
pwSpec->server.write_iv_item.data,
|
|
mode, optArg1, optArg2);
|
|
if (rv != SECSuccess) {
|
|
PORT_Assert(0);
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
goto bail_out;
|
|
}
|
|
|
|
switch (calg) {
|
|
case ssl_calg_des:
|
|
case ssl_calg_3des:
|
|
case ssl_calg_aes:
|
|
case ssl_calg_camellia:
|
|
case ssl_calg_seed:
|
|
/* For block ciphers, if the server is encrypting, then the client
|
|
* is decrypting, and vice versa.
|
|
*/
|
|
optArg1 = !optArg1;
|
|
break;
|
|
/* kill warnings. */
|
|
case ssl_calg_null:
|
|
case ssl_calg_rc4:
|
|
case ssl_calg_rc2:
|
|
case ssl_calg_idea:
|
|
case ssl_calg_fortezza:
|
|
case ssl_calg_aes_gcm:
|
|
break;
|
|
}
|
|
|
|
rv = (*initFn)(clientContext,
|
|
pwSpec->client.write_key_item.data,
|
|
pwSpec->client.write_key_item.len,
|
|
pwSpec->client.write_iv_item.data,
|
|
mode, optArg1, optArg2);
|
|
if (rv != SECSuccess) {
|
|
PORT_Assert(0);
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
goto bail_out;
|
|
}
|
|
|
|
pwSpec->encodeContext = (ss->sec.isServer) ? serverContext : clientContext;
|
|
pwSpec->decodeContext = (ss->sec.isServer) ? clientContext : serverContext;
|
|
|
|
ssl3_InitCompressionContext(pwSpec);
|
|
|
|
success:
|
|
return SECSuccess;
|
|
|
|
bail_out:
|
|
return SECFailure;
|
|
}
|
|
#endif
|
|
|
|
/* This function should probably be moved to pk11wrap and be named
|
|
* PK11_ParamFromIVAndEffectiveKeyBits
|
|
*/
|
|
static SECItem *
|
|
ssl3_ParamFromIV(CK_MECHANISM_TYPE mtype, SECItem *iv, CK_ULONG ulEffectiveBits)
|
|
{
|
|
SECItem * param = PK11_ParamFromIV(mtype, iv);
|
|
if (param && param->data && param->len >= sizeof(CK_RC2_PARAMS)) {
|
|
switch (mtype) {
|
|
case CKM_RC2_KEY_GEN:
|
|
case CKM_RC2_ECB:
|
|
case CKM_RC2_CBC:
|
|
case CKM_RC2_MAC:
|
|
case CKM_RC2_MAC_GENERAL:
|
|
case CKM_RC2_CBC_PAD:
|
|
*(CK_RC2_PARAMS *)param->data = ulEffectiveBits;
|
|
default: break;
|
|
}
|
|
}
|
|
return param;
|
|
}
|
|
|
|
/* ssl3_BuildRecordPseudoHeader writes the SSL/TLS pseudo-header (the data
|
|
* which is included in the MAC or AEAD additional data) to |out| and returns
|
|
* its length. See https://tools.ietf.org/html/rfc5246#section-6.2.3.3 for the
|
|
* definition of the AEAD additional data.
|
|
*
|
|
* TLS pseudo-header includes the record's version field, SSL's doesn't. Which
|
|
* pseudo-header defintiion to use should be decided based on the version of
|
|
* the protocol that was negotiated when the cipher spec became current, NOT
|
|
* based on the version value in the record itself, and the decision is passed
|
|
* to this function as the |includesVersion| argument. But, the |version|
|
|
* argument should be the record's version value.
|
|
*/
|
|
static unsigned int
|
|
ssl3_BuildRecordPseudoHeader(unsigned char *out,
|
|
SSL3SequenceNumber seq_num,
|
|
SSL3ContentType type,
|
|
PRBool includesVersion,
|
|
SSL3ProtocolVersion version,
|
|
PRBool isDTLS,
|
|
int length)
|
|
{
|
|
out[0] = (unsigned char)(seq_num.high >> 24);
|
|
out[1] = (unsigned char)(seq_num.high >> 16);
|
|
out[2] = (unsigned char)(seq_num.high >> 8);
|
|
out[3] = (unsigned char)(seq_num.high >> 0);
|
|
out[4] = (unsigned char)(seq_num.low >> 24);
|
|
out[5] = (unsigned char)(seq_num.low >> 16);
|
|
out[6] = (unsigned char)(seq_num.low >> 8);
|
|
out[7] = (unsigned char)(seq_num.low >> 0);
|
|
out[8] = type;
|
|
|
|
/* SSL3 MAC doesn't include the record's version field. */
|
|
if (!includesVersion) {
|
|
out[9] = MSB(length);
|
|
out[10] = LSB(length);
|
|
return 11;
|
|
}
|
|
|
|
/* TLS MAC and AEAD additional data include version. */
|
|
if (isDTLS) {
|
|
SSL3ProtocolVersion dtls_version;
|
|
|
|
dtls_version = dtls_TLSVersionToDTLSVersion(version);
|
|
out[9] = MSB(dtls_version);
|
|
out[10] = LSB(dtls_version);
|
|
} else {
|
|
out[9] = MSB(version);
|
|
out[10] = LSB(version);
|
|
}
|
|
out[11] = MSB(length);
|
|
out[12] = LSB(length);
|
|
return 13;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_CipherGCM(ssl3KeyMaterial *keys,
|
|
PRBool doDecrypt,
|
|
unsigned char *out,
|
|
int *outlen,
|
|
int maxout,
|
|
const unsigned char *in,
|
|
int inlen,
|
|
const unsigned char *additionalData,
|
|
int additionalDataLen,
|
|
SSLCipherAlgorithm calg)
|
|
{
|
|
SECItem param;
|
|
SECStatus rv = SECFailure;
|
|
unsigned char nonce[12];
|
|
unsigned int uOutLen;
|
|
CK_GCM_PARAMS gcmParams;
|
|
CK_MECHANISM_TYPE mechanism;
|
|
|
|
static const int tagSize = 16;
|
|
static const int explicitNonceLen = 8;
|
|
|
|
/* See https://tools.ietf.org/html/rfc5288#section-3 for details of how the
|
|
* nonce is formed. */
|
|
memcpy(nonce, keys->write_iv, 4);
|
|
if (doDecrypt) {
|
|
memcpy(nonce + 4, in, explicitNonceLen);
|
|
in += explicitNonceLen;
|
|
inlen -= explicitNonceLen;
|
|
*outlen = 0;
|
|
} else {
|
|
if (maxout < explicitNonceLen) {
|
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
/* Use the 64-bit sequence number as the explicit nonce. */
|
|
memcpy(nonce + 4, additionalData, explicitNonceLen);
|
|
memcpy(out, additionalData, explicitNonceLen);
|
|
out += explicitNonceLen;
|
|
maxout -= explicitNonceLen;
|
|
*outlen = explicitNonceLen;
|
|
}
|
|
|
|
param.type = siBuffer;
|
|
param.data = (unsigned char *) &gcmParams;
|
|
param.len = sizeof(gcmParams);
|
|
gcmParams.pIv = nonce;
|
|
gcmParams.ulIvLen = sizeof(nonce);
|
|
gcmParams.pAAD = (unsigned char *)additionalData; /* const cast */
|
|
gcmParams.ulAADLen = additionalDataLen;
|
|
gcmParams.ulTagBits = tagSize * 8;
|
|
|
|
switch (calg) {
|
|
case calg_aes_gcm:
|
|
mechanism = CKM_AES_GCM;
|
|
break;
|
|
case calg_camellia_gcm:
|
|
mechanism = CKM_CAMELLIA_GCM;
|
|
break;
|
|
}
|
|
|
|
if (doDecrypt) {
|
|
rv = PK11_Decrypt(keys->write_key, mechanism, ¶m, out, &uOutLen,
|
|
maxout, in, inlen);
|
|
} else {
|
|
rv = PK11_Encrypt(keys->write_key, mechanism, ¶m, out, &uOutLen,
|
|
maxout, in, inlen);
|
|
}
|
|
*outlen += (int) uOutLen;
|
|
|
|
return rv;
|
|
}
|
|
|
|
#ifndef NO_PKCS11_BYPASS
|
|
static SECStatus
|
|
ssl3_CipherGCMBypass(ssl3KeyMaterial *keys,
|
|
PRBool doDecrypt,
|
|
unsigned char *out,
|
|
int *outlen,
|
|
int maxout,
|
|
const unsigned char *in,
|
|
int inlen,
|
|
const unsigned char *additionalData,
|
|
int additionalDataLen,
|
|
SSLCipherAlgorithm calg)
|
|
{
|
|
SECStatus rv = SECFailure;
|
|
unsigned char nonce[12];
|
|
unsigned int uOutLen;
|
|
CK_GCM_PARAMS gcmParams;
|
|
void *cx;
|
|
BLapiInitContextFunc initFn;
|
|
SSLCipher encode, decode;
|
|
SSLDestroy destroy;
|
|
|
|
static const int tagSize = 16;
|
|
static const int explicitNonceLen = 8;
|
|
|
|
/* See https://tools.ietf.org/html/rfc5288#section-3 for details of how the
|
|
* nonce is formed. */
|
|
PORT_Assert(keys->write_iv_item.len == 4);
|
|
if (keys->write_iv_item.len != 4) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
memcpy(nonce, keys->write_iv_item.data, 4);
|
|
if (doDecrypt) {
|
|
memcpy(nonce + 4, in, explicitNonceLen);
|
|
in += explicitNonceLen;
|
|
inlen -= explicitNonceLen;
|
|
*outlen = 0;
|
|
} else {
|
|
if (maxout < explicitNonceLen) {
|
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
/* Use the 64-bit sequence number as the explicit nonce. */
|
|
memcpy(nonce + 4, additionalData, explicitNonceLen);
|
|
memcpy(out, additionalData, explicitNonceLen);
|
|
out += explicitNonceLen;
|
|
maxout -= explicitNonceLen;
|
|
*outlen = explicitNonceLen;
|
|
}
|
|
|
|
gcmParams.pIv = nonce;
|
|
gcmParams.ulIvLen = sizeof(nonce);
|
|
gcmParams.pAAD = (unsigned char *)additionalData; /* const cast */
|
|
gcmParams.ulAADLen = additionalDataLen;
|
|
gcmParams.ulTagBits = tagSize * 8;
|
|
|
|
cx = keys->cipher_context;
|
|
initFn = (BLapiInitContextFunc)NULL;
|
|
encode = (SSLCipher)NULL;
|
|
decode = (SSLCipher)NULL;
|
|
destroy = (SSLDestroy)NULL;
|
|
|
|
switch (calg) {
|
|
case calg_aes_gcm:
|
|
initFn = (BLapiInitContextFunc)AES_InitContext;
|
|
encode = (SSLCipher) AES_Encrypt;
|
|
decode = (SSLCipher) AES_Decrypt;
|
|
destroy = (SSLDestroy) AES_DestroyContext;
|
|
break;
|
|
case calg_camellia_gcm:
|
|
initFn = (BLapiInitContextFunc)Camellia_InitContext;
|
|
encode = (SSLCipher) Camellia_Encrypt;
|
|
decode = (SSLCipher) Camellia_Decrypt;
|
|
destroy = (SSLDestroy) Camellia_DestroyContext;
|
|
break;
|
|
}
|
|
|
|
rv = (*initFn)(cx, keys->write_key_item.data,
|
|
keys->write_key_item.len,
|
|
(unsigned char *)&gcmParams, NSS_AES_GCM, !doDecrypt,
|
|
AES_BLOCK_SIZE);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
if (doDecrypt) {
|
|
rv = (*decode)(cx, out, &uOutLen, maxout, in, inlen);
|
|
} else {
|
|
rv = (*encode)(cx, out, &uOutLen, maxout, in, inlen);
|
|
}
|
|
(*destroy)(cx, PR_FALSE);
|
|
*outlen += (int) uOutLen;
|
|
|
|
return rv;
|
|
}
|
|
#endif
|
|
|
|
/* Initialize encryption and MAC contexts for pending spec.
|
|
* Master Secret already is derived.
|
|
* Caller holds Spec write lock.
|
|
*/
|
|
static SECStatus
|
|
ssl3_InitPendingContextsPKCS11(sslSocket *ss)
|
|
{
|
|
ssl3CipherSpec * pwSpec;
|
|
const ssl3BulkCipherDef *cipher_def;
|
|
PK11Context * serverContext = NULL;
|
|
PK11Context * clientContext = NULL;
|
|
SECItem * param;
|
|
CK_MECHANISM_TYPE mechanism;
|
|
CK_MECHANISM_TYPE mac_mech;
|
|
CK_ULONG macLength;
|
|
CK_ULONG effKeyBits;
|
|
SECItem iv;
|
|
SECItem mac_param;
|
|
SSLCipherAlgorithm calg;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSpecWriteLock(ss));
|
|
PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec);
|
|
|
|
pwSpec = ss->ssl3.pwSpec;
|
|
cipher_def = pwSpec->cipher_def;
|
|
macLength = pwSpec->mac_size;
|
|
calg = cipher_def->calg;
|
|
PORT_Assert(alg2Mech[calg].calg == calg);
|
|
|
|
pwSpec->client.write_mac_context = NULL;
|
|
pwSpec->server.write_mac_context = NULL;
|
|
|
|
if (cipher_def->type == type_aead) {
|
|
pwSpec->encode = NULL;
|
|
pwSpec->decode = NULL;
|
|
pwSpec->destroy = NULL;
|
|
pwSpec->encodeContext = NULL;
|
|
pwSpec->decodeContext = NULL;
|
|
pwSpec->aead = ssl3_CipherGCM;
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
** Now setup the MAC contexts,
|
|
** crypto contexts are setup below.
|
|
*/
|
|
|
|
mac_mech = pwSpec->mac_def->mmech;
|
|
mac_param.data = (unsigned char *)&macLength;
|
|
mac_param.len = sizeof(macLength);
|
|
mac_param.type = 0;
|
|
|
|
pwSpec->client.write_mac_context = PK11_CreateContextBySymKey(
|
|
mac_mech, CKA_SIGN, pwSpec->client.write_mac_key, &mac_param);
|
|
if (pwSpec->client.write_mac_context == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE);
|
|
goto fail;
|
|
}
|
|
pwSpec->server.write_mac_context = PK11_CreateContextBySymKey(
|
|
mac_mech, CKA_SIGN, pwSpec->server.write_mac_key, &mac_param);
|
|
if (pwSpec->server.write_mac_context == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
** Now setup the crypto contexts.
|
|
*/
|
|
|
|
if (calg == calg_null) {
|
|
pwSpec->encode = Null_Cipher;
|
|
pwSpec->decode = Null_Cipher;
|
|
pwSpec->destroy = NULL;
|
|
return SECSuccess;
|
|
}
|
|
mechanism = alg2Mech[calg].cmech;
|
|
effKeyBits = cipher_def->key_size * BPB;
|
|
|
|
/*
|
|
* build the server context
|
|
*/
|
|
iv.data = pwSpec->server.write_iv;
|
|
iv.len = cipher_def->iv_size;
|
|
param = ssl3_ParamFromIV(mechanism, &iv, effKeyBits);
|
|
if (param == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_IV_PARAM_FAILURE);
|
|
goto fail;
|
|
}
|
|
serverContext = PK11_CreateContextBySymKey(mechanism,
|
|
(ss->sec.isServer ? CKA_ENCRYPT : CKA_DECRYPT),
|
|
pwSpec->server.write_key, param);
|
|
iv.data = PK11_IVFromParam(mechanism, param, (int *)&iv.len);
|
|
if (iv.data)
|
|
PORT_Memcpy(pwSpec->server.write_iv, iv.data, iv.len);
|
|
SECITEM_FreeItem(param, PR_TRUE);
|
|
if (serverContext == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* build the client context
|
|
*/
|
|
iv.data = pwSpec->client.write_iv;
|
|
iv.len = cipher_def->iv_size;
|
|
|
|
param = ssl3_ParamFromIV(mechanism, &iv, effKeyBits);
|
|
if (param == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_IV_PARAM_FAILURE);
|
|
goto fail;
|
|
}
|
|
clientContext = PK11_CreateContextBySymKey(mechanism,
|
|
(ss->sec.isServer ? CKA_DECRYPT : CKA_ENCRYPT),
|
|
pwSpec->client.write_key, param);
|
|
iv.data = PK11_IVFromParam(mechanism, param, (int *)&iv.len);
|
|
if (iv.data)
|
|
PORT_Memcpy(pwSpec->client.write_iv, iv.data, iv.len);
|
|
SECITEM_FreeItem(param,PR_TRUE);
|
|
if (clientContext == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE);
|
|
goto fail;
|
|
}
|
|
pwSpec->encode = (SSLCipher) PK11_CipherOp;
|
|
pwSpec->decode = (SSLCipher) PK11_CipherOp;
|
|
pwSpec->destroy = (SSLDestroy) PK11_DestroyContext;
|
|
|
|
pwSpec->encodeContext = (ss->sec.isServer) ? serverContext : clientContext;
|
|
pwSpec->decodeContext = (ss->sec.isServer) ? clientContext : serverContext;
|
|
|
|
serverContext = NULL;
|
|
clientContext = NULL;
|
|
|
|
ssl3_InitCompressionContext(pwSpec);
|
|
|
|
return SECSuccess;
|
|
|
|
fail:
|
|
if (serverContext != NULL) PK11_DestroyContext(serverContext, PR_TRUE);
|
|
if (clientContext != NULL) PK11_DestroyContext(clientContext, PR_TRUE);
|
|
if (pwSpec->client.write_mac_context != NULL) {
|
|
PK11_DestroyContext(pwSpec->client.write_mac_context,PR_TRUE);
|
|
pwSpec->client.write_mac_context = NULL;
|
|
}
|
|
if (pwSpec->server.write_mac_context != NULL) {
|
|
PK11_DestroyContext(pwSpec->server.write_mac_context,PR_TRUE);
|
|
pwSpec->server.write_mac_context = NULL;
|
|
}
|
|
|
|
return SECFailure;
|
|
}
|
|
|
|
/* Complete the initialization of all keys, ciphers, MACs and their contexts
|
|
* for the pending Cipher Spec.
|
|
* Called from: ssl3_SendClientKeyExchange (for Full handshake)
|
|
* ssl3_HandleRSAClientKeyExchange (for Full handshake)
|
|
* ssl3_HandleServerHello (for session restart)
|
|
* ssl3_HandleClientHello (for session restart)
|
|
* Sets error code, but caller probably should override to disambiguate.
|
|
* NULL pms means re-use old master_secret.
|
|
*
|
|
* This code is common to the bypass and PKCS11 execution paths. For
|
|
* the bypass case, pms is NULL. If the old master secret is reused,
|
|
* pms is NULL and the master secret is already in either
|
|
* pwSpec->msItem.len (the bypass case) or pwSpec->master_secret.
|
|
*
|
|
* For the bypass case, pms is NULL.
|
|
*/
|
|
SECStatus
|
|
ssl3_InitPendingCipherSpec(sslSocket *ss, PK11SymKey *pms)
|
|
{
|
|
ssl3CipherSpec * pwSpec;
|
|
ssl3CipherSpec * cwSpec;
|
|
SECStatus rv;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
ssl_GetSpecWriteLock(ss); /**************************************/
|
|
|
|
PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec);
|
|
|
|
pwSpec = ss->ssl3.pwSpec;
|
|
cwSpec = ss->ssl3.cwSpec;
|
|
|
|
if (pms || (!pwSpec->msItem.len && !pwSpec->master_secret)) {
|
|
rv = ssl3_DeriveMasterSecret(ss, pms);
|
|
if (rv != SECSuccess) {
|
|
goto done; /* err code set by ssl3_DeriveMasterSecret */
|
|
}
|
|
}
|
|
#ifndef NO_PKCS11_BYPASS
|
|
if (ss->opt.bypassPKCS11 && pwSpec->msItem.len && pwSpec->msItem.data) {
|
|
/* Double Bypass succeeded in extracting the master_secret */
|
|
const ssl3KEADef * kea_def = ss->ssl3.hs.kea_def;
|
|
PRBool isTLS = (PRBool)(kea_def->tls_keygen ||
|
|
(pwSpec->version > SSL_LIBRARY_VERSION_3_0));
|
|
pwSpec->bypassCiphers = PR_TRUE;
|
|
rv = ssl3_KeyAndMacDeriveBypass( pwSpec,
|
|
(const unsigned char *)&ss->ssl3.hs.client_random,
|
|
(const unsigned char *)&ss->ssl3.hs.server_random,
|
|
isTLS,
|
|
(PRBool)(kea_def->is_limited));
|
|
if (rv == SECSuccess) {
|
|
rv = ssl3_InitPendingContextsBypass(ss);
|
|
}
|
|
} else
|
|
#endif
|
|
if (pwSpec->master_secret) {
|
|
rv = ssl3_DeriveConnectionKeysPKCS11(ss);
|
|
if (rv == SECSuccess) {
|
|
rv = ssl3_InitPendingContextsPKCS11(ss);
|
|
}
|
|
} else {
|
|
PORT_Assert(pwSpec->master_secret);
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
rv = SECFailure;
|
|
}
|
|
if (rv != SECSuccess) {
|
|
goto done;
|
|
}
|
|
|
|
/* Generic behaviors -- common to all crypto methods */
|
|
if (!IS_DTLS(ss)) {
|
|
pwSpec->read_seq_num.high = pwSpec->write_seq_num.high = 0;
|
|
} else {
|
|
if (cwSpec->epoch == PR_UINT16_MAX) {
|
|
/* The problem here is that we have rehandshaked too many
|
|
* times (you are not allowed to wrap the epoch). The
|
|
* spec says you should be discarding the connection
|
|
* and start over, so not much we can do here. */
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
rv = SECFailure;
|
|
goto done;
|
|
}
|
|
/* The sequence number has the high 16 bits as the epoch. */
|
|
pwSpec->epoch = cwSpec->epoch + 1;
|
|
pwSpec->read_seq_num.high = pwSpec->write_seq_num.high =
|
|
pwSpec->epoch << 16;
|
|
|
|
dtls_InitRecvdRecords(&pwSpec->recvdRecords);
|
|
}
|
|
pwSpec->read_seq_num.low = pwSpec->write_seq_num.low = 0;
|
|
|
|
done:
|
|
ssl_ReleaseSpecWriteLock(ss); /******************************/
|
|
if (rv != SECSuccess)
|
|
ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* 60 bytes is 3 times the maximum length MAC size that is supported.
|
|
*/
|
|
static const unsigned char mac_pad_1 [60] = {
|
|
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
|
|
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
|
|
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
|
|
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
|
|
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
|
|
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
|
|
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
|
|
0x36, 0x36, 0x36, 0x36
|
|
};
|
|
static const unsigned char mac_pad_2 [60] = {
|
|
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
|
|
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
|
|
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
|
|
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
|
|
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
|
|
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
|
|
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
|
|
0x5c, 0x5c, 0x5c, 0x5c
|
|
};
|
|
|
|
/* Called from: ssl3_SendRecord()
|
|
** Caller must already hold the SpecReadLock. (wish we could assert that!)
|
|
*/
|
|
static SECStatus
|
|
ssl3_ComputeRecordMAC(
|
|
ssl3CipherSpec * spec,
|
|
PRBool useServerMacKey,
|
|
const unsigned char *header,
|
|
unsigned int headerLen,
|
|
const SSL3Opaque * input,
|
|
int inputLength,
|
|
unsigned char * outbuf,
|
|
unsigned int * outLength)
|
|
{
|
|
const ssl3MACDef * mac_def;
|
|
SECStatus rv;
|
|
|
|
PRINT_BUF(95, (NULL, "frag hash1: header", header, headerLen));
|
|
PRINT_BUF(95, (NULL, "frag hash1: input", input, inputLength));
|
|
|
|
mac_def = spec->mac_def;
|
|
if (mac_def->mac == mac_null) {
|
|
*outLength = 0;
|
|
return SECSuccess;
|
|
}
|
|
#ifndef NO_PKCS11_BYPASS
|
|
if (spec->bypassCiphers) {
|
|
/* bypass version */
|
|
const SECHashObject *hashObj = NULL;
|
|
unsigned int pad_bytes = 0;
|
|
PRUint64 write_mac_context[MAX_MAC_CONTEXT_LLONGS];
|
|
|
|
switch (mac_def->mac) {
|
|
case ssl_mac_null:
|
|
*outLength = 0;
|
|
return SECSuccess;
|
|
case ssl_mac_md5:
|
|
pad_bytes = 48;
|
|
hashObj = HASH_GetRawHashObject(HASH_AlgMD5);
|
|
break;
|
|
case ssl_mac_sha:
|
|
pad_bytes = 40;
|
|
hashObj = HASH_GetRawHashObject(HASH_AlgSHA1);
|
|
break;
|
|
case ssl_hmac_md5: /* used with TLS */
|
|
hashObj = HASH_GetRawHashObject(HASH_AlgMD5);
|
|
break;
|
|
case ssl_hmac_sha: /* used with TLS */
|
|
hashObj = HASH_GetRawHashObject(HASH_AlgSHA1);
|
|
break;
|
|
case ssl_hmac_sha256: /* used with TLS */
|
|
hashObj = HASH_GetRawHashObject(HASH_AlgSHA256);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (!hashObj) {
|
|
PORT_Assert(0);
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (spec->version <= SSL_LIBRARY_VERSION_3_0) {
|
|
unsigned int tempLen;
|
|
unsigned char temp[MAX_MAC_LENGTH];
|
|
|
|
/* compute "inner" part of SSL3 MAC */
|
|
hashObj->begin(write_mac_context);
|
|
if (useServerMacKey)
|
|
hashObj->update(write_mac_context,
|
|
spec->server.write_mac_key_item.data,
|
|
spec->server.write_mac_key_item.len);
|
|
else
|
|
hashObj->update(write_mac_context,
|
|
spec->client.write_mac_key_item.data,
|
|
spec->client.write_mac_key_item.len);
|
|
hashObj->update(write_mac_context, mac_pad_1, pad_bytes);
|
|
hashObj->update(write_mac_context, header, headerLen);
|
|
hashObj->update(write_mac_context, input, inputLength);
|
|
hashObj->end(write_mac_context, temp, &tempLen, sizeof temp);
|
|
|
|
/* compute "outer" part of SSL3 MAC */
|
|
hashObj->begin(write_mac_context);
|
|
if (useServerMacKey)
|
|
hashObj->update(write_mac_context,
|
|
spec->server.write_mac_key_item.data,
|
|
spec->server.write_mac_key_item.len);
|
|
else
|
|
hashObj->update(write_mac_context,
|
|
spec->client.write_mac_key_item.data,
|
|
spec->client.write_mac_key_item.len);
|
|
hashObj->update(write_mac_context, mac_pad_2, pad_bytes);
|
|
hashObj->update(write_mac_context, temp, tempLen);
|
|
hashObj->end(write_mac_context, outbuf, outLength, spec->mac_size);
|
|
rv = SECSuccess;
|
|
} else { /* is TLS */
|
|
#define cx ((HMACContext *)write_mac_context)
|
|
if (useServerMacKey) {
|
|
rv = HMAC_Init(cx, hashObj,
|
|
spec->server.write_mac_key_item.data,
|
|
spec->server.write_mac_key_item.len, PR_FALSE);
|
|
} else {
|
|
rv = HMAC_Init(cx, hashObj,
|
|
spec->client.write_mac_key_item.data,
|
|
spec->client.write_mac_key_item.len, PR_FALSE);
|
|
}
|
|
if (rv == SECSuccess) {
|
|
HMAC_Begin(cx);
|
|
HMAC_Update(cx, header, headerLen);
|
|
HMAC_Update(cx, input, inputLength);
|
|
rv = HMAC_Finish(cx, outbuf, outLength, spec->mac_size);
|
|
HMAC_Destroy(cx, PR_FALSE);
|
|
}
|
|
#undef cx
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
PK11Context *mac_context =
|
|
(useServerMacKey ? spec->server.write_mac_context
|
|
: spec->client.write_mac_context);
|
|
rv = PK11_DigestBegin(mac_context);
|
|
rv |= PK11_DigestOp(mac_context, header, headerLen);
|
|
rv |= PK11_DigestOp(mac_context, input, inputLength);
|
|
rv |= PK11_DigestFinal(mac_context, outbuf, outLength, spec->mac_size);
|
|
}
|
|
|
|
PORT_Assert(rv != SECSuccess || *outLength == (unsigned)spec->mac_size);
|
|
|
|
PRINT_BUF(95, (NULL, "frag hash2: result", outbuf, *outLength));
|
|
|
|
if (rv != SECSuccess) {
|
|
rv = SECFailure;
|
|
ssl_MapLowLevelError(SSL_ERROR_MAC_COMPUTATION_FAILURE);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* Called from: ssl3_HandleRecord()
|
|
* Caller must already hold the SpecReadLock. (wish we could assert that!)
|
|
*
|
|
* On entry:
|
|
* originalLen >= inputLen >= MAC size
|
|
*/
|
|
static SECStatus
|
|
ssl3_ComputeRecordMACConstantTime(
|
|
ssl3CipherSpec * spec,
|
|
PRBool useServerMacKey,
|
|
const unsigned char *header,
|
|
unsigned int headerLen,
|
|
const SSL3Opaque * input,
|
|
int inputLen,
|
|
int originalLen,
|
|
unsigned char * outbuf,
|
|
unsigned int * outLen)
|
|
{
|
|
CK_MECHANISM_TYPE macType;
|
|
CK_NSS_MAC_CONSTANT_TIME_PARAMS params;
|
|
SECItem param, inputItem, outputItem;
|
|
SECStatus rv;
|
|
PK11SymKey * key;
|
|
|
|
PORT_Assert(inputLen >= spec->mac_size);
|
|
PORT_Assert(originalLen >= inputLen);
|
|
|
|
if (spec->bypassCiphers) {
|
|
/* This function doesn't support PKCS#11 bypass. We fallback on the
|
|
* non-constant time version. */
|
|
goto fallback;
|
|
}
|
|
|
|
if (spec->mac_def->mac == mac_null) {
|
|
*outLen = 0;
|
|
return SECSuccess;
|
|
}
|
|
|
|
macType = CKM_NSS_HMAC_CONSTANT_TIME;
|
|
if (spec->version <= SSL_LIBRARY_VERSION_3_0) {
|
|
macType = CKM_NSS_SSL3_MAC_CONSTANT_TIME;
|
|
}
|
|
|
|
params.macAlg = spec->mac_def->mmech;
|
|
params.ulBodyTotalLen = originalLen;
|
|
params.pHeader = (unsigned char *) header; /* const cast */
|
|
params.ulHeaderLen = headerLen;
|
|
|
|
param.data = (unsigned char*) ¶ms;
|
|
param.len = sizeof(params);
|
|
param.type = 0;
|
|
|
|
inputItem.data = (unsigned char *) input;
|
|
inputItem.len = inputLen;
|
|
inputItem.type = 0;
|
|
|
|
outputItem.data = outbuf;
|
|
outputItem.len = *outLen;
|
|
outputItem.type = 0;
|
|
|
|
key = spec->server.write_mac_key;
|
|
if (!useServerMacKey) {
|
|
key = spec->client.write_mac_key;
|
|
}
|
|
|
|
rv = PK11_SignWithSymKey(key, macType, ¶m, &outputItem, &inputItem);
|
|
if (rv != SECSuccess) {
|
|
if (PORT_GetError() == SEC_ERROR_INVALID_ALGORITHM) {
|
|
goto fallback;
|
|
}
|
|
|
|
*outLen = 0;
|
|
rv = SECFailure;
|
|
ssl_MapLowLevelError(SSL_ERROR_MAC_COMPUTATION_FAILURE);
|
|
return rv;
|
|
}
|
|
|
|
PORT_Assert(outputItem.len == (unsigned)spec->mac_size);
|
|
*outLen = outputItem.len;
|
|
|
|
return rv;
|
|
|
|
fallback:
|
|
/* ssl3_ComputeRecordMAC expects the MAC to have been removed from the
|
|
* length already. */
|
|
inputLen -= spec->mac_size;
|
|
return ssl3_ComputeRecordMAC(spec, useServerMacKey, header, headerLen,
|
|
input, inputLen, outbuf, outLen);
|
|
}
|
|
|
|
static PRBool
|
|
ssl3_ClientAuthTokenPresent(sslSessionID *sid) {
|
|
PK11SlotInfo *slot = NULL;
|
|
PRBool isPresent = PR_TRUE;
|
|
|
|
/* we only care if we are doing client auth */
|
|
if (!sid || !sid->u.ssl3.clAuthValid) {
|
|
return PR_TRUE;
|
|
}
|
|
|
|
/* get the slot */
|
|
slot = SECMOD_LookupSlot(sid->u.ssl3.clAuthModuleID,
|
|
sid->u.ssl3.clAuthSlotID);
|
|
if (slot == NULL ||
|
|
!PK11_IsPresent(slot) ||
|
|
sid->u.ssl3.clAuthSeries != PK11_GetSlotSeries(slot) ||
|
|
sid->u.ssl3.clAuthSlotID != PK11_GetSlotID(slot) ||
|
|
sid->u.ssl3.clAuthModuleID != PK11_GetModuleID(slot) ||
|
|
(PK11_NeedLogin(slot) && !PK11_IsLoggedIn(slot, NULL))) {
|
|
isPresent = PR_FALSE;
|
|
}
|
|
if (slot) {
|
|
PK11_FreeSlot(slot);
|
|
}
|
|
return isPresent;
|
|
}
|
|
|
|
/* Caller must hold the spec read lock. */
|
|
SECStatus
|
|
ssl3_CompressMACEncryptRecord(ssl3CipherSpec * cwSpec,
|
|
PRBool isServer,
|
|
PRBool isDTLS,
|
|
PRBool capRecordVersion,
|
|
SSL3ContentType type,
|
|
const SSL3Opaque * pIn,
|
|
PRUint32 contentLen,
|
|
sslBuffer * wrBuf)
|
|
{
|
|
const ssl3BulkCipherDef * cipher_def;
|
|
SECStatus rv;
|
|
PRUint32 macLen = 0;
|
|
PRUint32 fragLen;
|
|
PRUint32 p1Len, p2Len, oddLen = 0;
|
|
PRUint16 headerLen;
|
|
unsigned int ivLen = 0;
|
|
int cipherBytes = 0;
|
|
unsigned char pseudoHeader[13];
|
|
unsigned int pseudoHeaderLen;
|
|
|
|
cipher_def = cwSpec->cipher_def;
|
|
headerLen = isDTLS ? DTLS_RECORD_HEADER_LENGTH : SSL3_RECORD_HEADER_LENGTH;
|
|
|
|
if (cipher_def->type == type_block &&
|
|
cwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_1) {
|
|
/* Prepend the per-record explicit IV using technique 2b from
|
|
* RFC 4346 section 6.2.3.2: The IV is a cryptographically
|
|
* strong random number XORed with the CBC residue from the previous
|
|
* record.
|
|
*/
|
|
ivLen = cipher_def->iv_size;
|
|
if (ivLen > wrBuf->space - headerLen) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
rv = PK11_GenerateRandom(wrBuf->buf + headerLen, ivLen);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_GENERATE_RANDOM_FAILURE);
|
|
return rv;
|
|
}
|
|
rv = cwSpec->encode( cwSpec->encodeContext,
|
|
wrBuf->buf + headerLen,
|
|
&cipherBytes, /* output and actual outLen */
|
|
ivLen, /* max outlen */
|
|
wrBuf->buf + headerLen,
|
|
ivLen); /* input and inputLen*/
|
|
if (rv != SECSuccess || cipherBytes != ivLen) {
|
|
PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
|
|
if (cwSpec->compressor) {
|
|
int outlen;
|
|
rv = cwSpec->compressor(
|
|
cwSpec->compressContext,
|
|
wrBuf->buf + headerLen + ivLen, &outlen,
|
|
wrBuf->space - headerLen - ivLen, pIn, contentLen);
|
|
if (rv != SECSuccess)
|
|
return rv;
|
|
pIn = wrBuf->buf + headerLen + ivLen;
|
|
contentLen = outlen;
|
|
}
|
|
|
|
pseudoHeaderLen = ssl3_BuildRecordPseudoHeader(
|
|
pseudoHeader, cwSpec->write_seq_num, type,
|
|
cwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_0, cwSpec->version,
|
|
isDTLS, contentLen);
|
|
PORT_Assert(pseudoHeaderLen <= sizeof(pseudoHeader));
|
|
if (cipher_def->type == type_aead) {
|
|
const int nonceLen = cipher_def->explicit_nonce_size;
|
|
const int tagLen = cipher_def->tag_size;
|
|
|
|
if (headerLen + nonceLen + contentLen + tagLen > wrBuf->space) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
cipherBytes = contentLen;
|
|
rv = cwSpec->aead(
|
|
isServer ? &cwSpec->server : &cwSpec->client,
|
|
PR_FALSE, /* do encrypt */
|
|
wrBuf->buf + headerLen, /* output */
|
|
&cipherBytes, /* out len */
|
|
wrBuf->space - headerLen, /* max out */
|
|
pIn, contentLen, /* input */
|
|
pseudoHeader, pseudoHeaderLen, cipher_def->calg);
|
|
if (rv != SECSuccess) {
|
|
PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
} else {
|
|
/*
|
|
* Add the MAC
|
|
*/
|
|
rv = ssl3_ComputeRecordMAC(cwSpec, isServer,
|
|
pseudoHeader, pseudoHeaderLen, pIn, contentLen,
|
|
wrBuf->buf + headerLen + ivLen + contentLen, &macLen);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_MAC_COMPUTATION_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
p1Len = contentLen;
|
|
p2Len = macLen;
|
|
fragLen = contentLen + macLen; /* needs to be encrypted */
|
|
PORT_Assert(fragLen <= MAX_FRAGMENT_LENGTH + 1024);
|
|
|
|
/*
|
|
* Pad the text (if we're doing a block cipher)
|
|
* then Encrypt it
|
|
*/
|
|
if (cipher_def->type == type_block) {
|
|
unsigned char * pBuf;
|
|
int padding_length;
|
|
int i;
|
|
|
|
oddLen = contentLen % cipher_def->block_size;
|
|
/* Assume blockSize is a power of two */
|
|
padding_length = cipher_def->block_size - 1 -
|
|
((fragLen) & (cipher_def->block_size - 1));
|
|
fragLen += padding_length + 1;
|
|
PORT_Assert((fragLen % cipher_def->block_size) == 0);
|
|
|
|
/* Pad according to TLS rules (also acceptable to SSL3). */
|
|
pBuf = &wrBuf->buf[headerLen + ivLen + fragLen - 1];
|
|
for (i = padding_length + 1; i > 0; --i) {
|
|
*pBuf-- = padding_length;
|
|
}
|
|
/* now, if contentLen is not a multiple of block size, fix it */
|
|
p2Len = fragLen - p1Len;
|
|
}
|
|
if (p1Len < 256) {
|
|
oddLen = p1Len;
|
|
p1Len = 0;
|
|
} else {
|
|
p1Len -= oddLen;
|
|
}
|
|
if (oddLen) {
|
|
p2Len += oddLen;
|
|
PORT_Assert( (cipher_def->block_size < 2) || \
|
|
(p2Len % cipher_def->block_size) == 0);
|
|
memmove(wrBuf->buf + headerLen + ivLen + p1Len, pIn + p1Len,
|
|
oddLen);
|
|
}
|
|
if (p1Len > 0) {
|
|
int cipherBytesPart1 = -1;
|
|
rv = cwSpec->encode( cwSpec->encodeContext,
|
|
wrBuf->buf + headerLen + ivLen, /* output */
|
|
&cipherBytesPart1, /* actual outlen */
|
|
p1Len, /* max outlen */
|
|
pIn, p1Len); /* input, and inputlen */
|
|
PORT_Assert(rv == SECSuccess && cipherBytesPart1 == (int) p1Len);
|
|
if (rv != SECSuccess || cipherBytesPart1 != (int) p1Len) {
|
|
PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
cipherBytes += cipherBytesPart1;
|
|
}
|
|
if (p2Len > 0) {
|
|
int cipherBytesPart2 = -1;
|
|
rv = cwSpec->encode( cwSpec->encodeContext,
|
|
wrBuf->buf + headerLen + ivLen + p1Len,
|
|
&cipherBytesPart2, /* output and actual outLen */
|
|
p2Len, /* max outlen */
|
|
wrBuf->buf + headerLen + ivLen + p1Len,
|
|
p2Len); /* input and inputLen*/
|
|
PORT_Assert(rv == SECSuccess && cipherBytesPart2 == (int) p2Len);
|
|
if (rv != SECSuccess || cipherBytesPart2 != (int) p2Len) {
|
|
PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
cipherBytes += cipherBytesPart2;
|
|
}
|
|
}
|
|
|
|
PORT_Assert(cipherBytes <= MAX_FRAGMENT_LENGTH + 1024);
|
|
|
|
wrBuf->len = cipherBytes + headerLen;
|
|
wrBuf->buf[0] = type;
|
|
if (isDTLS) {
|
|
SSL3ProtocolVersion version;
|
|
|
|
version = dtls_TLSVersionToDTLSVersion(cwSpec->version);
|
|
wrBuf->buf[1] = MSB(version);
|
|
wrBuf->buf[2] = LSB(version);
|
|
wrBuf->buf[3] = (unsigned char)(cwSpec->write_seq_num.high >> 24);
|
|
wrBuf->buf[4] = (unsigned char)(cwSpec->write_seq_num.high >> 16);
|
|
wrBuf->buf[5] = (unsigned char)(cwSpec->write_seq_num.high >> 8);
|
|
wrBuf->buf[6] = (unsigned char)(cwSpec->write_seq_num.high >> 0);
|
|
wrBuf->buf[7] = (unsigned char)(cwSpec->write_seq_num.low >> 24);
|
|
wrBuf->buf[8] = (unsigned char)(cwSpec->write_seq_num.low >> 16);
|
|
wrBuf->buf[9] = (unsigned char)(cwSpec->write_seq_num.low >> 8);
|
|
wrBuf->buf[10] = (unsigned char)(cwSpec->write_seq_num.low >> 0);
|
|
wrBuf->buf[11] = MSB(cipherBytes);
|
|
wrBuf->buf[12] = LSB(cipherBytes);
|
|
} else {
|
|
SSL3ProtocolVersion version = cwSpec->version;
|
|
|
|
if (capRecordVersion) {
|
|
version = PR_MIN(SSL_LIBRARY_VERSION_TLS_1_0, version);
|
|
}
|
|
wrBuf->buf[1] = MSB(version);
|
|
wrBuf->buf[2] = LSB(version);
|
|
wrBuf->buf[3] = MSB(cipherBytes);
|
|
wrBuf->buf[4] = LSB(cipherBytes);
|
|
}
|
|
|
|
ssl3_BumpSequenceNumber(&cwSpec->write_seq_num);
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* Process the plain text before sending it.
|
|
* Returns the number of bytes of plaintext that were successfully sent
|
|
* plus the number of bytes of plaintext that were copied into the
|
|
* output (write) buffer.
|
|
* Returns SECFailure on a hard IO error, memory error, or crypto error.
|
|
* Does NOT return SECWouldBlock.
|
|
*
|
|
* Notes on the use of the private ssl flags:
|
|
* (no private SSL flags)
|
|
* Attempt to make and send SSL records for all plaintext
|
|
* If non-blocking and a send gets WOULD_BLOCK,
|
|
* or if the pending (ciphertext) buffer is not empty,
|
|
* then buffer remaining bytes of ciphertext into pending buf,
|
|
* and continue to do that for all succssive records until all
|
|
* bytes are used.
|
|
* ssl_SEND_FLAG_FORCE_INTO_BUFFER
|
|
* As above, except this suppresses all write attempts, and forces
|
|
* all ciphertext into the pending ciphertext buffer.
|
|
* ssl_SEND_FLAG_USE_EPOCH (for DTLS)
|
|
* Forces the use of the provided epoch
|
|
* ssl_SEND_FLAG_CAP_RECORD_VERSION
|
|
* Caps the record layer version number of TLS ClientHello to { 3, 1 }
|
|
* (TLS 1.0). Some TLS 1.0 servers (which seem to use F5 BIG-IP) ignore
|
|
* ClientHello.client_version and use the record layer version number
|
|
* (TLSPlaintext.version) instead when negotiating protocol versions. In
|
|
* addition, if the record layer version number of ClientHello is { 3, 2 }
|
|
* (TLS 1.1) or higher, these servers reset the TCP connections. Lastly,
|
|
* some F5 BIG-IP servers hang if a record containing a ClientHello has a
|
|
* version greater than { 3, 1 } and a length greater than 255. Set this
|
|
* flag to work around such servers.
|
|
*/
|
|
PRInt32
|
|
ssl3_SendRecord( sslSocket * ss,
|
|
DTLSEpoch epoch, /* DTLS only */
|
|
SSL3ContentType type,
|
|
const SSL3Opaque * pIn, /* input buffer */
|
|
PRInt32 nIn, /* bytes of input */
|
|
PRInt32 flags)
|
|
{
|
|
sslBuffer * wrBuf = &ss->sec.writeBuf;
|
|
SECStatus rv;
|
|
PRInt32 totalSent = 0;
|
|
PRBool capRecordVersion;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d] SendRecord type: %s nIn=%d",
|
|
SSL_GETPID(), ss->fd, ssl3_DecodeContentType(type),
|
|
nIn));
|
|
PRINT_BUF(50, (ss, "Send record (plain text)", pIn, nIn));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) );
|
|
|
|
if (ss->ssl3.fatalAlertSent) {
|
|
SSL_TRC(3, ("%d: SSL3[%d] Suppress write, fatal alert already sent",
|
|
SSL_GETPID(), ss->fd));
|
|
return SECFailure;
|
|
}
|
|
|
|
capRecordVersion = ((flags & ssl_SEND_FLAG_CAP_RECORD_VERSION) != 0);
|
|
|
|
if (capRecordVersion) {
|
|
/* ssl_SEND_FLAG_CAP_RECORD_VERSION can only be used with the
|
|
* TLS initial ClientHello. */
|
|
PORT_Assert(!IS_DTLS(ss));
|
|
PORT_Assert(!ss->firstHsDone);
|
|
PORT_Assert(type == content_handshake);
|
|
PORT_Assert(ss->ssl3.hs.ws == wait_server_hello);
|
|
}
|
|
|
|
if (ss->ssl3.initialized == PR_FALSE) {
|
|
/* This can happen on a server if the very first incoming record
|
|
** looks like a defective ssl3 record (e.g. too long), and we're
|
|
** trying to send an alert.
|
|
*/
|
|
PR_ASSERT(type == content_alert);
|
|
rv = ssl3_InitState(ss);
|
|
if (rv != SECSuccess) {
|
|
return SECFailure; /* ssl3_InitState has set the error code. */
|
|
}
|
|
}
|
|
|
|
/* check for Token Presence */
|
|
if (!ssl3_ClientAuthTokenPresent(ss->sec.ci.sid)) {
|
|
PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL);
|
|
return SECFailure;
|
|
}
|
|
|
|
while (nIn > 0) {
|
|
PRUint32 contentLen = PR_MIN(nIn, MAX_FRAGMENT_LENGTH);
|
|
unsigned int spaceNeeded;
|
|
unsigned int numRecords;
|
|
|
|
ssl_GetSpecReadLock(ss); /********************************/
|
|
|
|
if (nIn > 1 && ss->opt.cbcRandomIV &&
|
|
ss->ssl3.cwSpec->version < SSL_LIBRARY_VERSION_TLS_1_1 &&
|
|
type == content_application_data &&
|
|
ss->ssl3.cwSpec->cipher_def->type == type_block /* CBC mode */) {
|
|
/* We will split the first byte of the record into its own record,
|
|
* as explained in the documentation for SSL_CBC_RANDOM_IV in ssl.h
|
|
*/
|
|
numRecords = 2;
|
|
} else {
|
|
numRecords = 1;
|
|
}
|
|
|
|
spaceNeeded = contentLen + (numRecords * SSL3_BUFFER_FUDGE);
|
|
if (ss->ssl3.cwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_1 &&
|
|
ss->ssl3.cwSpec->cipher_def->type == type_block) {
|
|
spaceNeeded += ss->ssl3.cwSpec->cipher_def->iv_size;
|
|
}
|
|
if (spaceNeeded > wrBuf->space) {
|
|
rv = sslBuffer_Grow(wrBuf, spaceNeeded);
|
|
if (rv != SECSuccess) {
|
|
SSL_DBG(("%d: SSL3[%d]: SendRecord, tried to get %d bytes",
|
|
SSL_GETPID(), ss->fd, spaceNeeded));
|
|
goto spec_locked_loser; /* sslBuffer_Grow set error code. */
|
|
}
|
|
}
|
|
|
|
if (numRecords == 2) {
|
|
sslBuffer secondRecord;
|
|
|
|
rv = ssl3_CompressMACEncryptRecord(ss->ssl3.cwSpec,
|
|
ss->sec.isServer, IS_DTLS(ss),
|
|
capRecordVersion, type, pIn,
|
|
1, wrBuf);
|
|
if (rv != SECSuccess)
|
|
goto spec_locked_loser;
|
|
|
|
PRINT_BUF(50, (ss, "send (encrypted) record data [1/2]:",
|
|
wrBuf->buf, wrBuf->len));
|
|
|
|
secondRecord.buf = wrBuf->buf + wrBuf->len;
|
|
secondRecord.len = 0;
|
|
secondRecord.space = wrBuf->space - wrBuf->len;
|
|
|
|
rv = ssl3_CompressMACEncryptRecord(ss->ssl3.cwSpec,
|
|
ss->sec.isServer, IS_DTLS(ss),
|
|
capRecordVersion, type,
|
|
pIn + 1, contentLen - 1,
|
|
&secondRecord);
|
|
if (rv == SECSuccess) {
|
|
PRINT_BUF(50, (ss, "send (encrypted) record data [2/2]:",
|
|
secondRecord.buf, secondRecord.len));
|
|
wrBuf->len += secondRecord.len;
|
|
}
|
|
} else {
|
|
if (!IS_DTLS(ss)) {
|
|
rv = ssl3_CompressMACEncryptRecord(ss->ssl3.cwSpec,
|
|
ss->sec.isServer,
|
|
IS_DTLS(ss),
|
|
capRecordVersion,
|
|
type, pIn,
|
|
contentLen, wrBuf);
|
|
} else {
|
|
rv = dtls_CompressMACEncryptRecord(ss, epoch,
|
|
!!(flags & ssl_SEND_FLAG_USE_EPOCH),
|
|
type, pIn,
|
|
contentLen, wrBuf);
|
|
}
|
|
|
|
if (rv == SECSuccess) {
|
|
PRINT_BUF(50, (ss, "send (encrypted) record data:",
|
|
wrBuf->buf, wrBuf->len));
|
|
}
|
|
}
|
|
|
|
spec_locked_loser:
|
|
ssl_ReleaseSpecReadLock(ss); /************************************/
|
|
|
|
if (rv != SECSuccess)
|
|
return SECFailure;
|
|
|
|
pIn += contentLen;
|
|
nIn -= contentLen;
|
|
PORT_Assert( nIn >= 0 );
|
|
|
|
/* If there's still some previously saved ciphertext,
|
|
* or the caller doesn't want us to send the data yet,
|
|
* then add all our new ciphertext to the amount previously saved.
|
|
*/
|
|
if ((ss->pendingBuf.len > 0) ||
|
|
(flags & ssl_SEND_FLAG_FORCE_INTO_BUFFER)) {
|
|
|
|
rv = ssl_SaveWriteData(ss, wrBuf->buf, wrBuf->len);
|
|
if (rv != SECSuccess) {
|
|
/* presumably a memory error, SEC_ERROR_NO_MEMORY */
|
|
return SECFailure;
|
|
}
|
|
wrBuf->len = 0; /* All cipher text is saved away. */
|
|
|
|
if (!(flags & ssl_SEND_FLAG_FORCE_INTO_BUFFER)) {
|
|
PRInt32 sent;
|
|
ss->handshakeBegun = 1;
|
|
sent = ssl_SendSavedWriteData(ss);
|
|
if (sent < 0 && PR_GetError() != PR_WOULD_BLOCK_ERROR) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SOCKET_WRITE_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
if (ss->pendingBuf.len) {
|
|
flags |= ssl_SEND_FLAG_FORCE_INTO_BUFFER;
|
|
}
|
|
}
|
|
} else if (wrBuf->len > 0) {
|
|
PRInt32 sent;
|
|
ss->handshakeBegun = 1;
|
|
sent = ssl_DefSend(ss, wrBuf->buf, wrBuf->len,
|
|
flags & ~ssl_SEND_FLAG_MASK);
|
|
if (sent < 0) {
|
|
if (PR_GetError() != PR_WOULD_BLOCK_ERROR) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SOCKET_WRITE_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
/* we got PR_WOULD_BLOCK_ERROR, which means none was sent. */
|
|
sent = 0;
|
|
}
|
|
wrBuf->len -= sent;
|
|
if (wrBuf->len) {
|
|
if (IS_DTLS(ss)) {
|
|
/* DTLS just says no in this case. No buffering */
|
|
PR_SetError(PR_WOULD_BLOCK_ERROR, 0);
|
|
return SECFailure;
|
|
}
|
|
/* now take all the remaining unsent new ciphertext and
|
|
* append it to the buffer of previously unsent ciphertext.
|
|
*/
|
|
rv = ssl_SaveWriteData(ss, wrBuf->buf + sent, wrBuf->len);
|
|
if (rv != SECSuccess) {
|
|
/* presumably a memory error, SEC_ERROR_NO_MEMORY */
|
|
return SECFailure;
|
|
}
|
|
}
|
|
}
|
|
totalSent += contentLen;
|
|
}
|
|
return totalSent;
|
|
}
|
|
|
|
#define SSL3_PENDING_HIGH_WATER 1024
|
|
|
|
/* Attempt to send the content of "in" in an SSL application_data record.
|
|
* Returns "len" or SECFailure, never SECWouldBlock, nor SECSuccess.
|
|
*/
|
|
int
|
|
ssl3_SendApplicationData(sslSocket *ss, const unsigned char *in,
|
|
PRInt32 len, PRInt32 flags)
|
|
{
|
|
PRInt32 totalSent = 0;
|
|
PRInt32 discarded = 0;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) );
|
|
/* These flags for internal use only */
|
|
PORT_Assert(!(flags & (ssl_SEND_FLAG_USE_EPOCH |
|
|
ssl_SEND_FLAG_NO_RETRANSMIT)));
|
|
if (len < 0 || !in) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (ss->pendingBuf.len > SSL3_PENDING_HIGH_WATER &&
|
|
!ssl_SocketIsBlocking(ss)) {
|
|
PORT_Assert(!ssl_SocketIsBlocking(ss));
|
|
PORT_SetError(PR_WOULD_BLOCK_ERROR);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (ss->appDataBuffered && len) {
|
|
PORT_Assert (in[0] == (unsigned char)(ss->appDataBuffered));
|
|
if (in[0] != (unsigned char)(ss->appDataBuffered)) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
in++;
|
|
len--;
|
|
discarded = 1;
|
|
}
|
|
while (len > totalSent) {
|
|
PRInt32 sent, toSend;
|
|
|
|
if (totalSent > 0) {
|
|
/*
|
|
* The thread yield is intended to give the reader thread a
|
|
* chance to get some cycles while the writer thread is in
|
|
* the middle of a large application data write. (See
|
|
* Bugzilla bug 127740, comment #1.)
|
|
*/
|
|
ssl_ReleaseXmitBufLock(ss);
|
|
PR_Sleep(PR_INTERVAL_NO_WAIT); /* PR_Yield(); */
|
|
ssl_GetXmitBufLock(ss);
|
|
}
|
|
toSend = PR_MIN(len - totalSent, MAX_FRAGMENT_LENGTH);
|
|
/*
|
|
* Note that the 0 epoch is OK because flags will never require
|
|
* its use, as guaranteed by the PORT_Assert above.
|
|
*/
|
|
sent = ssl3_SendRecord(ss, 0, content_application_data,
|
|
in + totalSent, toSend, flags);
|
|
if (sent < 0) {
|
|
if (totalSent > 0 && PR_GetError() == PR_WOULD_BLOCK_ERROR) {
|
|
PORT_Assert(ss->lastWriteBlocked);
|
|
break;
|
|
}
|
|
return SECFailure; /* error code set by ssl3_SendRecord */
|
|
}
|
|
totalSent += sent;
|
|
if (ss->pendingBuf.len) {
|
|
/* must be a non-blocking socket */
|
|
PORT_Assert(!ssl_SocketIsBlocking(ss));
|
|
PORT_Assert(ss->lastWriteBlocked);
|
|
break;
|
|
}
|
|
}
|
|
if (ss->pendingBuf.len) {
|
|
/* Must be non-blocking. */
|
|
PORT_Assert(!ssl_SocketIsBlocking(ss));
|
|
if (totalSent > 0) {
|
|
ss->appDataBuffered = 0x100 | in[totalSent - 1];
|
|
}
|
|
|
|
totalSent = totalSent + discarded - 1;
|
|
if (totalSent <= 0) {
|
|
PORT_SetError(PR_WOULD_BLOCK_ERROR);
|
|
totalSent = SECFailure;
|
|
}
|
|
return totalSent;
|
|
}
|
|
ss->appDataBuffered = 0;
|
|
return totalSent + discarded;
|
|
}
|
|
|
|
/* Attempt to send buffered handshake messages.
|
|
* This function returns SECSuccess or SECFailure, never SECWouldBlock.
|
|
* Always set sendBuf.len to 0, even when returning SECFailure.
|
|
*
|
|
* Depending on whether we are doing DTLS or not, this either calls
|
|
*
|
|
* - ssl3_FlushHandshakeMessages if non-DTLS
|
|
* - dtls_FlushHandshakeMessages if DTLS
|
|
*
|
|
* Called from SSL3_SendAlert(), ssl3_SendChangeCipherSpecs(),
|
|
* ssl3_AppendHandshake(), ssl3_SendClientHello(),
|
|
* ssl3_SendHelloRequest(), ssl3_SendServerHelloDone(),
|
|
* ssl3_SendFinished(),
|
|
*/
|
|
static SECStatus
|
|
ssl3_FlushHandshake(sslSocket *ss, PRInt32 flags)
|
|
{
|
|
if (IS_DTLS(ss)) {
|
|
return dtls_FlushHandshakeMessages(ss, flags);
|
|
} else {
|
|
return ssl3_FlushHandshakeMessages(ss, flags);
|
|
}
|
|
}
|
|
|
|
/* Attempt to send the content of sendBuf buffer in an SSL handshake record.
|
|
* This function returns SECSuccess or SECFailure, never SECWouldBlock.
|
|
* Always set sendBuf.len to 0, even when returning SECFailure.
|
|
*
|
|
* Called from ssl3_FlushHandshake
|
|
*/
|
|
static SECStatus
|
|
ssl3_FlushHandshakeMessages(sslSocket *ss, PRInt32 flags)
|
|
{
|
|
static const PRInt32 allowedFlags = ssl_SEND_FLAG_FORCE_INTO_BUFFER |
|
|
ssl_SEND_FLAG_CAP_RECORD_VERSION;
|
|
PRInt32 count = -1;
|
|
SECStatus rv = SECSuccess;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) );
|
|
|
|
if (!ss->sec.ci.sendBuf.buf || !ss->sec.ci.sendBuf.len)
|
|
return rv;
|
|
|
|
/* only these flags are allowed */
|
|
PORT_Assert(!(flags & ~allowedFlags));
|
|
if ((flags & ~allowedFlags) != 0) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
rv = SECFailure;
|
|
} else {
|
|
count = ssl3_SendRecord(ss, 0, content_handshake, ss->sec.ci.sendBuf.buf,
|
|
ss->sec.ci.sendBuf.len, flags);
|
|
}
|
|
if (count < 0) {
|
|
int err = PORT_GetError();
|
|
PORT_Assert(err != PR_WOULD_BLOCK_ERROR);
|
|
if (err == PR_WOULD_BLOCK_ERROR) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
}
|
|
rv = SECFailure;
|
|
} else if ((unsigned int)count < ss->sec.ci.sendBuf.len) {
|
|
/* short write should never happen */
|
|
PORT_Assert((unsigned int)count >= ss->sec.ci.sendBuf.len);
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
rv = SECFailure;
|
|
} else {
|
|
rv = SECSuccess;
|
|
}
|
|
|
|
/* Whether we succeeded or failed, toss the old handshake data. */
|
|
ss->sec.ci.sendBuf.len = 0;
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Called from ssl3_HandleAlert and from ssl3_HandleCertificate when
|
|
* the remote client sends a negative response to our certificate request.
|
|
* Returns SECFailure if the application has required client auth.
|
|
* SECSuccess otherwise.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleNoCertificate(sslSocket *ss)
|
|
{
|
|
if (ss->sec.peerCert != NULL) {
|
|
if (ss->sec.peerKey != NULL) {
|
|
SECKEY_DestroyPublicKey(ss->sec.peerKey);
|
|
ss->sec.peerKey = NULL;
|
|
}
|
|
CERT_DestroyCertificate(ss->sec.peerCert);
|
|
ss->sec.peerCert = NULL;
|
|
}
|
|
ssl3_CleanupPeerCerts(ss);
|
|
|
|
/* If the server has required client-auth blindly but doesn't
|
|
* actually look at the certificate it won't know that no
|
|
* certificate was presented so we shutdown the socket to ensure
|
|
* an error. We only do this if we haven't already completed the
|
|
* first handshake because if we're redoing the handshake we
|
|
* know the server is paying attention to the certificate.
|
|
*/
|
|
if ((ss->opt.requireCertificate == SSL_REQUIRE_ALWAYS) ||
|
|
(!ss->firstHsDone &&
|
|
(ss->opt.requireCertificate == SSL_REQUIRE_FIRST_HANDSHAKE))) {
|
|
PRFileDesc * lower;
|
|
|
|
if (ss->sec.uncache)
|
|
ss->sec.uncache(ss->sec.ci.sid);
|
|
SSL3_SendAlert(ss, alert_fatal, bad_certificate);
|
|
|
|
lower = ss->fd->lower;
|
|
#ifdef _WIN32
|
|
lower->methods->shutdown(lower, PR_SHUTDOWN_SEND);
|
|
#else
|
|
lower->methods->shutdown(lower, PR_SHUTDOWN_BOTH);
|
|
#endif
|
|
PORT_SetError(SSL_ERROR_NO_CERTIFICATE);
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
/************************************************************************
|
|
* Alerts
|
|
*/
|
|
|
|
/*
|
|
** Acquires both handshake and XmitBuf locks.
|
|
** Called from: ssl3_IllegalParameter <-
|
|
** ssl3_HandshakeFailure <-
|
|
** ssl3_HandleAlert <- ssl3_HandleRecord.
|
|
** ssl3_HandleChangeCipherSpecs <- ssl3_HandleRecord
|
|
** ssl3_ConsumeHandshakeVariable <-
|
|
** ssl3_HandleHelloRequest <-
|
|
** ssl3_HandleServerHello <-
|
|
** ssl3_HandleServerKeyExchange <-
|
|
** ssl3_HandleCertificateRequest <-
|
|
** ssl3_HandleServerHelloDone <-
|
|
** ssl3_HandleClientHello <-
|
|
** ssl3_HandleV2ClientHello <-
|
|
** ssl3_HandleCertificateVerify <-
|
|
** ssl3_HandleClientKeyExchange <-
|
|
** ssl3_HandleCertificate <-
|
|
** ssl3_HandleFinished <-
|
|
** ssl3_HandleHandshakeMessage <-
|
|
** ssl3_HandleRecord <-
|
|
**
|
|
*/
|
|
SECStatus
|
|
SSL3_SendAlert(sslSocket *ss, SSL3AlertLevel level, SSL3AlertDescription desc)
|
|
{
|
|
PRUint8 bytes[2];
|
|
SECStatus rv;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: send alert record, level=%d desc=%d",
|
|
SSL_GETPID(), ss->fd, level, desc));
|
|
|
|
bytes[0] = level;
|
|
bytes[1] = desc;
|
|
|
|
ssl_GetSSL3HandshakeLock(ss);
|
|
if (level == alert_fatal) {
|
|
if (!ss->opt.noCache && ss->sec.ci.sid && ss->sec.uncache) {
|
|
ss->sec.uncache(ss->sec.ci.sid);
|
|
}
|
|
}
|
|
ssl_GetXmitBufLock(ss);
|
|
rv = ssl3_FlushHandshake(ss, ssl_SEND_FLAG_FORCE_INTO_BUFFER);
|
|
if (rv == SECSuccess) {
|
|
PRInt32 sent;
|
|
sent = ssl3_SendRecord(ss, 0, content_alert, bytes, 2,
|
|
desc == no_certificate
|
|
? ssl_SEND_FLAG_FORCE_INTO_BUFFER : 0);
|
|
rv = (sent >= 0) ? SECSuccess : (SECStatus)sent;
|
|
}
|
|
if (level == alert_fatal) {
|
|
ss->ssl3.fatalAlertSent = PR_TRUE;
|
|
}
|
|
ssl_ReleaseXmitBufLock(ss);
|
|
ssl_ReleaseSSL3HandshakeLock(ss);
|
|
return rv; /* error set by ssl3_FlushHandshake or ssl3_SendRecord */
|
|
}
|
|
|
|
/*
|
|
* Send illegal_parameter alert. Set generic error number.
|
|
*/
|
|
static SECStatus
|
|
ssl3_IllegalParameter(sslSocket *ss)
|
|
{
|
|
(void)SSL3_SendAlert(ss, alert_fatal, illegal_parameter);
|
|
PORT_SetError(ss->sec.isServer ? SSL_ERROR_BAD_CLIENT
|
|
: SSL_ERROR_BAD_SERVER );
|
|
return SECFailure;
|
|
}
|
|
|
|
/*
|
|
* Send handshake_Failure alert. Set generic error number.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandshakeFailure(sslSocket *ss)
|
|
{
|
|
(void)SSL3_SendAlert(ss, alert_fatal, handshake_failure);
|
|
PORT_SetError( ss->sec.isServer ? SSL_ERROR_BAD_CLIENT
|
|
: SSL_ERROR_BAD_SERVER );
|
|
return SECFailure;
|
|
}
|
|
|
|
static void
|
|
ssl3_SendAlertForCertError(sslSocket * ss, PRErrorCode errCode)
|
|
{
|
|
SSL3AlertDescription desc = bad_certificate;
|
|
PRBool isTLS = ss->version >= SSL_LIBRARY_VERSION_3_1_TLS;
|
|
|
|
switch (errCode) {
|
|
case SEC_ERROR_LIBRARY_FAILURE: desc = unsupported_certificate; break;
|
|
case SEC_ERROR_EXPIRED_CERTIFICATE: desc = certificate_expired; break;
|
|
case SEC_ERROR_REVOKED_CERTIFICATE: desc = certificate_revoked; break;
|
|
case SEC_ERROR_INADEQUATE_KEY_USAGE:
|
|
case SEC_ERROR_INADEQUATE_CERT_TYPE:
|
|
desc = certificate_unknown; break;
|
|
case SEC_ERROR_UNTRUSTED_CERT:
|
|
desc = isTLS ? access_denied : certificate_unknown; break;
|
|
case SEC_ERROR_UNKNOWN_ISSUER:
|
|
case SEC_ERROR_UNTRUSTED_ISSUER:
|
|
desc = isTLS ? unknown_ca : certificate_unknown; break;
|
|
case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE:
|
|
desc = isTLS ? unknown_ca : certificate_expired; break;
|
|
|
|
case SEC_ERROR_CERT_NOT_IN_NAME_SPACE:
|
|
case SEC_ERROR_PATH_LEN_CONSTRAINT_INVALID:
|
|
case SEC_ERROR_CA_CERT_INVALID:
|
|
case SEC_ERROR_BAD_SIGNATURE:
|
|
default: desc = bad_certificate; break;
|
|
}
|
|
SSL_DBG(("%d: SSL3[%d]: peer certificate is no good: error=%d",
|
|
SSL_GETPID(), ss->fd, errCode));
|
|
|
|
(void) SSL3_SendAlert(ss, alert_fatal, desc);
|
|
}
|
|
|
|
|
|
/*
|
|
* Send decode_error alert. Set generic error number.
|
|
*/
|
|
SECStatus
|
|
ssl3_DecodeError(sslSocket *ss)
|
|
{
|
|
(void)SSL3_SendAlert(ss, alert_fatal,
|
|
ss->version > SSL_LIBRARY_VERSION_3_0 ? decode_error
|
|
: illegal_parameter);
|
|
PORT_SetError( ss->sec.isServer ? SSL_ERROR_BAD_CLIENT
|
|
: SSL_ERROR_BAD_SERVER );
|
|
return SECFailure;
|
|
}
|
|
|
|
/* Called from ssl3_HandleRecord.
|
|
** Caller must hold both RecvBuf and Handshake locks.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleAlert(sslSocket *ss, sslBuffer *buf)
|
|
{
|
|
SSL3AlertLevel level;
|
|
SSL3AlertDescription desc;
|
|
int error;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle alert record", SSL_GETPID(), ss->fd));
|
|
|
|
if (buf->len != 2) {
|
|
(void)ssl3_DecodeError(ss);
|
|
PORT_SetError(SSL_ERROR_RX_MALFORMED_ALERT);
|
|
return SECFailure;
|
|
}
|
|
level = (SSL3AlertLevel)buf->buf[0];
|
|
desc = (SSL3AlertDescription)buf->buf[1];
|
|
buf->len = 0;
|
|
SSL_TRC(5, ("%d: SSL3[%d] received alert, level = %d, description = %d",
|
|
SSL_GETPID(), ss->fd, level, desc));
|
|
|
|
switch (desc) {
|
|
case close_notify: ss->recvdCloseNotify = 1;
|
|
error = SSL_ERROR_CLOSE_NOTIFY_ALERT; break;
|
|
case unexpected_message: error = SSL_ERROR_HANDSHAKE_UNEXPECTED_ALERT;
|
|
break;
|
|
case bad_record_mac: error = SSL_ERROR_BAD_MAC_ALERT; break;
|
|
case decryption_failed_RESERVED:
|
|
error = SSL_ERROR_DECRYPTION_FAILED_ALERT;
|
|
break;
|
|
case record_overflow: error = SSL_ERROR_RECORD_OVERFLOW_ALERT; break;
|
|
case decompression_failure: error = SSL_ERROR_DECOMPRESSION_FAILURE_ALERT;
|
|
break;
|
|
case handshake_failure: error = SSL_ERROR_HANDSHAKE_FAILURE_ALERT;
|
|
break;
|
|
case no_certificate: error = SSL_ERROR_NO_CERTIFICATE; break;
|
|
case bad_certificate: error = SSL_ERROR_BAD_CERT_ALERT; break;
|
|
case unsupported_certificate:error = SSL_ERROR_UNSUPPORTED_CERT_ALERT;break;
|
|
case certificate_revoked: error = SSL_ERROR_REVOKED_CERT_ALERT; break;
|
|
case certificate_expired: error = SSL_ERROR_EXPIRED_CERT_ALERT; break;
|
|
case certificate_unknown: error = SSL_ERROR_CERTIFICATE_UNKNOWN_ALERT;
|
|
break;
|
|
case illegal_parameter: error = SSL_ERROR_ILLEGAL_PARAMETER_ALERT;break;
|
|
case inappropriate_fallback:
|
|
error = SSL_ERROR_INAPPROPRIATE_FALLBACK_ALERT;
|
|
break;
|
|
|
|
/* All alerts below are TLS only. */
|
|
case unknown_ca: error = SSL_ERROR_UNKNOWN_CA_ALERT; break;
|
|
case access_denied: error = SSL_ERROR_ACCESS_DENIED_ALERT; break;
|
|
case decode_error: error = SSL_ERROR_DECODE_ERROR_ALERT; break;
|
|
case decrypt_error: error = SSL_ERROR_DECRYPT_ERROR_ALERT; break;
|
|
case export_restriction: error = SSL_ERROR_EXPORT_RESTRICTION_ALERT;
|
|
break;
|
|
case protocol_version: error = SSL_ERROR_PROTOCOL_VERSION_ALERT; break;
|
|
case insufficient_security: error = SSL_ERROR_INSUFFICIENT_SECURITY_ALERT;
|
|
break;
|
|
case internal_error: error = SSL_ERROR_INTERNAL_ERROR_ALERT; break;
|
|
case user_canceled: error = SSL_ERROR_USER_CANCELED_ALERT; break;
|
|
case no_renegotiation: error = SSL_ERROR_NO_RENEGOTIATION_ALERT; break;
|
|
|
|
/* Alerts for TLS client hello extensions */
|
|
case unsupported_extension:
|
|
error = SSL_ERROR_UNSUPPORTED_EXTENSION_ALERT; break;
|
|
case certificate_unobtainable:
|
|
error = SSL_ERROR_CERTIFICATE_UNOBTAINABLE_ALERT; break;
|
|
case unrecognized_name:
|
|
error = SSL_ERROR_UNRECOGNIZED_NAME_ALERT; break;
|
|
case bad_certificate_status_response:
|
|
error = SSL_ERROR_BAD_CERT_STATUS_RESPONSE_ALERT; break;
|
|
case bad_certificate_hash_value:
|
|
error = SSL_ERROR_BAD_CERT_HASH_VALUE_ALERT; break;
|
|
default: error = SSL_ERROR_RX_UNKNOWN_ALERT; break;
|
|
}
|
|
if (level == alert_fatal) {
|
|
if (!ss->opt.noCache) {
|
|
if (ss->sec.uncache)
|
|
ss->sec.uncache(ss->sec.ci.sid);
|
|
}
|
|
if ((ss->ssl3.hs.ws == wait_server_hello) &&
|
|
(desc == handshake_failure)) {
|
|
/* XXX This is a hack. We're assuming that any handshake failure
|
|
* XXX on the client hello is a failure to match ciphers.
|
|
*/
|
|
error = SSL_ERROR_NO_CYPHER_OVERLAP;
|
|
}
|
|
PORT_SetError(error);
|
|
return SECFailure;
|
|
}
|
|
if ((desc == no_certificate) && (ss->ssl3.hs.ws == wait_client_cert)) {
|
|
/* I'm a server. I've requested a client cert. He hasn't got one. */
|
|
SECStatus rv;
|
|
|
|
PORT_Assert(ss->sec.isServer);
|
|
ss->ssl3.hs.ws = wait_client_key;
|
|
rv = ssl3_HandleNoCertificate(ss);
|
|
return rv;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* Change Cipher Specs
|
|
* Called from ssl3_HandleServerHelloDone,
|
|
* ssl3_HandleClientHello,
|
|
* and ssl3_HandleFinished
|
|
*
|
|
* Acquires and releases spec write lock, to protect switching the current
|
|
* and pending write spec pointers.
|
|
*/
|
|
|
|
static SECStatus
|
|
ssl3_SendChangeCipherSpecs(sslSocket *ss)
|
|
{
|
|
PRUint8 change = change_cipher_spec_choice;
|
|
ssl3CipherSpec * pwSpec;
|
|
SECStatus rv;
|
|
PRInt32 sent;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: send change_cipher_spec record",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
rv = ssl3_FlushHandshake(ss, ssl_SEND_FLAG_FORCE_INTO_BUFFER);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by ssl3_FlushHandshake */
|
|
}
|
|
if (!IS_DTLS(ss)) {
|
|
sent = ssl3_SendRecord(ss, 0, content_change_cipher_spec, &change, 1,
|
|
ssl_SEND_FLAG_FORCE_INTO_BUFFER);
|
|
if (sent < 0) {
|
|
return (SECStatus)sent; /* error code set by ssl3_SendRecord */
|
|
}
|
|
} else {
|
|
rv = dtls_QueueMessage(ss, content_change_cipher_spec, &change, 1);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
}
|
|
|
|
/* swap the pending and current write specs. */
|
|
ssl_GetSpecWriteLock(ss); /**************************************/
|
|
pwSpec = ss->ssl3.pwSpec;
|
|
|
|
ss->ssl3.pwSpec = ss->ssl3.cwSpec;
|
|
ss->ssl3.cwSpec = pwSpec;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d] Set Current Write Cipher Suite to Pending",
|
|
SSL_GETPID(), ss->fd ));
|
|
|
|
/* We need to free up the contexts, keys and certs ! */
|
|
/* If we are really through with the old cipher spec
|
|
* (Both the read and write sides have changed) destroy it.
|
|
*/
|
|
if (ss->ssl3.prSpec == ss->ssl3.pwSpec) {
|
|
if (!IS_DTLS(ss)) {
|
|
ssl3_DestroyCipherSpec(ss->ssl3.pwSpec, PR_FALSE/*freeSrvName*/);
|
|
} else {
|
|
/* With DTLS, we need to set a holddown timer in case the final
|
|
* message got lost */
|
|
ss->ssl3.hs.rtTimeoutMs = DTLS_FINISHED_TIMER_MS;
|
|
dtls_StartTimer(ss, dtls_FinishedTimerCb);
|
|
}
|
|
}
|
|
ssl_ReleaseSpecWriteLock(ss); /**************************************/
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* Called from ssl3_HandleRecord.
|
|
** Caller must hold both RecvBuf and Handshake locks.
|
|
*
|
|
* Acquires and releases spec write lock, to protect switching the current
|
|
* and pending write spec pointers.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleChangeCipherSpecs(sslSocket *ss, sslBuffer *buf)
|
|
{
|
|
ssl3CipherSpec * prSpec;
|
|
SSL3WaitState ws = ss->ssl3.hs.ws;
|
|
SSL3ChangeCipherSpecChoice change;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle change_cipher_spec record",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
if (ws != wait_change_cipher) {
|
|
if (IS_DTLS(ss)) {
|
|
/* Ignore this because it's out of order. */
|
|
SSL_TRC(3, ("%d: SSL3[%d]: discard out of order "
|
|
"DTLS change_cipher_spec",
|
|
SSL_GETPID(), ss->fd));
|
|
buf->len = 0;
|
|
return SECSuccess;
|
|
}
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CHANGE_CIPHER);
|
|
return SECFailure;
|
|
}
|
|
|
|
if(buf->len != 1) {
|
|
(void)ssl3_DecodeError(ss);
|
|
PORT_SetError(SSL_ERROR_RX_MALFORMED_CHANGE_CIPHER);
|
|
return SECFailure;
|
|
}
|
|
change = (SSL3ChangeCipherSpecChoice)buf->buf[0];
|
|
if (change != change_cipher_spec_choice) {
|
|
/* illegal_parameter is correct here for both SSL3 and TLS. */
|
|
(void)ssl3_IllegalParameter(ss);
|
|
PORT_SetError(SSL_ERROR_RX_MALFORMED_CHANGE_CIPHER);
|
|
return SECFailure;
|
|
}
|
|
buf->len = 0;
|
|
|
|
/* Swap the pending and current read specs. */
|
|
ssl_GetSpecWriteLock(ss); /*************************************/
|
|
prSpec = ss->ssl3.prSpec;
|
|
|
|
ss->ssl3.prSpec = ss->ssl3.crSpec;
|
|
ss->ssl3.crSpec = prSpec;
|
|
ss->ssl3.hs.ws = wait_finished;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d] Set Current Read Cipher Suite to Pending",
|
|
SSL_GETPID(), ss->fd ));
|
|
|
|
/* If we are really through with the old cipher prSpec
|
|
* (Both the read and write sides have changed) destroy it.
|
|
*/
|
|
if (ss->ssl3.prSpec == ss->ssl3.pwSpec) {
|
|
ssl3_DestroyCipherSpec(ss->ssl3.prSpec, PR_FALSE/*freeSrvName*/);
|
|
}
|
|
ssl_ReleaseSpecWriteLock(ss); /*************************************/
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* This method completes the derivation of the MS from the PMS.
|
|
**
|
|
** 1. Derive the MS, if possible, else return an error.
|
|
**
|
|
** 2. Check the version if |pms_version| is non-zero and if wrong,
|
|
** return an error.
|
|
**
|
|
** 3. If |msp| is nonzero, return MS in |*msp|.
|
|
|
|
** Called from:
|
|
** ssl3_ComputeMasterSecretInt
|
|
** tls_ComputeExtendedMasterSecretInt
|
|
*/
|
|
static SECStatus
|
|
ssl3_ComputeMasterSecretFinish(sslSocket *ss,
|
|
CK_MECHANISM_TYPE master_derive,
|
|
CK_MECHANISM_TYPE key_derive,
|
|
CK_VERSION *pms_version,
|
|
SECItem *params, CK_FLAGS keyFlags,
|
|
PK11SymKey *pms, PK11SymKey **msp)
|
|
{
|
|
PK11SymKey *ms = NULL;
|
|
|
|
ms = PK11_DeriveWithFlags(pms, master_derive,
|
|
params, key_derive,
|
|
CKA_DERIVE, 0, keyFlags);
|
|
if (!ms) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (pms_version && ss->opt.detectRollBack) {
|
|
SSL3ProtocolVersion client_version;
|
|
client_version = pms_version->major << 8 | pms_version->minor;
|
|
|
|
if (IS_DTLS(ss)) {
|
|
client_version = dtls_DTLSVersionToTLSVersion(client_version);
|
|
}
|
|
|
|
if (client_version != ss->clientHelloVersion) {
|
|
/* Destroy MS. Version roll-back detected. */
|
|
PK11_FreeSymKey(ms);
|
|
ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
|
|
if (msp) {
|
|
*msp = ms;
|
|
} else {
|
|
PK11_FreeSymKey(ms);
|
|
}
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* Compute the ordinary (pre draft-ietf-tls-session-hash) master
|
|
** secret and return it in |*msp|.
|
|
**
|
|
** Called from: ssl3_ComputeMasterSecret
|
|
*/
|
|
static SECStatus
|
|
ssl3_ComputeMasterSecretInt(sslSocket *ss, PK11SymKey *pms,
|
|
PK11SymKey **msp)
|
|
{
|
|
ssl3CipherSpec * pwSpec = ss->ssl3.pwSpec;
|
|
const ssl3KEADef *kea_def= ss->ssl3.hs.kea_def;
|
|
unsigned char * cr = (unsigned char *)&ss->ssl3.hs.client_random;
|
|
unsigned char * sr = (unsigned char *)&ss->ssl3.hs.server_random;
|
|
PRBool isTLS = (PRBool)(kea_def->tls_keygen ||
|
|
(pwSpec->version > SSL_LIBRARY_VERSION_3_0));
|
|
PRBool isTLS12=
|
|
(PRBool)(isTLS && pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2);
|
|
/*
|
|
* Whenever isDH is true, we need to use CKM_TLS_MASTER_KEY_DERIVE_DH
|
|
* which, unlike CKM_TLS_MASTER_KEY_DERIVE, converts arbitrary size
|
|
* data into a 48-byte value, and does not expect to return the version.
|
|
*/
|
|
PRBool isDH = (PRBool) ((ss->ssl3.hs.kea_def->exchKeyType == kt_dh) ||
|
|
(ss->ssl3.hs.kea_def->exchKeyType == kt_ecdh));
|
|
CK_MECHANISM_TYPE master_derive;
|
|
CK_MECHANISM_TYPE key_derive;
|
|
SECItem params;
|
|
CK_FLAGS keyFlags;
|
|
CK_VERSION pms_version;
|
|
CK_VERSION *pms_version_ptr = NULL;
|
|
/* master_params may be used as a CK_SSL3_MASTER_KEY_DERIVE_PARAMS */
|
|
CK_TLS12_MASTER_KEY_DERIVE_PARAMS master_params;
|
|
unsigned int master_params_len;
|
|
|
|
if (isTLS12) {
|
|
if(isDH) master_derive = CKM_TLS12_MASTER_KEY_DERIVE_DH;
|
|
else master_derive = CKM_TLS12_MASTER_KEY_DERIVE;
|
|
key_derive = CKM_TLS12_KEY_AND_MAC_DERIVE;
|
|
keyFlags = CKF_SIGN | CKF_VERIFY;
|
|
} else if (isTLS) {
|
|
if(isDH) master_derive = CKM_TLS_MASTER_KEY_DERIVE_DH;
|
|
else master_derive = CKM_TLS_MASTER_KEY_DERIVE;
|
|
key_derive = CKM_TLS_KEY_AND_MAC_DERIVE;
|
|
keyFlags = CKF_SIGN | CKF_VERIFY;
|
|
} else {
|
|
if (isDH) master_derive = CKM_SSL3_MASTER_KEY_DERIVE_DH;
|
|
else master_derive = CKM_SSL3_MASTER_KEY_DERIVE;
|
|
key_derive = CKM_SSL3_KEY_AND_MAC_DERIVE;
|
|
keyFlags = 0;
|
|
}
|
|
|
|
if (!isDH) {
|
|
pms_version_ptr = &pms_version;
|
|
}
|
|
|
|
master_params.pVersion = pms_version_ptr;
|
|
master_params.RandomInfo.pClientRandom = cr;
|
|
master_params.RandomInfo.ulClientRandomLen = SSL3_RANDOM_LENGTH;
|
|
master_params.RandomInfo.pServerRandom = sr;
|
|
master_params.RandomInfo.ulServerRandomLen = SSL3_RANDOM_LENGTH;
|
|
if (isTLS12) {
|
|
master_params.prfHashMechanism = CKM_SHA256;
|
|
master_params_len = sizeof(CK_TLS12_MASTER_KEY_DERIVE_PARAMS);
|
|
} else {
|
|
/* prfHashMechanism is not relevant with this PRF */
|
|
master_params_len = sizeof(CK_SSL3_MASTER_KEY_DERIVE_PARAMS);
|
|
}
|
|
|
|
params.data = (unsigned char *) &master_params;
|
|
params.len = master_params_len;
|
|
|
|
return ssl3_ComputeMasterSecretFinish(ss, master_derive, key_derive,
|
|
pms_version_ptr, ¶ms,
|
|
keyFlags, pms, msp);
|
|
}
|
|
|
|
/* Compute the draft-ietf-tls-session-hash master
|
|
** secret and return it in |*msp|.
|
|
**
|
|
** Called from: ssl3_ComputeMasterSecret
|
|
*/
|
|
static SECStatus
|
|
tls_ComputeExtendedMasterSecretInt(sslSocket *ss, PK11SymKey *pms,
|
|
PK11SymKey **msp)
|
|
{
|
|
ssl3CipherSpec *pwSpec = ss->ssl3.pwSpec;
|
|
CK_NSS_TLS_EXTENDED_MASTER_KEY_DERIVE_PARAMS extended_master_params;
|
|
SSL3Hashes hashes;
|
|
/*
|
|
* Determine whether to use the DH/ECDH or RSA derivation modes.
|
|
*/
|
|
/*
|
|
* TODO(ekr@rtfm.com): Verify that the slot can handle this key expansion
|
|
* mode. Bug 1198298 */
|
|
PRBool isDH = (PRBool) ((ss->ssl3.hs.kea_def->exchKeyType == kt_dh) ||
|
|
(ss->ssl3.hs.kea_def->exchKeyType == kt_ecdh));
|
|
CK_MECHANISM_TYPE master_derive;
|
|
CK_MECHANISM_TYPE key_derive;
|
|
SECItem params;
|
|
const CK_FLAGS keyFlags = CKF_SIGN | CKF_VERIFY;
|
|
CK_VERSION pms_version;
|
|
CK_VERSION *pms_version_ptr = NULL;
|
|
SECStatus rv;
|
|
|
|
rv = ssl3_ComputeHandshakeHashes(ss, pwSpec, &hashes, 0);
|
|
if (rv != SECSuccess) {
|
|
PORT_Assert(0); /* Should never fail */
|
|
ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (isDH) {
|
|
master_derive = CKM_NSS_TLS_EXTENDED_MASTER_KEY_DERIVE_DH;
|
|
} else {
|
|
master_derive = CKM_NSS_TLS_EXTENDED_MASTER_KEY_DERIVE;
|
|
pms_version_ptr = &pms_version;
|
|
}
|
|
|
|
if (pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
|
|
/* TLS 1.2 */
|
|
extended_master_params.prfHashMechanism = CKM_SHA256;
|
|
key_derive = CKM_TLS12_KEY_AND_MAC_DERIVE;
|
|
} else {
|
|
/* TLS < 1.2 */
|
|
extended_master_params.prfHashMechanism = CKM_TLS_PRF;
|
|
key_derive = CKM_TLS_KEY_AND_MAC_DERIVE;
|
|
}
|
|
|
|
extended_master_params.pVersion = pms_version_ptr;
|
|
extended_master_params.pSessionHash = hashes.u.raw;
|
|
extended_master_params.ulSessionHashLen = hashes.len;
|
|
|
|
params.data = (unsigned char *) &extended_master_params;
|
|
params.len = sizeof extended_master_params;
|
|
|
|
return ssl3_ComputeMasterSecretFinish(ss, master_derive, key_derive,
|
|
pms_version_ptr, ¶ms,
|
|
keyFlags, pms, msp);
|
|
}
|
|
|
|
|
|
/* Wrapper method to compute the master secret and return it in |*msp|.
|
|
**
|
|
** Called from ssl3_ComputeMasterSecret
|
|
*/
|
|
static SECStatus
|
|
ssl3_ComputeMasterSecret(sslSocket *ss, PK11SymKey *pms,
|
|
PK11SymKey **msp)
|
|
{
|
|
PORT_Assert(pms != NULL);
|
|
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec);
|
|
|
|
if (ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn)) {
|
|
return tls_ComputeExtendedMasterSecretInt(ss, pms, msp);
|
|
} else {
|
|
return ssl3_ComputeMasterSecretInt(ss, pms, msp);
|
|
}
|
|
}
|
|
|
|
/* This method uses PKCS11 to derive the MS from the PMS, where PMS
|
|
** is a PKCS11 symkey. We call ssl3_ComputeMasterSecret to do the
|
|
** computations and then modify the pwSpec->state as a side effect.
|
|
**
|
|
** This is used in all cases except the "triple bypass" with RSA key
|
|
** exchange.
|
|
**
|
|
** Called from ssl3_InitPendingCipherSpec. prSpec is pwSpec.
|
|
*/
|
|
static SECStatus
|
|
ssl3_DeriveMasterSecret(sslSocket *ss, PK11SymKey *pms)
|
|
{
|
|
SECStatus rv;
|
|
PK11SymKey* ms = NULL;
|
|
ssl3CipherSpec *pwSpec = ss->ssl3.pwSpec;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSpecWriteLock(ss));
|
|
PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec);
|
|
|
|
if (pms) {
|
|
rv = ssl3_ComputeMasterSecret(ss, pms, &ms);
|
|
pwSpec->master_secret = ms;
|
|
if (rv != SECSuccess)
|
|
return rv;
|
|
}
|
|
|
|
#ifndef NO_PKCS11_BYPASS
|
|
if (ss->opt.bypassPKCS11) {
|
|
SECItem * keydata;
|
|
/* In hope of doing a "double bypass",
|
|
* need to extract the master secret's value from the key object
|
|
* and store it raw in the sslSocket struct.
|
|
*/
|
|
rv = PK11_ExtractKeyValue(pwSpec->master_secret);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
/* This returns the address of the secItem inside the key struct,
|
|
* not a copy or a reference. So, there's no need to free it.
|
|
*/
|
|
keydata = PK11_GetKeyData(pwSpec->master_secret);
|
|
if (keydata && keydata->len <= sizeof pwSpec->raw_master_secret) {
|
|
memcpy(pwSpec->raw_master_secret, keydata->data, keydata->len);
|
|
pwSpec->msItem.data = pwSpec->raw_master_secret;
|
|
pwSpec->msItem.len = keydata->len;
|
|
} else {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* Derive encryption and MAC Keys (and IVs) from master secret
|
|
* Sets a useful error code when returning SECFailure.
|
|
*
|
|
* Called only from ssl3_InitPendingCipherSpec(),
|
|
* which in turn is called from
|
|
* sendRSAClientKeyExchange (for Full handshake)
|
|
* sendDHClientKeyExchange (for Full handshake)
|
|
* ssl3_HandleClientKeyExchange (for Full handshake)
|
|
* ssl3_HandleServerHello (for session restart)
|
|
* ssl3_HandleClientHello (for session restart)
|
|
* Caller MUST hold the specWriteLock, and SSL3HandshakeLock.
|
|
* ssl3_InitPendingCipherSpec does that.
|
|
*
|
|
*/
|
|
static SECStatus
|
|
ssl3_DeriveConnectionKeysPKCS11(sslSocket *ss)
|
|
{
|
|
ssl3CipherSpec * pwSpec = ss->ssl3.pwSpec;
|
|
const ssl3KEADef * kea_def = ss->ssl3.hs.kea_def;
|
|
unsigned char * cr = (unsigned char *)&ss->ssl3.hs.client_random;
|
|
unsigned char * sr = (unsigned char *)&ss->ssl3.hs.server_random;
|
|
PRBool isTLS = (PRBool)(kea_def->tls_keygen ||
|
|
(pwSpec->version > SSL_LIBRARY_VERSION_3_0));
|
|
PRBool isTLS12=
|
|
(PRBool)(isTLS && pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2);
|
|
/* following variables used in PKCS11 path */
|
|
const ssl3BulkCipherDef *cipher_def = pwSpec->cipher_def;
|
|
PK11SlotInfo * slot = NULL;
|
|
PK11SymKey * symKey = NULL;
|
|
void * pwArg = ss->pkcs11PinArg;
|
|
int keySize;
|
|
CK_TLS12_KEY_MAT_PARAMS key_material_params; /* may be used as a
|
|
* CK_SSL3_KEY_MAT_PARAMS */
|
|
unsigned int key_material_params_len;
|
|
CK_SSL3_KEY_MAT_OUT returnedKeys;
|
|
CK_MECHANISM_TYPE key_derive;
|
|
CK_MECHANISM_TYPE bulk_mechanism;
|
|
SSLCipherAlgorithm calg;
|
|
SECItem params;
|
|
PRBool skipKeysAndIVs = (PRBool)(cipher_def->calg == calg_null);
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSpecWriteLock(ss));
|
|
PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec);
|
|
|
|
if (!pwSpec->master_secret) {
|
|
PORT_SetError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
/*
|
|
* generate the key material
|
|
*/
|
|
key_material_params.ulMacSizeInBits = pwSpec->mac_size * BPB;
|
|
key_material_params.ulKeySizeInBits = cipher_def->secret_key_size* BPB;
|
|
key_material_params.ulIVSizeInBits = cipher_def->iv_size * BPB;
|
|
if (cipher_def->type == type_block &&
|
|
pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_1) {
|
|
/* Block ciphers in >= TLS 1.1 use a per-record, explicit IV. */
|
|
key_material_params.ulIVSizeInBits = 0;
|
|
memset(pwSpec->client.write_iv, 0, cipher_def->iv_size);
|
|
memset(pwSpec->server.write_iv, 0, cipher_def->iv_size);
|
|
}
|
|
|
|
key_material_params.bIsExport = (CK_BBOOL)(kea_def->is_limited);
|
|
|
|
key_material_params.RandomInfo.pClientRandom = cr;
|
|
key_material_params.RandomInfo.ulClientRandomLen = SSL3_RANDOM_LENGTH;
|
|
key_material_params.RandomInfo.pServerRandom = sr;
|
|
key_material_params.RandomInfo.ulServerRandomLen = SSL3_RANDOM_LENGTH;
|
|
key_material_params.pReturnedKeyMaterial = &returnedKeys;
|
|
|
|
returnedKeys.pIVClient = pwSpec->client.write_iv;
|
|
returnedKeys.pIVServer = pwSpec->server.write_iv;
|
|
keySize = cipher_def->key_size;
|
|
|
|
if (skipKeysAndIVs) {
|
|
keySize = 0;
|
|
key_material_params.ulKeySizeInBits = 0;
|
|
key_material_params.ulIVSizeInBits = 0;
|
|
returnedKeys.pIVClient = NULL;
|
|
returnedKeys.pIVServer = NULL;
|
|
}
|
|
|
|
calg = cipher_def->calg;
|
|
PORT_Assert( alg2Mech[calg].calg == calg);
|
|
bulk_mechanism = alg2Mech[calg].cmech;
|
|
|
|
if (isTLS12) {
|
|
key_derive = CKM_TLS12_KEY_AND_MAC_DERIVE;
|
|
key_material_params.prfHashMechanism = CKM_SHA256;
|
|
key_material_params_len = sizeof(CK_TLS12_KEY_MAT_PARAMS);
|
|
} else if (isTLS) {
|
|
key_derive = CKM_TLS_KEY_AND_MAC_DERIVE;
|
|
key_material_params_len = sizeof(CK_SSL3_KEY_MAT_PARAMS);
|
|
} else {
|
|
key_derive = CKM_SSL3_KEY_AND_MAC_DERIVE;
|
|
key_material_params_len = sizeof(CK_SSL3_KEY_MAT_PARAMS);
|
|
}
|
|
|
|
params.data = (unsigned char *)&key_material_params;
|
|
params.len = key_material_params_len;
|
|
|
|
/* CKM_SSL3_KEY_AND_MAC_DERIVE is defined to set ENCRYPT, DECRYPT, and
|
|
* DERIVE by DEFAULT */
|
|
symKey = PK11_Derive(pwSpec->master_secret, key_derive, ¶ms,
|
|
bulk_mechanism, CKA_ENCRYPT, keySize);
|
|
if (!symKey) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
/* we really should use the actual mac'ing mechanism here, but we
|
|
* don't because these types are used to map keytype anyway and both
|
|
* mac's map to the same keytype.
|
|
*/
|
|
slot = PK11_GetSlotFromKey(symKey);
|
|
|
|
PK11_FreeSlot(slot); /* slot is held until the key is freed */
|
|
pwSpec->client.write_mac_key =
|
|
PK11_SymKeyFromHandle(slot, symKey, PK11_OriginDerive,
|
|
CKM_SSL3_SHA1_MAC, returnedKeys.hClientMacSecret, PR_TRUE, pwArg);
|
|
if (pwSpec->client.write_mac_key == NULL ) {
|
|
goto loser; /* loser sets err */
|
|
}
|
|
pwSpec->server.write_mac_key =
|
|
PK11_SymKeyFromHandle(slot, symKey, PK11_OriginDerive,
|
|
CKM_SSL3_SHA1_MAC, returnedKeys.hServerMacSecret, PR_TRUE, pwArg);
|
|
if (pwSpec->server.write_mac_key == NULL ) {
|
|
goto loser; /* loser sets err */
|
|
}
|
|
if (!skipKeysAndIVs) {
|
|
pwSpec->client.write_key =
|
|
PK11_SymKeyFromHandle(slot, symKey, PK11_OriginDerive,
|
|
bulk_mechanism, returnedKeys.hClientKey, PR_TRUE, pwArg);
|
|
if (pwSpec->client.write_key == NULL ) {
|
|
goto loser; /* loser sets err */
|
|
}
|
|
pwSpec->server.write_key =
|
|
PK11_SymKeyFromHandle(slot, symKey, PK11_OriginDerive,
|
|
bulk_mechanism, returnedKeys.hServerKey, PR_TRUE, pwArg);
|
|
if (pwSpec->server.write_key == NULL ) {
|
|
goto loser; /* loser sets err */
|
|
}
|
|
}
|
|
PK11_FreeSymKey(symKey);
|
|
return SECSuccess;
|
|
|
|
|
|
loser:
|
|
if (symKey) PK11_FreeSymKey(symKey);
|
|
ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* ssl3_InitHandshakeHashes creates handshake hash contexts and hashes in
|
|
* buffered messages in ss->ssl3.hs.messages. */
|
|
static SECStatus
|
|
ssl3_InitHandshakeHashes(sslSocket *ss)
|
|
{
|
|
SSL_TRC(30,("%d: SSL3[%d]: start handshake hashes", SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert(ss->ssl3.hs.hashType == handshake_hash_unknown);
|
|
#ifndef NO_PKCS11_BYPASS
|
|
if (ss->opt.bypassPKCS11) {
|
|
PORT_Assert(!ss->ssl3.hs.sha_obj && !ss->ssl3.hs.sha_clone);
|
|
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
|
|
/* If we ever support ciphersuites where the PRF hash isn't SHA-256
|
|
* then this will need to be updated. */
|
|
ss->ssl3.hs.sha_obj = HASH_GetRawHashObject(HASH_AlgSHA256);
|
|
if (!ss->ssl3.hs.sha_obj) {
|
|
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
ss->ssl3.hs.sha_clone = (void (*)(void *, void *))SHA256_Clone;
|
|
ss->ssl3.hs.hashType = handshake_hash_single;
|
|
ss->ssl3.hs.sha_obj->begin(ss->ssl3.hs.sha_cx);
|
|
} else {
|
|
ss->ssl3.hs.hashType = handshake_hash_combo;
|
|
MD5_Begin((MD5Context *)ss->ssl3.hs.md5_cx);
|
|
SHA1_Begin((SHA1Context *)ss->ssl3.hs.sha_cx);
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
PORT_Assert(!ss->ssl3.hs.md5 && !ss->ssl3.hs.sha);
|
|
/*
|
|
* note: We should probably lookup an SSL3 slot for these
|
|
* handshake hashes in hopes that we wind up with the same slots
|
|
* that the master secret will wind up in ...
|
|
*/
|
|
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
|
|
/* If we ever support ciphersuites where the PRF hash isn't SHA-256
|
|
* then this will need to be updated. */
|
|
ss->ssl3.hs.sha = PK11_CreateDigestContext(SEC_OID_SHA256);
|
|
if (ss->ssl3.hs.sha == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
ss->ssl3.hs.hashType = handshake_hash_single;
|
|
|
|
if (PK11_DigestBegin(ss->ssl3.hs.sha) != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* Create a backup SHA-1 hash for a potential client auth
|
|
* signature.
|
|
*
|
|
* In TLS 1.2, ssl3_ComputeHandshakeHashes always uses the
|
|
* handshake hash function (SHA-256). If the server or the client
|
|
* does not support SHA-256 as a signature hash, we can either
|
|
* maintain a backup SHA-1 handshake hash or buffer all handshake
|
|
* messages.
|
|
*/
|
|
if (!ss->sec.isServer) {
|
|
ss->ssl3.hs.backupHash = PK11_CreateDigestContext(SEC_OID_SHA1);
|
|
if (ss->ssl3.hs.backupHash == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (PK11_DigestBegin(ss->ssl3.hs.backupHash) != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
} else {
|
|
/* Both ss->ssl3.hs.md5 and ss->ssl3.hs.sha should be NULL or
|
|
* created successfully. */
|
|
ss->ssl3.hs.md5 = PK11_CreateDigestContext(SEC_OID_MD5);
|
|
if (ss->ssl3.hs.md5 == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
ss->ssl3.hs.sha = PK11_CreateDigestContext(SEC_OID_SHA1);
|
|
if (ss->ssl3.hs.sha == NULL) {
|
|
PK11_DestroyContext(ss->ssl3.hs.md5, PR_TRUE);
|
|
ss->ssl3.hs.md5 = NULL;
|
|
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
ss->ssl3.hs.hashType = handshake_hash_combo;
|
|
|
|
if (PK11_DigestBegin(ss->ssl3.hs.md5) != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
if (PK11_DigestBegin(ss->ssl3.hs.sha) != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ss->ssl3.hs.messages.len > 0) {
|
|
if (ssl3_UpdateHandshakeHashes(ss, ss->ssl3.hs.messages.buf,
|
|
ss->ssl3.hs.messages.len) !=
|
|
SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
PORT_Free(ss->ssl3.hs.messages.buf);
|
|
ss->ssl3.hs.messages.buf = NULL;
|
|
ss->ssl3.hs.messages.len = 0;
|
|
ss->ssl3.hs.messages.space = 0;
|
|
}
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_RestartHandshakeHashes(sslSocket *ss)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
|
|
SSL_TRC(30,("%d: SSL3[%d]: reset handshake hashes",
|
|
SSL_GETPID(), ss->fd ));
|
|
ss->ssl3.hs.hashType = handshake_hash_unknown;
|
|
ss->ssl3.hs.messages.len = 0;
|
|
#ifndef NO_PKCS11_BYPASS
|
|
ss->ssl3.hs.sha_obj = NULL;
|
|
ss->ssl3.hs.sha_clone = NULL;
|
|
#endif
|
|
if (ss->ssl3.hs.md5) {
|
|
PK11_DestroyContext(ss->ssl3.hs.md5,PR_TRUE);
|
|
ss->ssl3.hs.md5 = NULL;
|
|
}
|
|
if (ss->ssl3.hs.sha) {
|
|
PK11_DestroyContext(ss->ssl3.hs.sha,PR_TRUE);
|
|
ss->ssl3.hs.sha = NULL;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Handshake messages
|
|
*/
|
|
/* Called from ssl3_InitHandshakeHashes()
|
|
** ssl3_AppendHandshake()
|
|
** ssl3_StartHandshakeHash()
|
|
** ssl3_HandleV2ClientHello()
|
|
** ssl3_HandleHandshakeMessage()
|
|
** Caller must hold the ssl3Handshake lock.
|
|
*/
|
|
static SECStatus
|
|
ssl3_UpdateHandshakeHashes(sslSocket *ss, const unsigned char *b,
|
|
unsigned int l)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
/* We need to buffer the handshake messages until we have established
|
|
* which handshake hash function to use. */
|
|
if (ss->ssl3.hs.hashType == handshake_hash_unknown) {
|
|
return sslBuffer_Append(&ss->ssl3.hs.messages, b, l);
|
|
}
|
|
|
|
PRINT_BUF(90, (NULL, "handshake hash input:", b, l));
|
|
|
|
#ifndef NO_PKCS11_BYPASS
|
|
if (ss->opt.bypassPKCS11) {
|
|
if (ss->ssl3.hs.hashType == handshake_hash_single) {
|
|
ss->ssl3.hs.sha_obj->update(ss->ssl3.hs.sha_cx, b, l);
|
|
} else {
|
|
MD5_Update((MD5Context *)ss->ssl3.hs.md5_cx, b, l);
|
|
SHA1_Update((SHA1Context *)ss->ssl3.hs.sha_cx, b, l);
|
|
}
|
|
return rv;
|
|
}
|
|
#endif
|
|
if (ss->ssl3.hs.hashType == handshake_hash_single) {
|
|
rv = PK11_DigestOp(ss->ssl3.hs.sha, b, l);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
|
|
return rv;
|
|
}
|
|
if (ss->ssl3.hs.backupHash) {
|
|
rv = PK11_DigestOp(ss->ssl3.hs.backupHash, b, l);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
|
|
return rv;
|
|
}
|
|
}
|
|
} else {
|
|
rv = PK11_DigestOp(ss->ssl3.hs.md5, b, l);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
|
|
return rv;
|
|
}
|
|
rv = PK11_DigestOp(ss->ssl3.hs.sha, b, l);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
|
|
return rv;
|
|
}
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Append Handshake functions.
|
|
* All these functions set appropriate error codes.
|
|
* Most rely on ssl3_AppendHandshake to set the error code.
|
|
**************************************************************************/
|
|
SECStatus
|
|
ssl3_AppendHandshake(sslSocket *ss, const void *void_src, PRInt32 bytes)
|
|
{
|
|
unsigned char * src = (unsigned char *)void_src;
|
|
int room = ss->sec.ci.sendBuf.space - ss->sec.ci.sendBuf.len;
|
|
SECStatus rv;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); /* protects sendBuf. */
|
|
|
|
if (!bytes)
|
|
return SECSuccess;
|
|
if (ss->sec.ci.sendBuf.space < MAX_SEND_BUF_LENGTH && room < bytes) {
|
|
rv = sslBuffer_Grow(&ss->sec.ci.sendBuf, PR_MAX(MIN_SEND_BUF_LENGTH,
|
|
PR_MIN(MAX_SEND_BUF_LENGTH, ss->sec.ci.sendBuf.len + bytes)));
|
|
if (rv != SECSuccess)
|
|
return rv; /* sslBuffer_Grow has set a memory error code. */
|
|
room = ss->sec.ci.sendBuf.space - ss->sec.ci.sendBuf.len;
|
|
}
|
|
|
|
PRINT_BUF(60, (ss, "Append to Handshake", (unsigned char*)void_src, bytes));
|
|
rv = ssl3_UpdateHandshakeHashes(ss, src, bytes);
|
|
if (rv != SECSuccess)
|
|
return rv; /* error code set by ssl3_UpdateHandshakeHashes */
|
|
|
|
while (bytes > room) {
|
|
if (room > 0)
|
|
PORT_Memcpy(ss->sec.ci.sendBuf.buf + ss->sec.ci.sendBuf.len, src,
|
|
room);
|
|
ss->sec.ci.sendBuf.len += room;
|
|
rv = ssl3_FlushHandshake(ss, ssl_SEND_FLAG_FORCE_INTO_BUFFER);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by ssl3_FlushHandshake */
|
|
}
|
|
bytes -= room;
|
|
src += room;
|
|
room = ss->sec.ci.sendBuf.space;
|
|
PORT_Assert(ss->sec.ci.sendBuf.len == 0);
|
|
}
|
|
PORT_Memcpy(ss->sec.ci.sendBuf.buf + ss->sec.ci.sendBuf.len, src, bytes);
|
|
ss->sec.ci.sendBuf.len += bytes;
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
ssl3_AppendHandshakeNumber(sslSocket *ss, PRInt32 num, PRInt32 lenSize)
|
|
{
|
|
SECStatus rv;
|
|
PRUint8 b[4];
|
|
PRUint8 * p = b;
|
|
|
|
PORT_Assert(lenSize <= 4 && lenSize > 0);
|
|
if (lenSize < 4 && num >= (1L << (lenSize * 8))) {
|
|
PORT_SetError(SSL_ERROR_TX_RECORD_TOO_LONG);
|
|
return SECFailure;
|
|
}
|
|
|
|
switch (lenSize) {
|
|
case 4:
|
|
*p++ = (num >> 24) & 0xff;
|
|
case 3:
|
|
*p++ = (num >> 16) & 0xff;
|
|
case 2:
|
|
*p++ = (num >> 8) & 0xff;
|
|
case 1:
|
|
*p = num & 0xff;
|
|
}
|
|
SSL_TRC(60, ("%d: number:", SSL_GETPID()));
|
|
rv = ssl3_AppendHandshake(ss, &b[0], lenSize);
|
|
return rv; /* error code set by AppendHandshake, if applicable. */
|
|
}
|
|
|
|
SECStatus
|
|
ssl3_AppendHandshakeVariable(
|
|
sslSocket *ss, const SSL3Opaque *src, PRInt32 bytes, PRInt32 lenSize)
|
|
{
|
|
SECStatus rv;
|
|
|
|
PORT_Assert((bytes < (1<<8) && lenSize == 1) ||
|
|
(bytes < (1L<<16) && lenSize == 2) ||
|
|
(bytes < (1L<<24) && lenSize == 3));
|
|
|
|
SSL_TRC(60,("%d: append variable:", SSL_GETPID()));
|
|
rv = ssl3_AppendHandshakeNumber(ss, bytes, lenSize);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by AppendHandshake, if applicable. */
|
|
}
|
|
SSL_TRC(60, ("data:"));
|
|
rv = ssl3_AppendHandshake(ss, src, bytes);
|
|
return rv; /* error code set by AppendHandshake, if applicable. */
|
|
}
|
|
|
|
SECStatus
|
|
ssl3_AppendHandshakeHeader(sslSocket *ss, SSL3HandshakeType t, PRUint32 length)
|
|
{
|
|
SECStatus rv;
|
|
|
|
/* If we already have a message in place, we need to enqueue it.
|
|
* This empties the buffer. This is a convenient place to call
|
|
* dtls_StageHandshakeMessage to mark the message boundary.
|
|
*/
|
|
if (IS_DTLS(ss)) {
|
|
rv = dtls_StageHandshakeMessage(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
}
|
|
|
|
SSL_TRC(30,("%d: SSL3[%d]: append handshake header: type %s",
|
|
SSL_GETPID(), ss->fd, ssl3_DecodeHandshakeType(t)));
|
|
|
|
rv = ssl3_AppendHandshakeNumber(ss, t, 1);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by AppendHandshake, if applicable. */
|
|
}
|
|
rv = ssl3_AppendHandshakeNumber(ss, length, 3);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by AppendHandshake, if applicable. */
|
|
}
|
|
|
|
if (IS_DTLS(ss)) {
|
|
/* Note that we make an unfragmented message here. We fragment in the
|
|
* transmission code, if necessary */
|
|
rv = ssl3_AppendHandshakeNumber(ss, ss->ssl3.hs.sendMessageSeq, 2);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by AppendHandshake, if applicable. */
|
|
}
|
|
ss->ssl3.hs.sendMessageSeq++;
|
|
|
|
/* 0 is the fragment offset, because it's not fragmented yet */
|
|
rv = ssl3_AppendHandshakeNumber(ss, 0, 3);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by AppendHandshake, if applicable. */
|
|
}
|
|
|
|
/* Fragment length -- set to the packet length because not fragmented */
|
|
rv = ssl3_AppendHandshakeNumber(ss, length, 3);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by AppendHandshake, if applicable. */
|
|
}
|
|
}
|
|
|
|
return rv; /* error code set by AppendHandshake, if applicable. */
|
|
}
|
|
|
|
/* ssl3_AppendSignatureAndHashAlgorithm appends the serialisation of
|
|
* |sigAndHash| to the current handshake message. */
|
|
SECStatus
|
|
ssl3_AppendSignatureAndHashAlgorithm(
|
|
sslSocket *ss, const SSLSignatureAndHashAlg* sigAndHash)
|
|
{
|
|
PRUint8 serialized[2];
|
|
|
|
serialized[0] = (PRUint8)sigAndHash->hashAlg;
|
|
serialized[1] = (PRUint8)sigAndHash->sigAlg;
|
|
|
|
return ssl3_AppendHandshake(ss, serialized, sizeof(serialized));
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Consume Handshake functions.
|
|
*
|
|
* All data used in these functions is protected by two locks,
|
|
* the RecvBufLock and the SSL3HandshakeLock
|
|
**************************************************************************/
|
|
|
|
/* Read up the next "bytes" number of bytes from the (decrypted) input
|
|
* stream "b" (which is *length bytes long). Copy them into buffer "v".
|
|
* Reduces *length by bytes. Advances *b by bytes.
|
|
*
|
|
* If this function returns SECFailure, it has already sent an alert,
|
|
* and has set a generic error code. The caller should probably
|
|
* override the generic error code by setting another.
|
|
*/
|
|
SECStatus
|
|
ssl3_ConsumeHandshake(sslSocket *ss, void *v, PRInt32 bytes, SSL3Opaque **b,
|
|
PRUint32 *length)
|
|
{
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
if ((PRUint32)bytes > *length) {
|
|
return ssl3_DecodeError(ss);
|
|
}
|
|
PORT_Memcpy(v, *b, bytes);
|
|
PRINT_BUF(60, (ss, "consume bytes:", *b, bytes));
|
|
*b += bytes;
|
|
*length -= bytes;
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* Read up the next "bytes" number of bytes from the (decrypted) input
|
|
* stream "b" (which is *length bytes long), and interpret them as an
|
|
* integer in network byte order. Returns the received value.
|
|
* Reduces *length by bytes. Advances *b by bytes.
|
|
*
|
|
* Returns SECFailure (-1) on failure.
|
|
* This value is indistinguishable from the equivalent received value.
|
|
* Only positive numbers are to be received this way.
|
|
* Thus, the largest value that may be sent this way is 0x7fffffff.
|
|
* On error, an alert has been sent, and a generic error code has been set.
|
|
*/
|
|
PRInt32
|
|
ssl3_ConsumeHandshakeNumber(sslSocket *ss, PRInt32 bytes, SSL3Opaque **b,
|
|
PRUint32 *length)
|
|
{
|
|
PRUint8 *buf = *b;
|
|
int i;
|
|
PRInt32 num = 0;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
PORT_Assert( bytes <= sizeof num);
|
|
|
|
if ((PRUint32)bytes > *length) {
|
|
return ssl3_DecodeError(ss);
|
|
}
|
|
PRINT_BUF(60, (ss, "consume bytes:", *b, bytes));
|
|
|
|
for (i = 0; i < bytes; i++)
|
|
num = (num << 8) + buf[i];
|
|
*b += bytes;
|
|
*length -= bytes;
|
|
return num;
|
|
}
|
|
|
|
/* Read in two values from the incoming decrypted byte stream "b", which is
|
|
* *length bytes long. The first value is a number whose size is "bytes"
|
|
* bytes long. The second value is a byte-string whose size is the value
|
|
* of the first number received. The latter byte-string, and its length,
|
|
* is returned in the SECItem i.
|
|
*
|
|
* Returns SECFailure (-1) on failure.
|
|
* On error, an alert has been sent, and a generic error code has been set.
|
|
*
|
|
* RADICAL CHANGE for NSS 3.11. All callers of this function make copies
|
|
* of the data returned in the SECItem *i, so making a copy of it here
|
|
* is simply wasteful. So, This function now just sets SECItem *i to
|
|
* point to the values in the buffer **b.
|
|
*/
|
|
SECStatus
|
|
ssl3_ConsumeHandshakeVariable(sslSocket *ss, SECItem *i, PRInt32 bytes,
|
|
SSL3Opaque **b, PRUint32 *length)
|
|
{
|
|
PRInt32 count;
|
|
|
|
PORT_Assert(bytes <= 3);
|
|
i->len = 0;
|
|
i->data = NULL;
|
|
i->type = siBuffer;
|
|
count = ssl3_ConsumeHandshakeNumber(ss, bytes, b, length);
|
|
if (count < 0) { /* Can't test for SECSuccess here. */
|
|
return SECFailure;
|
|
}
|
|
if (count > 0) {
|
|
if ((PRUint32)count > *length) {
|
|
return ssl3_DecodeError(ss);
|
|
}
|
|
i->data = *b;
|
|
i->len = count;
|
|
*b += count;
|
|
*length -= count;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* tlsHashOIDMap contains the mapping between TLS hash identifiers and the
|
|
* SECOidTag used internally by NSS. */
|
|
static const struct {
|
|
SSLHashType tlsHash;
|
|
SECOidTag oid;
|
|
} tlsHashOIDMap[] = {
|
|
{ ssl_hash_sha1, SEC_OID_SHA1 },
|
|
{ ssl_hash_sha256, SEC_OID_SHA256 },
|
|
{ ssl_hash_sha384, SEC_OID_SHA384 },
|
|
{ ssl_hash_sha512, SEC_OID_SHA512 }
|
|
};
|
|
|
|
/* ssl3_TLSHashAlgorithmToOID converts a TLS hash identifier into an OID value.
|
|
* If the hash is not recognised, SEC_OID_UNKNOWN is returned.
|
|
*
|
|
* See https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 */
|
|
SECOidTag
|
|
ssl3_TLSHashAlgorithmToOID(SSLHashType hashFunc)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < PR_ARRAY_SIZE(tlsHashOIDMap); i++) {
|
|
if (hashFunc == tlsHashOIDMap[i].tlsHash) {
|
|
return tlsHashOIDMap[i].oid;
|
|
}
|
|
}
|
|
return SEC_OID_UNKNOWN;
|
|
}
|
|
|
|
/* ssl3_TLSSignatureAlgorithmForKeyType returns the TLS 1.2 signature algorithm
|
|
* identifier for a given KeyType. */
|
|
static SECStatus
|
|
ssl3_TLSSignatureAlgorithmForKeyType(KeyType keyType, SSLSignType *out)
|
|
{
|
|
switch (keyType) {
|
|
case rsaKey:
|
|
*out = ssl_sign_rsa;
|
|
return SECSuccess;
|
|
case dsaKey:
|
|
*out = ssl_sign_dsa;
|
|
return SECSuccess;
|
|
case ecKey:
|
|
*out = ssl_sign_ecdsa;
|
|
return SECSuccess;
|
|
default:
|
|
PORT_SetError(SEC_ERROR_INVALID_KEY);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
|
|
/* ssl3_TLSSignatureAlgorithmForCertificate returns the TLS 1.2 signature
|
|
* algorithm identifier for the given certificate. */
|
|
static SECStatus
|
|
ssl3_TLSSignatureAlgorithmForCertificate(CERTCertificate *cert,
|
|
SSLSignType *out)
|
|
{
|
|
SECKEYPublicKey *key;
|
|
KeyType keyType;
|
|
|
|
key = CERT_ExtractPublicKey(cert);
|
|
if (key == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
keyType = key->keyType;
|
|
SECKEY_DestroyPublicKey(key);
|
|
return ssl3_TLSSignatureAlgorithmForKeyType(keyType, out);
|
|
}
|
|
|
|
/* ssl3_CheckSignatureAndHashAlgorithmConsistency checks that the signature
|
|
* algorithm identifier in |sigAndHash| is consistent with the public key in
|
|
* |cert|. It also checks the hash algorithm against the configured signature
|
|
* algorithms. If all the tests pass, SECSuccess is returned. Otherwise,
|
|
* PORT_SetError is called and SECFailure is returned. */
|
|
SECStatus
|
|
ssl3_CheckSignatureAndHashAlgorithmConsistency(
|
|
sslSocket *ss, const SSLSignatureAndHashAlg *sigAndHash,
|
|
CERTCertificate* cert)
|
|
{
|
|
SECStatus rv;
|
|
SSLSignType sigAlg;
|
|
unsigned int i;
|
|
|
|
rv = ssl3_TLSSignatureAlgorithmForCertificate(cert, &sigAlg);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
if (sigAlg != sigAndHash->sigAlg) {
|
|
PORT_SetError(SSL_ERROR_INCORRECT_SIGNATURE_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
|
|
for (i = 0; i < ss->ssl3.signatureAlgorithmCount; ++i) {
|
|
const SSLSignatureAndHashAlg *alg = &ss->ssl3.signatureAlgorithms[i];
|
|
if (sigAndHash->sigAlg == alg->sigAlg &&
|
|
sigAndHash->hashAlg == alg->hashAlg) {
|
|
return SECSuccess;
|
|
}
|
|
}
|
|
PORT_SetError(SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
|
|
PRBool
|
|
ssl3_IsSupportedSignatureAlgorithm(const SSLSignatureAndHashAlg *alg)
|
|
{
|
|
static const SSLHashType supportedHashes[] = {
|
|
ssl_hash_sha1,
|
|
ssl_hash_sha256,
|
|
ssl_hash_sha384,
|
|
ssl_hash_sha512
|
|
};
|
|
|
|
static const SSLSignType supportedSigAlgs[] = {
|
|
ssl_sign_rsa,
|
|
#ifndef NSS_DISABLE_ECC
|
|
ssl_sign_ecdsa,
|
|
#endif
|
|
ssl_sign_dsa
|
|
};
|
|
|
|
unsigned int i;
|
|
PRBool hashOK = PR_FALSE;
|
|
PRBool signOK = PR_FALSE;
|
|
|
|
for (i = 0; i < PR_ARRAY_SIZE(supportedHashes); ++i) {
|
|
if (alg->hashAlg == supportedHashes[i]) {
|
|
hashOK = PR_TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < PR_ARRAY_SIZE(supportedSigAlgs); ++i) {
|
|
if (alg->sigAlg == supportedSigAlgs[i]) {
|
|
signOK = PR_TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return hashOK && signOK;
|
|
}
|
|
|
|
/* ssl3_ConsumeSignatureAndHashAlgorithm reads a SignatureAndHashAlgorithm
|
|
* structure from |b| and puts the resulting value into |out|. |b| and |length|
|
|
* are updated accordingly.
|
|
*
|
|
* See https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 */
|
|
SECStatus
|
|
ssl3_ConsumeSignatureAndHashAlgorithm(sslSocket *ss,
|
|
SSL3Opaque **b,
|
|
PRUint32 *length,
|
|
SSLSignatureAndHashAlg *out)
|
|
{
|
|
PRUint8 bytes[2];
|
|
SECStatus rv;
|
|
|
|
rv = ssl3_ConsumeHandshake(ss, bytes, sizeof(bytes), b, length);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
|
|
out->hashAlg = (SSLHashType)bytes[0];
|
|
out->sigAlg = (SSLSignType)bytes[1];
|
|
if (!ssl3_IsSupportedSignatureAlgorithm(out)) {
|
|
PORT_SetError(SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
/**************************************************************************
|
|
* end of Consume Handshake functions.
|
|
**************************************************************************/
|
|
|
|
/* Extract the hashes of handshake messages to this point.
|
|
* Called from ssl3_SendCertificateVerify
|
|
* ssl3_SendFinished
|
|
* ssl3_HandleHandshakeMessage
|
|
*
|
|
* Caller must hold the SSL3HandshakeLock.
|
|
* Caller must hold a read or write lock on the Spec R/W lock.
|
|
* (There is presently no way to assert on a Read lock.)
|
|
*/
|
|
static SECStatus
|
|
ssl3_ComputeHandshakeHashes(sslSocket * ss,
|
|
ssl3CipherSpec *spec, /* uses ->master_secret */
|
|
SSL3Hashes * hashes, /* output goes here. */
|
|
PRUint32 sender)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
PRBool isTLS = (PRBool)(spec->version > SSL_LIBRARY_VERSION_3_0);
|
|
unsigned int outLength;
|
|
SSL3Opaque md5_inner[MAX_MAC_LENGTH];
|
|
SSL3Opaque sha_inner[MAX_MAC_LENGTH];
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
if (ss->ssl3.hs.hashType == handshake_hash_unknown) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
hashes->hashAlg = ssl_hash_none;
|
|
|
|
#ifndef NO_PKCS11_BYPASS
|
|
if (ss->opt.bypassPKCS11 &&
|
|
ss->ssl3.hs.hashType == handshake_hash_single) {
|
|
/* compute them without PKCS11 */
|
|
PRUint64 sha_cx[MAX_MAC_CONTEXT_LLONGS];
|
|
|
|
ss->ssl3.hs.sha_clone(sha_cx, ss->ssl3.hs.sha_cx);
|
|
ss->ssl3.hs.sha_obj->end(sha_cx, hashes->u.raw, &hashes->len,
|
|
sizeof(hashes->u.raw));
|
|
|
|
PRINT_BUF(60, (NULL, "SHA-256: result", hashes->u.raw, hashes->len));
|
|
|
|
/* If we ever support ciphersuites where the PRF hash isn't SHA-256
|
|
* then this will need to be updated. */
|
|
hashes->hashAlg = ssl_hash_sha256;
|
|
rv = SECSuccess;
|
|
} else if (ss->opt.bypassPKCS11) {
|
|
/* compute them without PKCS11 */
|
|
PRUint64 md5_cx[MAX_MAC_CONTEXT_LLONGS];
|
|
PRUint64 sha_cx[MAX_MAC_CONTEXT_LLONGS];
|
|
|
|
#define md5cx ((MD5Context *)md5_cx)
|
|
#define shacx ((SHA1Context *)sha_cx)
|
|
|
|
MD5_Clone (md5cx, (MD5Context *)ss->ssl3.hs.md5_cx);
|
|
SHA1_Clone(shacx, (SHA1Context *)ss->ssl3.hs.sha_cx);
|
|
|
|
if (!isTLS) {
|
|
/* compute hashes for SSL3. */
|
|
unsigned char s[4];
|
|
|
|
if (!spec->msItem.data) {
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HANDSHAKE);
|
|
return SECFailure;
|
|
}
|
|
|
|
s[0] = (unsigned char)(sender >> 24);
|
|
s[1] = (unsigned char)(sender >> 16);
|
|
s[2] = (unsigned char)(sender >> 8);
|
|
s[3] = (unsigned char)sender;
|
|
|
|
if (sender != 0) {
|
|
MD5_Update(md5cx, s, 4);
|
|
PRINT_BUF(95, (NULL, "MD5 inner: sender", s, 4));
|
|
}
|
|
|
|
PRINT_BUF(95, (NULL, "MD5 inner: MAC Pad 1", mac_pad_1,
|
|
mac_defs[mac_md5].pad_size));
|
|
|
|
MD5_Update(md5cx, spec->msItem.data, spec->msItem.len);
|
|
MD5_Update(md5cx, mac_pad_1, mac_defs[mac_md5].pad_size);
|
|
MD5_End(md5cx, md5_inner, &outLength, MD5_LENGTH);
|
|
|
|
PRINT_BUF(95, (NULL, "MD5 inner: result", md5_inner, outLength));
|
|
|
|
if (sender != 0) {
|
|
SHA1_Update(shacx, s, 4);
|
|
PRINT_BUF(95, (NULL, "SHA inner: sender", s, 4));
|
|
}
|
|
|
|
PRINT_BUF(95, (NULL, "SHA inner: MAC Pad 1", mac_pad_1,
|
|
mac_defs[mac_sha].pad_size));
|
|
|
|
SHA1_Update(shacx, spec->msItem.data, spec->msItem.len);
|
|
SHA1_Update(shacx, mac_pad_1, mac_defs[mac_sha].pad_size);
|
|
SHA1_End(shacx, sha_inner, &outLength, SHA1_LENGTH);
|
|
|
|
PRINT_BUF(95, (NULL, "SHA inner: result", sha_inner, outLength));
|
|
PRINT_BUF(95, (NULL, "MD5 outer: MAC Pad 2", mac_pad_2,
|
|
mac_defs[mac_md5].pad_size));
|
|
PRINT_BUF(95, (NULL, "MD5 outer: MD5 inner", md5_inner, MD5_LENGTH));
|
|
|
|
MD5_Begin(md5cx);
|
|
MD5_Update(md5cx, spec->msItem.data, spec->msItem.len);
|
|
MD5_Update(md5cx, mac_pad_2, mac_defs[mac_md5].pad_size);
|
|
MD5_Update(md5cx, md5_inner, MD5_LENGTH);
|
|
}
|
|
MD5_End(md5cx, hashes->u.s.md5, &outLength, MD5_LENGTH);
|
|
|
|
PRINT_BUF(60, (NULL, "MD5 outer: result", hashes->u.s.md5, MD5_LENGTH));
|
|
|
|
if (!isTLS) {
|
|
PRINT_BUF(95, (NULL, "SHA outer: MAC Pad 2", mac_pad_2,
|
|
mac_defs[mac_sha].pad_size));
|
|
PRINT_BUF(95, (NULL, "SHA outer: SHA inner", sha_inner, SHA1_LENGTH));
|
|
|
|
SHA1_Begin(shacx);
|
|
SHA1_Update(shacx, spec->msItem.data, spec->msItem.len);
|
|
SHA1_Update(shacx, mac_pad_2, mac_defs[mac_sha].pad_size);
|
|
SHA1_Update(shacx, sha_inner, SHA1_LENGTH);
|
|
}
|
|
SHA1_End(shacx, hashes->u.s.sha, &outLength, SHA1_LENGTH);
|
|
|
|
PRINT_BUF(60, (NULL, "SHA outer: result", hashes->u.s.sha, SHA1_LENGTH));
|
|
|
|
hashes->len = MD5_LENGTH + SHA1_LENGTH;
|
|
rv = SECSuccess;
|
|
#undef md5cx
|
|
#undef shacx
|
|
} else
|
|
#endif
|
|
if (ss->ssl3.hs.hashType == handshake_hash_single) {
|
|
/* compute hashes with PKCS11 */
|
|
PK11Context *h;
|
|
unsigned int stateLen;
|
|
unsigned char stackBuf[1024];
|
|
unsigned char *stateBuf = NULL;
|
|
|
|
h = ss->ssl3.hs.sha;
|
|
stateBuf = PK11_SaveContextAlloc(h, stackBuf,
|
|
sizeof(stackBuf), &stateLen);
|
|
if (stateBuf == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
|
|
goto tls12_loser;
|
|
}
|
|
rv |= PK11_DigestFinal(h, hashes->u.raw, &hashes->len,
|
|
sizeof(hashes->u.raw));
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
|
|
rv = SECFailure;
|
|
goto tls12_loser;
|
|
}
|
|
/* If we ever support ciphersuites where the PRF hash isn't SHA-256
|
|
* then this will need to be updated. */
|
|
hashes->hashAlg = ssl_hash_sha256;
|
|
rv = SECSuccess;
|
|
|
|
tls12_loser:
|
|
if (stateBuf) {
|
|
if (PK11_RestoreContext(h, stateBuf, stateLen) != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
|
|
rv = SECFailure;
|
|
}
|
|
if (stateBuf != stackBuf) {
|
|
PORT_ZFree(stateBuf, stateLen);
|
|
}
|
|
}
|
|
} else {
|
|
/* compute hashes with PKCS11 */
|
|
PK11Context * md5;
|
|
PK11Context * sha = NULL;
|
|
unsigned char *md5StateBuf = NULL;
|
|
unsigned char *shaStateBuf = NULL;
|
|
unsigned int md5StateLen, shaStateLen;
|
|
unsigned char md5StackBuf[256];
|
|
unsigned char shaStackBuf[512];
|
|
|
|
md5StateBuf = PK11_SaveContextAlloc(ss->ssl3.hs.md5, md5StackBuf,
|
|
sizeof md5StackBuf, &md5StateLen);
|
|
if (md5StateBuf == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
|
|
goto loser;
|
|
}
|
|
md5 = ss->ssl3.hs.md5;
|
|
|
|
shaStateBuf = PK11_SaveContextAlloc(ss->ssl3.hs.sha, shaStackBuf,
|
|
sizeof shaStackBuf, &shaStateLen);
|
|
if (shaStateBuf == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
|
|
goto loser;
|
|
}
|
|
sha = ss->ssl3.hs.sha;
|
|
|
|
if (!isTLS) {
|
|
/* compute hashes for SSL3. */
|
|
unsigned char s[4];
|
|
|
|
if (!spec->master_secret) {
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HANDSHAKE);
|
|
return SECFailure;
|
|
}
|
|
|
|
s[0] = (unsigned char)(sender >> 24);
|
|
s[1] = (unsigned char)(sender >> 16);
|
|
s[2] = (unsigned char)(sender >> 8);
|
|
s[3] = (unsigned char)sender;
|
|
|
|
if (sender != 0) {
|
|
rv |= PK11_DigestOp(md5, s, 4);
|
|
PRINT_BUF(95, (NULL, "MD5 inner: sender", s, 4));
|
|
}
|
|
|
|
PRINT_BUF(95, (NULL, "MD5 inner: MAC Pad 1", mac_pad_1,
|
|
mac_defs[mac_md5].pad_size));
|
|
|
|
rv |= PK11_DigestKey(md5,spec->master_secret);
|
|
rv |= PK11_DigestOp(md5, mac_pad_1, mac_defs[mac_md5].pad_size);
|
|
rv |= PK11_DigestFinal(md5, md5_inner, &outLength, MD5_LENGTH);
|
|
PORT_Assert(rv != SECSuccess || outLength == MD5_LENGTH);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
|
|
rv = SECFailure;
|
|
goto loser;
|
|
}
|
|
|
|
PRINT_BUF(95, (NULL, "MD5 inner: result", md5_inner, outLength));
|
|
|
|
if (sender != 0) {
|
|
rv |= PK11_DigestOp(sha, s, 4);
|
|
PRINT_BUF(95, (NULL, "SHA inner: sender", s, 4));
|
|
}
|
|
|
|
PRINT_BUF(95, (NULL, "SHA inner: MAC Pad 1", mac_pad_1,
|
|
mac_defs[mac_sha].pad_size));
|
|
|
|
rv |= PK11_DigestKey(sha, spec->master_secret);
|
|
rv |= PK11_DigestOp(sha, mac_pad_1, mac_defs[mac_sha].pad_size);
|
|
rv |= PK11_DigestFinal(sha, sha_inner, &outLength, SHA1_LENGTH);
|
|
PORT_Assert(rv != SECSuccess || outLength == SHA1_LENGTH);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
|
|
rv = SECFailure;
|
|
goto loser;
|
|
}
|
|
|
|
PRINT_BUF(95, (NULL, "SHA inner: result", sha_inner, outLength));
|
|
|
|
PRINT_BUF(95, (NULL, "MD5 outer: MAC Pad 2", mac_pad_2,
|
|
mac_defs[mac_md5].pad_size));
|
|
PRINT_BUF(95, (NULL, "MD5 outer: MD5 inner", md5_inner, MD5_LENGTH));
|
|
|
|
rv |= PK11_DigestBegin(md5);
|
|
rv |= PK11_DigestKey(md5, spec->master_secret);
|
|
rv |= PK11_DigestOp(md5, mac_pad_2, mac_defs[mac_md5].pad_size);
|
|
rv |= PK11_DigestOp(md5, md5_inner, MD5_LENGTH);
|
|
}
|
|
rv |= PK11_DigestFinal(md5, hashes->u.s.md5, &outLength, MD5_LENGTH);
|
|
PORT_Assert(rv != SECSuccess || outLength == MD5_LENGTH);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
|
|
rv = SECFailure;
|
|
goto loser;
|
|
}
|
|
|
|
PRINT_BUF(60, (NULL, "MD5 outer: result", hashes->u.s.md5, MD5_LENGTH));
|
|
|
|
if (!isTLS) {
|
|
PRINT_BUF(95, (NULL, "SHA outer: MAC Pad 2", mac_pad_2,
|
|
mac_defs[mac_sha].pad_size));
|
|
PRINT_BUF(95, (NULL, "SHA outer: SHA inner", sha_inner, SHA1_LENGTH));
|
|
|
|
rv |= PK11_DigestBegin(sha);
|
|
rv |= PK11_DigestKey(sha,spec->master_secret);
|
|
rv |= PK11_DigestOp(sha, mac_pad_2, mac_defs[mac_sha].pad_size);
|
|
rv |= PK11_DigestOp(sha, sha_inner, SHA1_LENGTH);
|
|
}
|
|
rv |= PK11_DigestFinal(sha, hashes->u.s.sha, &outLength, SHA1_LENGTH);
|
|
PORT_Assert(rv != SECSuccess || outLength == SHA1_LENGTH);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
|
|
rv = SECFailure;
|
|
goto loser;
|
|
}
|
|
|
|
PRINT_BUF(60, (NULL, "SHA outer: result", hashes->u.s.sha, SHA1_LENGTH));
|
|
|
|
hashes->len = MD5_LENGTH + SHA1_LENGTH;
|
|
rv = SECSuccess;
|
|
|
|
loser:
|
|
if (md5StateBuf) {
|
|
if (PK11_RestoreContext(ss->ssl3.hs.md5, md5StateBuf, md5StateLen)
|
|
!= SECSuccess)
|
|
{
|
|
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
|
|
rv = SECFailure;
|
|
}
|
|
if (md5StateBuf != md5StackBuf) {
|
|
PORT_ZFree(md5StateBuf, md5StateLen);
|
|
}
|
|
}
|
|
if (shaStateBuf) {
|
|
if (PK11_RestoreContext(ss->ssl3.hs.sha, shaStateBuf, shaStateLen)
|
|
!= SECSuccess)
|
|
{
|
|
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
|
|
rv = SECFailure;
|
|
}
|
|
if (shaStateBuf != shaStackBuf) {
|
|
PORT_ZFree(shaStateBuf, shaStateLen);
|
|
}
|
|
}
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_ComputeBackupHandshakeHashes(sslSocket * ss,
|
|
SSL3Hashes * hashes) /* output goes here. */
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
PORT_Assert( !ss->sec.isServer );
|
|
PORT_Assert( ss->ssl3.hs.hashType == handshake_hash_single );
|
|
|
|
rv = PK11_DigestFinal(ss->ssl3.hs.backupHash, hashes->u.raw, &hashes->len,
|
|
sizeof(hashes->u.raw));
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
|
|
rv = SECFailure;
|
|
goto loser;
|
|
}
|
|
hashes->hashAlg = ssl_hash_sha1;
|
|
|
|
loser:
|
|
PK11_DestroyContext(ss->ssl3.hs.backupHash, PR_TRUE);
|
|
ss->ssl3.hs.backupHash = NULL;
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* SSL 2 based implementations pass in the initial outbound buffer
|
|
* so that the handshake hash can contain the included information.
|
|
*
|
|
* Called from ssl2_BeginClientHandshake() in sslcon.c
|
|
*/
|
|
SECStatus
|
|
ssl3_StartHandshakeHash(sslSocket *ss, unsigned char * buf, int length)
|
|
{
|
|
SECStatus rv;
|
|
|
|
ssl_GetSSL3HandshakeLock(ss); /**************************************/
|
|
|
|
rv = ssl3_InitState(ss);
|
|
if (rv != SECSuccess) {
|
|
goto done; /* ssl3_InitState has set the error code. */
|
|
}
|
|
rv = ssl3_RestartHandshakeHashes(ss);
|
|
if (rv != SECSuccess) {
|
|
goto done;
|
|
}
|
|
|
|
PORT_Memset(&ss->ssl3.hs.client_random, 0, SSL3_RANDOM_LENGTH);
|
|
PORT_Memcpy(
|
|
&ss->ssl3.hs.client_random.rand[SSL3_RANDOM_LENGTH - SSL_CHALLENGE_BYTES],
|
|
&ss->sec.ci.clientChallenge,
|
|
SSL_CHALLENGE_BYTES);
|
|
|
|
rv = ssl3_UpdateHandshakeHashes(ss, buf, length);
|
|
/* if it failed, ssl3_UpdateHandshakeHashes has set the error code. */
|
|
|
|
done:
|
|
ssl_ReleaseSSL3HandshakeLock(ss); /**************************************/
|
|
return rv;
|
|
}
|
|
|
|
/**************************************************************************
|
|
* end of Handshake Hash functions.
|
|
* Begin Send and Handle functions for handshakes.
|
|
**************************************************************************/
|
|
|
|
/* Called from ssl3_HandleHelloRequest(),
|
|
* ssl3_RedoHandshake()
|
|
* ssl2_BeginClientHandshake (when resuming ssl3 session)
|
|
* dtls_HandleHelloVerifyRequest(with resending=PR_TRUE)
|
|
*/
|
|
SECStatus
|
|
ssl3_SendClientHello(sslSocket *ss, PRBool resending)
|
|
{
|
|
sslSessionID * sid;
|
|
ssl3CipherSpec * cwSpec;
|
|
SECStatus rv;
|
|
int i;
|
|
int length;
|
|
int num_suites;
|
|
int actual_count = 0;
|
|
PRBool isTLS = PR_FALSE;
|
|
PRBool requestingResume = PR_FALSE, fallbackSCSV = PR_FALSE;
|
|
PRInt32 total_exten_len = 0;
|
|
unsigned paddingExtensionLen;
|
|
unsigned numCompressionMethods;
|
|
PRInt32 flags;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: send client_hello handshake", SSL_GETPID(),
|
|
ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) );
|
|
|
|
rv = ssl3_InitState(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* ssl3_InitState has set the error code. */
|
|
}
|
|
/* These must be reset every handshake. */
|
|
ss->ssl3.hs.sendingSCSV = PR_FALSE;
|
|
ss->ssl3.hs.preliminaryInfo = 0;
|
|
PORT_Assert(IS_DTLS(ss) || !resending);
|
|
|
|
SECITEM_FreeItem(&ss->ssl3.hs.newSessionTicket.ticket, PR_FALSE);
|
|
ss->ssl3.hs.receivedNewSessionTicket = PR_FALSE;
|
|
|
|
/* We might be starting a session renegotiation in which case we should
|
|
* clear previous state.
|
|
*/
|
|
PORT_Memset(&ss->xtnData, 0, sizeof(TLSExtensionData));
|
|
|
|
rv = ssl3_RestartHandshakeHashes(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* During a renegotiation, ss->clientHelloVersion will be used again to
|
|
* work around a Windows SChannel bug. Ensure that it is still enabled.
|
|
*/
|
|
if (ss->firstHsDone) {
|
|
if (SSL3_ALL_VERSIONS_DISABLED(&ss->vrange)) {
|
|
PORT_SetError(SSL_ERROR_SSL_DISABLED);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (ss->clientHelloVersion < ss->vrange.min ||
|
|
ss->clientHelloVersion > ss->vrange.max) {
|
|
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
|
|
/* We ignore ss->sec.ci.sid here, and use ssl_Lookup because Lookup
|
|
* handles expired entries and other details.
|
|
* XXX If we've been called from ssl2_BeginClientHandshake, then
|
|
* this lookup is duplicative and wasteful.
|
|
*/
|
|
sid = (ss->opt.noCache) ? NULL
|
|
: ssl_LookupSID(&ss->sec.ci.peer, ss->sec.ci.port, ss->peerID, ss->url);
|
|
|
|
/* We can't resume based on a different token. If the sid exists,
|
|
* make sure the token that holds the master secret still exists ...
|
|
* If we previously did client-auth, make sure that the token that holds
|
|
* the private key still exists, is logged in, hasn't been removed, etc.
|
|
*/
|
|
if (sid) {
|
|
PRBool sidOK = PR_TRUE;
|
|
if (sid->u.ssl3.keys.msIsWrapped) {
|
|
/* Session key was wrapped, which means it was using PKCS11, */
|
|
PK11SlotInfo *slot = NULL;
|
|
if (sid->u.ssl3.masterValid && !ss->opt.bypassPKCS11) {
|
|
slot = SECMOD_LookupSlot(sid->u.ssl3.masterModuleID,
|
|
sid->u.ssl3.masterSlotID);
|
|
}
|
|
if (slot == NULL) {
|
|
sidOK = PR_FALSE;
|
|
} else {
|
|
PK11SymKey *wrapKey = NULL;
|
|
if (!PK11_IsPresent(slot) ||
|
|
((wrapKey = PK11_GetWrapKey(slot,
|
|
sid->u.ssl3.masterWrapIndex,
|
|
sid->u.ssl3.masterWrapMech,
|
|
sid->u.ssl3.masterWrapSeries,
|
|
ss->pkcs11PinArg)) == NULL) ) {
|
|
sidOK = PR_FALSE;
|
|
}
|
|
if (wrapKey) PK11_FreeSymKey(wrapKey);
|
|
PK11_FreeSlot(slot);
|
|
slot = NULL;
|
|
}
|
|
}
|
|
/* If we previously did client-auth, make sure that the token that
|
|
** holds the private key still exists, is logged in, hasn't been
|
|
** removed, etc.
|
|
*/
|
|
if (sidOK && !ssl3_ClientAuthTokenPresent(sid)) {
|
|
sidOK = PR_FALSE;
|
|
}
|
|
|
|
if (sidOK) {
|
|
/* Set ss->version based on the session cache */
|
|
if (ss->firstHsDone) {
|
|
/*
|
|
* Windows SChannel compares the client_version inside the RSA
|
|
* EncryptedPreMasterSecret of a renegotiation with the
|
|
* client_version of the initial ClientHello rather than the
|
|
* ClientHello in the renegotiation. To work around this bug, we
|
|
* continue to use the client_version used in the initial
|
|
* ClientHello when renegotiating.
|
|
*
|
|
* The client_version of the initial ClientHello is still
|
|
* available in ss->clientHelloVersion. Ensure that
|
|
* sid->version is bounded within
|
|
* [ss->vrange.min, ss->clientHelloVersion], otherwise we
|
|
* can't use sid.
|
|
*/
|
|
if (sid->version >= ss->vrange.min &&
|
|
sid->version <= ss->clientHelloVersion) {
|
|
ss->version = ss->clientHelloVersion;
|
|
} else {
|
|
sidOK = PR_FALSE;
|
|
}
|
|
} else {
|
|
/*
|
|
* Check sid->version is OK first.
|
|
* Previously, we would cap the version based on sid->version,
|
|
* but that prevents negotiation of a higher version if the
|
|
* previous session was reduced (e.g., with version fallback)
|
|
*/
|
|
if (sid->version < ss->vrange.min ||
|
|
sid->version > ss->vrange.max) {
|
|
sidOK = PR_FALSE;
|
|
} else {
|
|
rv = ssl3_NegotiateVersion(ss, SSL_LIBRARY_VERSION_MAX_SUPPORTED,
|
|
PR_TRUE);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code was set */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!sidOK) {
|
|
SSL_AtomicIncrementLong(& ssl3stats.sch_sid_cache_not_ok );
|
|
if (ss->sec.uncache)
|
|
(*ss->sec.uncache)(sid);
|
|
ssl_FreeSID(sid);
|
|
sid = NULL;
|
|
}
|
|
}
|
|
|
|
if (sid) {
|
|
requestingResume = PR_TRUE;
|
|
SSL_AtomicIncrementLong(& ssl3stats.sch_sid_cache_hits );
|
|
|
|
PRINT_BUF(4, (ss, "client, found session-id:", sid->u.ssl3.sessionID,
|
|
sid->u.ssl3.sessionIDLength));
|
|
|
|
ss->ssl3.policy = sid->u.ssl3.policy;
|
|
} else {
|
|
SSL_AtomicIncrementLong(& ssl3stats.sch_sid_cache_misses );
|
|
|
|
/*
|
|
* Windows SChannel compares the client_version inside the RSA
|
|
* EncryptedPreMasterSecret of a renegotiation with the
|
|
* client_version of the initial ClientHello rather than the
|
|
* ClientHello in the renegotiation. To work around this bug, we
|
|
* continue to use the client_version used in the initial
|
|
* ClientHello when renegotiating.
|
|
*/
|
|
if (ss->firstHsDone) {
|
|
ss->version = ss->clientHelloVersion;
|
|
} else {
|
|
rv = ssl3_NegotiateVersion(ss, SSL_LIBRARY_VERSION_MAX_SUPPORTED,
|
|
PR_TRUE);
|
|
if (rv != SECSuccess)
|
|
return rv; /* error code was set */
|
|
}
|
|
|
|
sid = ssl3_NewSessionID(ss, PR_FALSE);
|
|
if (!sid) {
|
|
return SECFailure; /* memory error is set */
|
|
}
|
|
}
|
|
|
|
isTLS = (ss->version > SSL_LIBRARY_VERSION_3_0);
|
|
ssl_GetSpecWriteLock(ss);
|
|
cwSpec = ss->ssl3.cwSpec;
|
|
if (cwSpec->mac_def->mac == mac_null) {
|
|
/* SSL records are not being MACed. */
|
|
cwSpec->version = ss->version;
|
|
}
|
|
ssl_ReleaseSpecWriteLock(ss);
|
|
|
|
if (ss->sec.ci.sid != NULL) {
|
|
ssl_FreeSID(ss->sec.ci.sid); /* decrement ref count, free if zero */
|
|
}
|
|
ss->sec.ci.sid = sid;
|
|
|
|
ss->sec.send = ssl3_SendApplicationData;
|
|
|
|
/* shouldn't get here if SSL3 is disabled, but ... */
|
|
if (SSL3_ALL_VERSIONS_DISABLED(&ss->vrange)) {
|
|
PR_NOT_REACHED("No versions of SSL 3.0 or later are enabled");
|
|
PORT_SetError(SSL_ERROR_SSL_DISABLED);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* how many suites does our PKCS11 support (regardless of policy)? */
|
|
num_suites = ssl3_config_match_init(ss);
|
|
if (!num_suites)
|
|
return SECFailure; /* ssl3_config_match_init has set error code. */
|
|
|
|
/* HACK for SCSV in SSL 3.0. On initial handshake, prepend SCSV,
|
|
* only if TLS is disabled.
|
|
*/
|
|
if (!ss->firstHsDone && !isTLS) {
|
|
/* Must set this before calling Hello Extension Senders,
|
|
* to suppress sending of empty RI extension.
|
|
*/
|
|
ss->ssl3.hs.sendingSCSV = PR_TRUE;
|
|
}
|
|
|
|
/* When we attempt session resumption (only), we must lock the sid to
|
|
* prevent races with other resumption connections that receive a
|
|
* NewSessionTicket that will cause the ticket in the sid to be replaced.
|
|
* Once we've copied the session ticket into our ClientHello message, it
|
|
* is OK for the ticket to change, so we just need to make sure we hold
|
|
* the lock across the calls to ssl3_CallHelloExtensionSenders.
|
|
*/
|
|
if (sid->u.ssl3.lock) {
|
|
PR_RWLock_Rlock(sid->u.ssl3.lock);
|
|
}
|
|
|
|
if (isTLS || (ss->firstHsDone && ss->peerRequestedProtection)) {
|
|
PRUint32 maxBytes = 65535; /* 2^16 - 1 */
|
|
PRInt32 extLen;
|
|
|
|
extLen = ssl3_CallHelloExtensionSenders(ss, PR_FALSE, maxBytes, NULL);
|
|
if (extLen < 0) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return SECFailure;
|
|
}
|
|
total_exten_len += extLen;
|
|
|
|
if (total_exten_len > 0)
|
|
total_exten_len += 2;
|
|
}
|
|
|
|
#ifndef NSS_DISABLE_ECC
|
|
if (!total_exten_len || !isTLS) {
|
|
/* not sending the elliptic_curves and ec_point_formats extensions */
|
|
ssl3_DisableECCSuites(ss, NULL); /* disable all ECC suites */
|
|
}
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
if (IS_DTLS(ss)) {
|
|
ssl3_DisableNonDTLSSuites(ss);
|
|
}
|
|
|
|
/* how many suites are permitted by policy and user preference? */
|
|
num_suites = count_cipher_suites(ss, ss->ssl3.policy, PR_TRUE);
|
|
if (!num_suites) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return SECFailure; /* count_cipher_suites has set error code. */
|
|
}
|
|
|
|
fallbackSCSV = ss->opt.enableFallbackSCSV && (!requestingResume ||
|
|
ss->version < sid->version);
|
|
/* make room for SCSV */
|
|
if (ss->ssl3.hs.sendingSCSV) {
|
|
++num_suites;
|
|
}
|
|
if (fallbackSCSV) {
|
|
++num_suites;
|
|
}
|
|
|
|
/* count compression methods */
|
|
numCompressionMethods = 0;
|
|
for (i = 0; i < compressionMethodsCount; i++) {
|
|
if (compressionEnabled(ss, compressions[i]))
|
|
numCompressionMethods++;
|
|
}
|
|
|
|
length = sizeof(SSL3ProtocolVersion) + SSL3_RANDOM_LENGTH +
|
|
1 + ((sid == NULL) ? 0 : sid->u.ssl3.sessionIDLength) +
|
|
2 + num_suites*sizeof(ssl3CipherSuite) +
|
|
1 + numCompressionMethods + total_exten_len;
|
|
if (IS_DTLS(ss)) {
|
|
length += 1 + ss->ssl3.hs.cookieLen;
|
|
}
|
|
|
|
/* A padding extension may be included to ensure that the record containing
|
|
* the ClientHello doesn't have a length between 256 and 511 bytes
|
|
* (inclusive). Initial, ClientHello records with such lengths trigger bugs
|
|
* in F5 devices.
|
|
*
|
|
* This is not done for DTLS nor for renegotiation. */
|
|
if (!IS_DTLS(ss) && isTLS && !ss->firstHsDone) {
|
|
paddingExtensionLen = ssl3_CalculatePaddingExtensionLength(length);
|
|
total_exten_len += paddingExtensionLen;
|
|
length += paddingExtensionLen;
|
|
} else {
|
|
paddingExtensionLen = 0;
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeHeader(ss, client_hello, length);
|
|
if (rv != SECSuccess) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return rv; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
|
|
if (ss->firstHsDone) {
|
|
/* The client hello version must stay unchanged to work around
|
|
* the Windows SChannel bug described above. */
|
|
PORT_Assert(ss->version == ss->clientHelloVersion);
|
|
}
|
|
ss->clientHelloVersion = ss->version;
|
|
if (IS_DTLS(ss)) {
|
|
PRUint16 version;
|
|
|
|
version = dtls_TLSVersionToDTLSVersion(ss->clientHelloVersion);
|
|
rv = ssl3_AppendHandshakeNumber(ss, version, 2);
|
|
} else {
|
|
rv = ssl3_AppendHandshakeNumber(ss, ss->clientHelloVersion, 2);
|
|
}
|
|
if (rv != SECSuccess) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return rv; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
|
|
if (!resending) { /* Don't re-generate if we are in DTLS re-sending mode */
|
|
rv = ssl3_GetNewRandom(&ss->ssl3.hs.client_random);
|
|
if (rv != SECSuccess) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return rv; /* err set by GetNewRandom. */
|
|
}
|
|
}
|
|
rv = ssl3_AppendHandshake(ss, &ss->ssl3.hs.client_random,
|
|
SSL3_RANDOM_LENGTH);
|
|
if (rv != SECSuccess) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return rv; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
|
|
if (sid)
|
|
rv = ssl3_AppendHandshakeVariable(
|
|
ss, sid->u.ssl3.sessionID, sid->u.ssl3.sessionIDLength, 1);
|
|
else
|
|
rv = ssl3_AppendHandshakeNumber(ss, 0, 1);
|
|
if (rv != SECSuccess) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return rv; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
|
|
if (IS_DTLS(ss)) {
|
|
rv = ssl3_AppendHandshakeVariable(
|
|
ss, ss->ssl3.hs.cookie, ss->ssl3.hs.cookieLen, 1);
|
|
if (rv != SECSuccess) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return rv; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeNumber(ss, num_suites*sizeof(ssl3CipherSuite), 2);
|
|
if (rv != SECSuccess) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return rv; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
|
|
if (ss->ssl3.hs.sendingSCSV) {
|
|
/* Add the actual SCSV */
|
|
rv = ssl3_AppendHandshakeNumber(ss, TLS_EMPTY_RENEGOTIATION_INFO_SCSV,
|
|
sizeof(ssl3CipherSuite));
|
|
if (rv != SECSuccess) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return rv; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
actual_count++;
|
|
}
|
|
if (fallbackSCSV) {
|
|
rv = ssl3_AppendHandshakeNumber(ss, TLS_FALLBACK_SCSV,
|
|
sizeof(ssl3CipherSuite));
|
|
if (rv != SECSuccess) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return rv; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
actual_count++;
|
|
}
|
|
for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) {
|
|
ssl3CipherSuiteCfg *suite = &ss->cipherSuites[i];
|
|
if (config_match(suite, ss->ssl3.policy, PR_TRUE, &ss->vrange, ss)) {
|
|
actual_count++;
|
|
if (actual_count > num_suites) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
/* set error card removal/insertion error */
|
|
PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_AppendHandshakeNumber(ss, suite->cipher_suite,
|
|
sizeof(ssl3CipherSuite));
|
|
if (rv != SECSuccess) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return rv; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if cards were removed or inserted between count_cipher_suites and
|
|
* generating our list, detect the error here rather than send it off to
|
|
* the server.. */
|
|
if (actual_count != num_suites) {
|
|
/* Card removal/insertion error */
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL);
|
|
return SECFailure;
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeNumber(ss, numCompressionMethods, 1);
|
|
if (rv != SECSuccess) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return rv; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
for (i = 0; i < compressionMethodsCount; i++) {
|
|
if (!compressionEnabled(ss, compressions[i]))
|
|
continue;
|
|
rv = ssl3_AppendHandshakeNumber(ss, compressions[i], 1);
|
|
if (rv != SECSuccess) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return rv; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
}
|
|
|
|
if (total_exten_len) {
|
|
PRUint32 maxBytes = total_exten_len - 2;
|
|
PRInt32 extLen;
|
|
|
|
rv = ssl3_AppendHandshakeNumber(ss, maxBytes, 2);
|
|
if (rv != SECSuccess) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
|
|
extLen = ssl3_CallHelloExtensionSenders(ss, PR_TRUE, maxBytes, NULL);
|
|
if (extLen < 0) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return SECFailure;
|
|
}
|
|
maxBytes -= extLen;
|
|
|
|
extLen = ssl3_AppendPaddingExtension(ss, paddingExtensionLen, maxBytes);
|
|
if (extLen < 0) {
|
|
if (sid->u.ssl3.lock) { PR_RWLock_Unlock(sid->u.ssl3.lock); }
|
|
return SECFailure;
|
|
}
|
|
maxBytes -= extLen;
|
|
|
|
PORT_Assert(!maxBytes);
|
|
}
|
|
|
|
if (sid->u.ssl3.lock) {
|
|
PR_RWLock_Unlock(sid->u.ssl3.lock);
|
|
}
|
|
|
|
if (ss->xtnData.sentSessionTicketInClientHello) {
|
|
SSL_AtomicIncrementLong(&ssl3stats.sch_sid_stateless_resumes);
|
|
}
|
|
|
|
if (ss->ssl3.hs.sendingSCSV) {
|
|
/* Since we sent the SCSV, pretend we sent empty RI extension. */
|
|
TLSExtensionData *xtnData = &ss->xtnData;
|
|
xtnData->advertised[xtnData->numAdvertised++] =
|
|
ssl_renegotiation_info_xtn;
|
|
}
|
|
|
|
flags = 0;
|
|
if (!ss->firstHsDone && !IS_DTLS(ss)) {
|
|
flags |= ssl_SEND_FLAG_CAP_RECORD_VERSION;
|
|
}
|
|
rv = ssl3_FlushHandshake(ss, flags);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by ssl3_FlushHandshake */
|
|
}
|
|
|
|
ss->ssl3.hs.ws = wait_server_hello;
|
|
return rv;
|
|
}
|
|
|
|
|
|
/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete
|
|
* ssl3 Hello Request.
|
|
* Caller must hold Handshake and RecvBuf locks.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleHelloRequest(sslSocket *ss)
|
|
{
|
|
sslSessionID *sid = ss->sec.ci.sid;
|
|
SECStatus rv;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle hello_request handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
if (ss->ssl3.hs.ws == wait_server_hello)
|
|
return SECSuccess;
|
|
if (ss->ssl3.hs.ws != idle_handshake || ss->sec.isServer) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_REQUEST);
|
|
return SECFailure;
|
|
}
|
|
if (ss->opt.enableRenegotiation == SSL_RENEGOTIATE_NEVER) {
|
|
(void)SSL3_SendAlert(ss, alert_warning, no_renegotiation);
|
|
PORT_SetError(SSL_ERROR_RENEGOTIATION_NOT_ALLOWED);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (sid) {
|
|
if (ss->sec.uncache)
|
|
ss->sec.uncache(sid);
|
|
ssl_FreeSID(sid);
|
|
ss->sec.ci.sid = NULL;
|
|
}
|
|
|
|
if (IS_DTLS(ss)) {
|
|
dtls_RehandshakeCleanup(ss);
|
|
}
|
|
|
|
ssl_GetXmitBufLock(ss);
|
|
rv = ssl3_SendClientHello(ss, PR_FALSE);
|
|
ssl_ReleaseXmitBufLock(ss);
|
|
|
|
return rv;
|
|
}
|
|
|
|
#define UNKNOWN_WRAP_MECHANISM 0x7fffffff
|
|
|
|
static const CK_MECHANISM_TYPE wrapMechanismList[SSL_NUM_WRAP_MECHS] = {
|
|
CKM_DES3_ECB,
|
|
CKM_CAST5_ECB,
|
|
CKM_DES_ECB,
|
|
CKM_KEY_WRAP_LYNKS,
|
|
CKM_IDEA_ECB,
|
|
CKM_CAST3_ECB,
|
|
CKM_CAST_ECB,
|
|
CKM_RC5_ECB,
|
|
CKM_RC2_ECB,
|
|
CKM_CDMF_ECB,
|
|
CKM_SKIPJACK_WRAP,
|
|
CKM_SKIPJACK_CBC64,
|
|
CKM_AES_ECB,
|
|
CKM_CAMELLIA_ECB,
|
|
CKM_SEED_ECB,
|
|
UNKNOWN_WRAP_MECHANISM
|
|
};
|
|
|
|
static int
|
|
ssl_FindIndexByWrapMechanism(CK_MECHANISM_TYPE mech)
|
|
{
|
|
const CK_MECHANISM_TYPE *pMech = wrapMechanismList;
|
|
|
|
while (mech != *pMech && *pMech != UNKNOWN_WRAP_MECHANISM) {
|
|
++pMech;
|
|
}
|
|
return (*pMech == UNKNOWN_WRAP_MECHANISM) ? -1
|
|
: (pMech - wrapMechanismList);
|
|
}
|
|
|
|
static PK11SymKey *
|
|
ssl_UnwrapSymWrappingKey(
|
|
SSLWrappedSymWrappingKey *pWswk,
|
|
SECKEYPrivateKey * svrPrivKey,
|
|
SSL3KEAType exchKeyType,
|
|
CK_MECHANISM_TYPE masterWrapMech,
|
|
void * pwArg)
|
|
{
|
|
PK11SymKey * unwrappedWrappingKey = NULL;
|
|
SECItem wrappedKey;
|
|
#ifndef NSS_DISABLE_ECC
|
|
PK11SymKey * Ks;
|
|
SECKEYPublicKey pubWrapKey;
|
|
ECCWrappedKeyInfo *ecWrapped;
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
/* found the wrapping key on disk. */
|
|
PORT_Assert(pWswk->symWrapMechanism == masterWrapMech);
|
|
PORT_Assert(pWswk->exchKeyType == exchKeyType);
|
|
if (pWswk->symWrapMechanism != masterWrapMech ||
|
|
pWswk->exchKeyType != exchKeyType) {
|
|
goto loser;
|
|
}
|
|
wrappedKey.type = siBuffer;
|
|
wrappedKey.data = pWswk->wrappedSymmetricWrappingkey;
|
|
wrappedKey.len = pWswk->wrappedSymKeyLen;
|
|
PORT_Assert(wrappedKey.len <= sizeof pWswk->wrappedSymmetricWrappingkey);
|
|
|
|
switch (exchKeyType) {
|
|
|
|
case kt_rsa:
|
|
unwrappedWrappingKey =
|
|
PK11_PubUnwrapSymKey(svrPrivKey, &wrappedKey,
|
|
masterWrapMech, CKA_UNWRAP, 0);
|
|
break;
|
|
|
|
#ifndef NSS_DISABLE_ECC
|
|
case kt_ecdh:
|
|
/*
|
|
* For kt_ecdh, we first create an EC public key based on
|
|
* data stored with the wrappedSymmetricWrappingkey. Next,
|
|
* we do an ECDH computation involving this public key and
|
|
* the SSL server's (long-term) EC private key. The resulting
|
|
* shared secret is treated the same way as Fortezza's Ks, i.e.,
|
|
* it is used to recover the symmetric wrapping key.
|
|
*
|
|
* The data in wrappedSymmetricWrappingkey is laid out as defined
|
|
* in the ECCWrappedKeyInfo structure.
|
|
*/
|
|
ecWrapped = (ECCWrappedKeyInfo *) pWswk->wrappedSymmetricWrappingkey;
|
|
|
|
PORT_Assert(ecWrapped->encodedParamLen + ecWrapped->pubValueLen +
|
|
ecWrapped->wrappedKeyLen <= MAX_EC_WRAPPED_KEY_BUFLEN);
|
|
|
|
if (ecWrapped->encodedParamLen + ecWrapped->pubValueLen +
|
|
ecWrapped->wrappedKeyLen > MAX_EC_WRAPPED_KEY_BUFLEN) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
goto loser;
|
|
}
|
|
|
|
pubWrapKey.keyType = ecKey;
|
|
pubWrapKey.u.ec.size = ecWrapped->size;
|
|
pubWrapKey.u.ec.DEREncodedParams.len = ecWrapped->encodedParamLen;
|
|
pubWrapKey.u.ec.DEREncodedParams.data = ecWrapped->var;
|
|
pubWrapKey.u.ec.publicValue.len = ecWrapped->pubValueLen;
|
|
pubWrapKey.u.ec.publicValue.data = ecWrapped->var +
|
|
ecWrapped->encodedParamLen;
|
|
|
|
wrappedKey.len = ecWrapped->wrappedKeyLen;
|
|
wrappedKey.data = ecWrapped->var + ecWrapped->encodedParamLen +
|
|
ecWrapped->pubValueLen;
|
|
|
|
/* Derive Ks using ECDH */
|
|
Ks = PK11_PubDeriveWithKDF(svrPrivKey, &pubWrapKey, PR_FALSE, NULL,
|
|
NULL, CKM_ECDH1_DERIVE, masterWrapMech,
|
|
CKA_DERIVE, 0, CKD_NULL, NULL, NULL);
|
|
if (Ks == NULL) {
|
|
goto loser;
|
|
}
|
|
|
|
/* Use Ks to unwrap the wrapping key */
|
|
unwrappedWrappingKey = PK11_UnwrapSymKey(Ks, masterWrapMech, NULL,
|
|
&wrappedKey, masterWrapMech,
|
|
CKA_UNWRAP, 0);
|
|
PK11_FreeSymKey(Ks);
|
|
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
/* Assert? */
|
|
SET_ERROR_CODE
|
|
goto loser;
|
|
}
|
|
loser:
|
|
return unwrappedWrappingKey;
|
|
}
|
|
|
|
/* Each process sharing the server session ID cache has its own array of
|
|
* SymKey pointers for the symmetric wrapping keys that are used to wrap
|
|
* the master secrets. There is one key for each KEA type. These Symkeys
|
|
* correspond to the wrapped SymKeys kept in the server session cache.
|
|
*/
|
|
|
|
typedef struct {
|
|
PK11SymKey * symWrapKey[kt_kea_size];
|
|
} ssl3SymWrapKey;
|
|
|
|
static PZLock * symWrapKeysLock = NULL;
|
|
static ssl3SymWrapKey symWrapKeys[SSL_NUM_WRAP_MECHS];
|
|
|
|
SECStatus ssl_FreeSymWrapKeysLock(void)
|
|
{
|
|
if (symWrapKeysLock) {
|
|
PZ_DestroyLock(symWrapKeysLock);
|
|
symWrapKeysLock = NULL;
|
|
return SECSuccess;
|
|
}
|
|
PORT_SetError(SEC_ERROR_NOT_INITIALIZED);
|
|
return SECFailure;
|
|
}
|
|
|
|
SECStatus
|
|
SSL3_ShutdownServerCache(void)
|
|
{
|
|
int i, j;
|
|
|
|
if (!symWrapKeysLock)
|
|
return SECSuccess; /* lock was never initialized */
|
|
PZ_Lock(symWrapKeysLock);
|
|
/* get rid of all symWrapKeys */
|
|
for (i = 0; i < SSL_NUM_WRAP_MECHS; ++i) {
|
|
for (j = 0; j < kt_kea_size; ++j) {
|
|
PK11SymKey ** pSymWrapKey;
|
|
pSymWrapKey = &symWrapKeys[i].symWrapKey[j];
|
|
if (*pSymWrapKey) {
|
|
PK11_FreeSymKey(*pSymWrapKey);
|
|
*pSymWrapKey = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
PZ_Unlock(symWrapKeysLock);
|
|
ssl_FreeSessionCacheLocks();
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus ssl_InitSymWrapKeysLock(void)
|
|
{
|
|
symWrapKeysLock = PZ_NewLock(nssILockOther);
|
|
return symWrapKeysLock ? SECSuccess : SECFailure;
|
|
}
|
|
|
|
/* Try to get wrapping key for mechanism from in-memory array.
|
|
* If that fails, look for one on disk.
|
|
* If that fails, generate a new one, put the new one on disk,
|
|
* Put the new key in the in-memory array.
|
|
*/
|
|
static PK11SymKey *
|
|
getWrappingKey( sslSocket * ss,
|
|
PK11SlotInfo * masterSecretSlot,
|
|
SSL3KEAType exchKeyType,
|
|
CK_MECHANISM_TYPE masterWrapMech,
|
|
void * pwArg)
|
|
{
|
|
SECKEYPrivateKey * svrPrivKey;
|
|
SECKEYPublicKey * svrPubKey = NULL;
|
|
PK11SymKey * unwrappedWrappingKey = NULL;
|
|
PK11SymKey ** pSymWrapKey;
|
|
CK_MECHANISM_TYPE asymWrapMechanism = CKM_INVALID_MECHANISM;
|
|
int length;
|
|
int symWrapMechIndex;
|
|
SECStatus rv;
|
|
SECItem wrappedKey;
|
|
SSLWrappedSymWrappingKey wswk;
|
|
#ifndef NSS_DISABLE_ECC
|
|
PK11SymKey * Ks = NULL;
|
|
SECKEYPublicKey *pubWrapKey = NULL;
|
|
SECKEYPrivateKey *privWrapKey = NULL;
|
|
ECCWrappedKeyInfo *ecWrapped;
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
svrPrivKey = ss->serverCerts[exchKeyType].SERVERKEY;
|
|
PORT_Assert(svrPrivKey != NULL);
|
|
if (!svrPrivKey) {
|
|
return NULL; /* why are we here?!? */
|
|
}
|
|
|
|
symWrapMechIndex = ssl_FindIndexByWrapMechanism(masterWrapMech);
|
|
PORT_Assert(symWrapMechIndex >= 0);
|
|
if (symWrapMechIndex < 0)
|
|
return NULL; /* invalid masterWrapMech. */
|
|
|
|
pSymWrapKey = &symWrapKeys[symWrapMechIndex].symWrapKey[exchKeyType];
|
|
|
|
ssl_InitSessionCacheLocks(PR_TRUE);
|
|
|
|
PZ_Lock(symWrapKeysLock);
|
|
|
|
unwrappedWrappingKey = *pSymWrapKey;
|
|
if (unwrappedWrappingKey != NULL) {
|
|
if (PK11_VerifyKeyOK(unwrappedWrappingKey)) {
|
|
unwrappedWrappingKey = PK11_ReferenceSymKey(unwrappedWrappingKey);
|
|
goto done;
|
|
}
|
|
/* slot series has changed, so this key is no good any more. */
|
|
PK11_FreeSymKey(unwrappedWrappingKey);
|
|
*pSymWrapKey = unwrappedWrappingKey = NULL;
|
|
}
|
|
|
|
/* Try to get wrapped SymWrapping key out of the (disk) cache. */
|
|
/* Following call fills in wswk on success. */
|
|
if (ssl_GetWrappingKey(symWrapMechIndex, exchKeyType, &wswk)) {
|
|
/* found the wrapped sym wrapping key on disk. */
|
|
unwrappedWrappingKey =
|
|
ssl_UnwrapSymWrappingKey(&wswk, svrPrivKey, exchKeyType,
|
|
masterWrapMech, pwArg);
|
|
if (unwrappedWrappingKey) {
|
|
goto install;
|
|
}
|
|
}
|
|
|
|
if (!masterSecretSlot) /* caller doesn't want to create a new one. */
|
|
goto loser;
|
|
|
|
length = PK11_GetBestKeyLength(masterSecretSlot, masterWrapMech);
|
|
/* Zero length means fixed key length algorithm, or error.
|
|
* It's ambiguous.
|
|
*/
|
|
unwrappedWrappingKey = PK11_KeyGen(masterSecretSlot, masterWrapMech, NULL,
|
|
length, pwArg);
|
|
if (!unwrappedWrappingKey) {
|
|
goto loser;
|
|
}
|
|
|
|
/* Prepare the buffer to receive the wrappedWrappingKey,
|
|
* the symmetric wrapping key wrapped using the server's pub key.
|
|
*/
|
|
PORT_Memset(&wswk, 0, sizeof wswk); /* eliminate UMRs. */
|
|
|
|
if (ss->serverCerts[exchKeyType].serverKeyPair) {
|
|
svrPubKey = ss->serverCerts[exchKeyType].serverKeyPair->pubKey;
|
|
}
|
|
if (svrPubKey == NULL) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
goto loser;
|
|
}
|
|
wrappedKey.type = siBuffer;
|
|
wrappedKey.len = SECKEY_PublicKeyStrength(svrPubKey);
|
|
wrappedKey.data = wswk.wrappedSymmetricWrappingkey;
|
|
|
|
PORT_Assert(wrappedKey.len <= sizeof wswk.wrappedSymmetricWrappingkey);
|
|
if (wrappedKey.len > sizeof wswk.wrappedSymmetricWrappingkey)
|
|
goto loser;
|
|
|
|
/* wrap symmetric wrapping key in server's public key. */
|
|
switch (exchKeyType) {
|
|
case kt_rsa:
|
|
asymWrapMechanism = CKM_RSA_PKCS;
|
|
rv = PK11_PubWrapSymKey(asymWrapMechanism, svrPubKey,
|
|
unwrappedWrappingKey, &wrappedKey);
|
|
break;
|
|
|
|
#ifndef NSS_DISABLE_ECC
|
|
case kt_ecdh:
|
|
/*
|
|
* We generate an ephemeral EC key pair. Perform an ECDH
|
|
* computation involving this ephemeral EC public key and
|
|
* the SSL server's (long-term) EC private key. The resulting
|
|
* shared secret is treated in the same way as Fortezza's Ks,
|
|
* i.e., it is used to wrap the wrapping key. To facilitate
|
|
* unwrapping in ssl_UnwrapWrappingKey, we also store all
|
|
* relevant info about the ephemeral EC public key in
|
|
* wswk.wrappedSymmetricWrappingkey and lay it out as
|
|
* described in the ECCWrappedKeyInfo structure.
|
|
*/
|
|
PORT_Assert(svrPubKey->keyType == ecKey);
|
|
if (svrPubKey->keyType != ecKey) {
|
|
/* something is wrong in sslsecur.c if this isn't an ecKey */
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
rv = SECFailure;
|
|
goto ec_cleanup;
|
|
}
|
|
|
|
privWrapKey = SECKEY_CreateECPrivateKey(
|
|
&svrPubKey->u.ec.DEREncodedParams, &pubWrapKey, NULL);
|
|
if ((privWrapKey == NULL) || (pubWrapKey == NULL)) {
|
|
rv = SECFailure;
|
|
goto ec_cleanup;
|
|
}
|
|
|
|
/* Set the key size in bits */
|
|
if (pubWrapKey->u.ec.size == 0) {
|
|
pubWrapKey->u.ec.size = SECKEY_PublicKeyStrengthInBits(svrPubKey);
|
|
}
|
|
|
|
PORT_Assert(pubWrapKey->u.ec.DEREncodedParams.len +
|
|
pubWrapKey->u.ec.publicValue.len < MAX_EC_WRAPPED_KEY_BUFLEN);
|
|
if (pubWrapKey->u.ec.DEREncodedParams.len +
|
|
pubWrapKey->u.ec.publicValue.len >= MAX_EC_WRAPPED_KEY_BUFLEN) {
|
|
PORT_SetError(SEC_ERROR_INVALID_KEY);
|
|
rv = SECFailure;
|
|
goto ec_cleanup;
|
|
}
|
|
|
|
/* Derive Ks using ECDH */
|
|
Ks = PK11_PubDeriveWithKDF(svrPrivKey, pubWrapKey, PR_FALSE, NULL,
|
|
NULL, CKM_ECDH1_DERIVE, masterWrapMech,
|
|
CKA_DERIVE, 0, CKD_NULL, NULL, NULL);
|
|
if (Ks == NULL) {
|
|
rv = SECFailure;
|
|
goto ec_cleanup;
|
|
}
|
|
|
|
ecWrapped = (ECCWrappedKeyInfo *) (wswk.wrappedSymmetricWrappingkey);
|
|
ecWrapped->size = pubWrapKey->u.ec.size;
|
|
ecWrapped->encodedParamLen = pubWrapKey->u.ec.DEREncodedParams.len;
|
|
PORT_Memcpy(ecWrapped->var, pubWrapKey->u.ec.DEREncodedParams.data,
|
|
pubWrapKey->u.ec.DEREncodedParams.len);
|
|
|
|
ecWrapped->pubValueLen = pubWrapKey->u.ec.publicValue.len;
|
|
PORT_Memcpy(ecWrapped->var + ecWrapped->encodedParamLen,
|
|
pubWrapKey->u.ec.publicValue.data,
|
|
pubWrapKey->u.ec.publicValue.len);
|
|
|
|
wrappedKey.len = MAX_EC_WRAPPED_KEY_BUFLEN -
|
|
(ecWrapped->encodedParamLen + ecWrapped->pubValueLen);
|
|
wrappedKey.data = ecWrapped->var + ecWrapped->encodedParamLen +
|
|
ecWrapped->pubValueLen;
|
|
|
|
/* wrap symmetricWrapping key with the local Ks */
|
|
rv = PK11_WrapSymKey(masterWrapMech, NULL, Ks,
|
|
unwrappedWrappingKey, &wrappedKey);
|
|
|
|
if (rv != SECSuccess) {
|
|
goto ec_cleanup;
|
|
}
|
|
|
|
/* Write down the length of wrapped key in the buffer
|
|
* wswk.wrappedSymmetricWrappingkey at the appropriate offset
|
|
*/
|
|
ecWrapped->wrappedKeyLen = wrappedKey.len;
|
|
|
|
ec_cleanup:
|
|
if (privWrapKey) SECKEY_DestroyPrivateKey(privWrapKey);
|
|
if (pubWrapKey) SECKEY_DestroyPublicKey(pubWrapKey);
|
|
if (Ks) PK11_FreeSymKey(Ks);
|
|
asymWrapMechanism = masterWrapMech;
|
|
break;
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
default:
|
|
rv = SECFailure;
|
|
break;
|
|
}
|
|
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
|
|
goto loser;
|
|
}
|
|
|
|
PORT_Assert(asymWrapMechanism != CKM_INVALID_MECHANISM);
|
|
|
|
wswk.symWrapMechanism = masterWrapMech;
|
|
wswk.symWrapMechIndex = symWrapMechIndex;
|
|
wswk.asymWrapMechanism = asymWrapMechanism;
|
|
wswk.exchKeyType = exchKeyType;
|
|
wswk.wrappedSymKeyLen = wrappedKey.len;
|
|
|
|
/* put it on disk. */
|
|
/* If the wrapping key for this KEA type has already been set,
|
|
* then abandon the value we just computed and
|
|
* use the one we got from the disk.
|
|
*/
|
|
if (ssl_SetWrappingKey(&wswk)) {
|
|
/* somebody beat us to it. The original contents of our wswk
|
|
* has been replaced with the content on disk. Now, discard
|
|
* the key we just created and unwrap this new one.
|
|
*/
|
|
PK11_FreeSymKey(unwrappedWrappingKey);
|
|
|
|
unwrappedWrappingKey =
|
|
ssl_UnwrapSymWrappingKey(&wswk, svrPrivKey, exchKeyType,
|
|
masterWrapMech, pwArg);
|
|
}
|
|
|
|
install:
|
|
if (unwrappedWrappingKey) {
|
|
*pSymWrapKey = PK11_ReferenceSymKey(unwrappedWrappingKey);
|
|
}
|
|
|
|
loser:
|
|
done:
|
|
PZ_Unlock(symWrapKeysLock);
|
|
return unwrappedWrappingKey;
|
|
}
|
|
|
|
/* hexEncode hex encodes |length| bytes from |in| and writes it as |length*2|
|
|
* bytes to |out|. */
|
|
static void
|
|
hexEncode(char *out, const unsigned char *in, unsigned int length)
|
|
{
|
|
static const char hextable[] = "0123456789abcdef";
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < length; i++) {
|
|
*(out++) = hextable[in[i] >> 4];
|
|
*(out++) = hextable[in[i] & 15];
|
|
}
|
|
}
|
|
|
|
/* Called from ssl3_SendClientKeyExchange(). */
|
|
/* Presently, this always uses PKCS11. There is no bypass for this. */
|
|
static SECStatus
|
|
sendRSAClientKeyExchange(sslSocket * ss, SECKEYPublicKey * svrPubKey)
|
|
{
|
|
PK11SymKey * pms = NULL;
|
|
SECStatus rv = SECFailure;
|
|
SECItem enc_pms = {siBuffer, NULL, 0};
|
|
PRBool isTLS;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
|
|
|
/* Generate the pre-master secret ... */
|
|
ssl_GetSpecWriteLock(ss);
|
|
isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
|
|
pms = ssl3_GenerateRSAPMS(ss, ss->ssl3.pwSpec, NULL);
|
|
ssl_ReleaseSpecWriteLock(ss);
|
|
if (pms == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
|
|
goto loser;
|
|
}
|
|
|
|
/* Get the wrapped (encrypted) pre-master secret, enc_pms */
|
|
enc_pms.len = SECKEY_PublicKeyStrength(svrPubKey);
|
|
enc_pms.data = (unsigned char*)PORT_Alloc(enc_pms.len);
|
|
if (enc_pms.data == NULL) {
|
|
goto loser; /* err set by PORT_Alloc */
|
|
}
|
|
|
|
/* wrap pre-master secret in server's public key. */
|
|
rv = PK11_PubWrapSymKey(CKM_RSA_PKCS, svrPubKey, pms, &enc_pms);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
|
|
goto loser;
|
|
}
|
|
|
|
if (ssl_keylog_iob) {
|
|
SECStatus extractRV = PK11_ExtractKeyValue(pms);
|
|
if (extractRV == SECSuccess) {
|
|
SECItem * keyData = PK11_GetKeyData(pms);
|
|
if (keyData && keyData->data && keyData->len) {
|
|
#ifdef TRACE
|
|
if (ssl_trace >= 100) {
|
|
ssl_PrintBuf(ss, "Pre-Master Secret",
|
|
keyData->data, keyData->len);
|
|
}
|
|
#endif
|
|
if (ssl_keylog_iob && enc_pms.len >= 8 && keyData->len == 48) {
|
|
/* https://developer.mozilla.org/en/NSS_Key_Log_Format */
|
|
|
|
/* There could be multiple, concurrent writers to the
|
|
* keylog, so we have to do everything in a single call to
|
|
* fwrite. */
|
|
char buf[4 + 8*2 + 1 + 48*2 + 1];
|
|
|
|
strcpy(buf, "RSA ");
|
|
hexEncode(buf + 4, enc_pms.data, 8);
|
|
buf[20] = ' ';
|
|
hexEncode(buf + 21, keyData->data, 48);
|
|
buf[sizeof(buf) - 1] = '\n';
|
|
|
|
fwrite(buf, sizeof(buf), 1, ssl_keylog_iob);
|
|
fflush(ssl_keylog_iob);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeHeader(ss, client_key_exchange,
|
|
isTLS ? enc_pms.len + 2 : enc_pms.len);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
if (isTLS) {
|
|
rv = ssl3_AppendHandshakeVariable(ss, enc_pms.data, enc_pms.len, 2);
|
|
} else {
|
|
rv = ssl3_AppendHandshake(ss, enc_pms.data, enc_pms.len);
|
|
}
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
|
|
rv = ssl3_InitPendingCipherSpec(ss, pms);
|
|
PK11_FreeSymKey(pms);
|
|
pms = NULL;
|
|
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
|
|
goto loser;
|
|
}
|
|
|
|
rv = SECSuccess;
|
|
|
|
loser:
|
|
if (enc_pms.data != NULL) {
|
|
PORT_Free(enc_pms.data);
|
|
}
|
|
if (pms != NULL) {
|
|
PK11_FreeSymKey(pms);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* Called from ssl3_SendClientKeyExchange(). */
|
|
/* Presently, this always uses PKCS11. There is no bypass for this. */
|
|
static SECStatus
|
|
sendDHClientKeyExchange(sslSocket * ss, SECKEYPublicKey * svrPubKey)
|
|
{
|
|
PK11SymKey * pms = NULL;
|
|
SECStatus rv = SECFailure;
|
|
PRBool isTLS;
|
|
CK_MECHANISM_TYPE target;
|
|
|
|
SECKEYDHParams dhParam; /* DH parameters */
|
|
SECKEYPublicKey *pubKey = NULL; /* Ephemeral DH key */
|
|
SECKEYPrivateKey *privKey = NULL; /* Ephemeral DH key */
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
|
|
|
isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
|
|
/* Copy DH parameters from server key */
|
|
|
|
if (svrPubKey->keyType != dhKey) {
|
|
PORT_SetError(SEC_ERROR_BAD_KEY);
|
|
goto loser;
|
|
}
|
|
dhParam.prime.data = svrPubKey->u.dh.prime.data;
|
|
dhParam.prime.len = svrPubKey->u.dh.prime.len;
|
|
dhParam.base.data = svrPubKey->u.dh.base.data;
|
|
dhParam.base.len = svrPubKey->u.dh.base.len;
|
|
|
|
/* Generate ephemeral DH keypair */
|
|
privKey = SECKEY_CreateDHPrivateKey(&dhParam, &pubKey, NULL);
|
|
if (!privKey || !pubKey) {
|
|
ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL);
|
|
rv = SECFailure;
|
|
goto loser;
|
|
}
|
|
PRINT_BUF(50, (ss, "DH public value:",
|
|
pubKey->u.dh.publicValue.data,
|
|
pubKey->u.dh.publicValue.len));
|
|
|
|
if (isTLS) target = CKM_TLS_MASTER_KEY_DERIVE_DH;
|
|
else target = CKM_SSL3_MASTER_KEY_DERIVE_DH;
|
|
|
|
/* Determine the PMS */
|
|
|
|
pms = PK11_PubDerive(privKey, svrPubKey, PR_FALSE, NULL, NULL,
|
|
CKM_DH_PKCS_DERIVE, target, CKA_DERIVE, 0, NULL);
|
|
|
|
if (pms == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
|
|
goto loser;
|
|
}
|
|
|
|
SECKEY_DestroyPrivateKey(privKey);
|
|
privKey = NULL;
|
|
|
|
rv = ssl3_AppendHandshakeHeader(ss, client_key_exchange,
|
|
pubKey->u.dh.publicValue.len + 2);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
rv = ssl3_AppendHandshakeVariable(ss,
|
|
pubKey->u.dh.publicValue.data,
|
|
pubKey->u.dh.publicValue.len, 2);
|
|
SECKEY_DestroyPublicKey(pubKey);
|
|
pubKey = NULL;
|
|
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by ssl3_AppendHandshake* */
|
|
}
|
|
|
|
rv = ssl3_InitPendingCipherSpec(ss, pms);
|
|
PK11_FreeSymKey(pms);
|
|
pms = NULL;
|
|
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
|
|
goto loser;
|
|
}
|
|
|
|
rv = SECSuccess;
|
|
|
|
loser:
|
|
|
|
if(pms) PK11_FreeSymKey(pms);
|
|
if(privKey) SECKEY_DestroyPrivateKey(privKey);
|
|
if(pubKey) SECKEY_DestroyPublicKey(pubKey);
|
|
return rv;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Called from ssl3_HandleServerHelloDone(). */
|
|
static SECStatus
|
|
ssl3_SendClientKeyExchange(sslSocket *ss)
|
|
{
|
|
SECKEYPublicKey * serverKey = NULL;
|
|
SECStatus rv = SECFailure;
|
|
PRBool isTLS;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: send client_key_exchange handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
if (ss->sec.peerKey == NULL) {
|
|
serverKey = CERT_ExtractPublicKey(ss->sec.peerCert);
|
|
if (serverKey == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
} else {
|
|
serverKey = ss->sec.peerKey;
|
|
ss->sec.peerKey = NULL; /* we're done with it now */
|
|
}
|
|
|
|
isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
/* enforce limits on kea key sizes. */
|
|
if (ss->ssl3.hs.kea_def->is_limited) {
|
|
unsigned int keyLen = SECKEY_PublicKeyStrengthInBits(serverKey);
|
|
|
|
if (keyLen > ss->ssl3.hs.kea_def->key_size_limit) {
|
|
if (isTLS)
|
|
(void)SSL3_SendAlert(ss, alert_fatal, export_restriction);
|
|
else
|
|
(void)ssl3_HandshakeFailure(ss);
|
|
PORT_SetError(SSL_ERROR_PUB_KEY_SIZE_LIMIT_EXCEEDED);
|
|
goto loser;
|
|
}
|
|
}
|
|
|
|
ss->sec.keaType = ss->ssl3.hs.kea_def->exchKeyType;
|
|
ss->sec.keaKeyBits = SECKEY_PublicKeyStrengthInBits(serverKey);
|
|
|
|
switch (ss->ssl3.hs.kea_def->exchKeyType) {
|
|
case kt_rsa:
|
|
rv = sendRSAClientKeyExchange(ss, serverKey);
|
|
break;
|
|
|
|
case kt_dh:
|
|
rv = sendDHClientKeyExchange(ss, serverKey);
|
|
break;
|
|
|
|
#ifndef NSS_DISABLE_ECC
|
|
case kt_ecdh:
|
|
rv = ssl3_SendECDHClientKeyExchange(ss, serverKey);
|
|
break;
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
default:
|
|
/* got an unknown or unsupported Key Exchange Algorithm. */
|
|
SEND_ALERT
|
|
PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG);
|
|
break;
|
|
}
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: DONE sending client_key_exchange",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
loser:
|
|
if (serverKey)
|
|
SECKEY_DestroyPublicKey(serverKey);
|
|
return rv; /* err code already set. */
|
|
}
|
|
|
|
/* Called from ssl3_HandleServerHelloDone(). */
|
|
static SECStatus
|
|
ssl3_SendCertificateVerify(sslSocket *ss)
|
|
{
|
|
SECStatus rv = SECFailure;
|
|
PRBool isTLS;
|
|
PRBool isTLS12;
|
|
SECItem buf = {siBuffer, NULL, 0};
|
|
SSL3Hashes hashes;
|
|
KeyType keyType;
|
|
unsigned int len;
|
|
SSLSignatureAndHashAlg sigAndHash;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: send certificate_verify handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
ssl_GetSpecReadLock(ss);
|
|
if (ss->ssl3.hs.hashType == handshake_hash_single &&
|
|
ss->ssl3.hs.backupHash) {
|
|
rv = ssl3_ComputeBackupHandshakeHashes(ss, &hashes);
|
|
PORT_Assert(!ss->ssl3.hs.backupHash);
|
|
} else {
|
|
rv = ssl3_ComputeHandshakeHashes(ss, ss->ssl3.pwSpec, &hashes, 0);
|
|
}
|
|
ssl_ReleaseSpecReadLock(ss);
|
|
if (rv != SECSuccess) {
|
|
goto done; /* err code was set by ssl3_ComputeHandshakeHashes */
|
|
}
|
|
|
|
isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
isTLS12 = (PRBool)(ss->ssl3.pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2);
|
|
keyType = ss->ssl3.clientPrivateKey->keyType;
|
|
rv = ssl3_SignHashes(&hashes, ss->ssl3.clientPrivateKey, &buf, isTLS);
|
|
if (rv == SECSuccess) {
|
|
PK11SlotInfo * slot;
|
|
sslSessionID * sid = ss->sec.ci.sid;
|
|
|
|
/* Remember the info about the slot that did the signing.
|
|
** Later, when doing an SSL restart handshake, verify this.
|
|
** These calls are mere accessors, and can't fail.
|
|
*/
|
|
slot = PK11_GetSlotFromPrivateKey(ss->ssl3.clientPrivateKey);
|
|
sid->u.ssl3.clAuthSeries = PK11_GetSlotSeries(slot);
|
|
sid->u.ssl3.clAuthSlotID = PK11_GetSlotID(slot);
|
|
sid->u.ssl3.clAuthModuleID = PK11_GetModuleID(slot);
|
|
sid->u.ssl3.clAuthValid = PR_TRUE;
|
|
PK11_FreeSlot(slot);
|
|
}
|
|
SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey);
|
|
ss->ssl3.clientPrivateKey = NULL;
|
|
if (rv != SECSuccess) {
|
|
goto done; /* err code was set by ssl3_SignHashes */
|
|
}
|
|
|
|
len = buf.len + 2 + (isTLS12 ? 2 : 0);
|
|
|
|
rv = ssl3_AppendHandshakeHeader(ss, certificate_verify, len);
|
|
if (rv != SECSuccess) {
|
|
goto done; /* error code set by AppendHandshake */
|
|
}
|
|
if (isTLS12) {
|
|
rv = ssl3_TLSSignatureAlgorithmForKeyType(keyType,
|
|
&sigAndHash.sigAlg);
|
|
if (rv != SECSuccess) {
|
|
goto done;
|
|
}
|
|
sigAndHash.hashAlg = hashes.hashAlg;
|
|
|
|
rv = ssl3_AppendSignatureAndHashAlgorithm(ss, &sigAndHash);
|
|
if (rv != SECSuccess) {
|
|
goto done; /* err set by AppendHandshake. */
|
|
}
|
|
}
|
|
rv = ssl3_AppendHandshakeVariable(ss, buf.data, buf.len, 2);
|
|
if (rv != SECSuccess) {
|
|
goto done; /* error code set by AppendHandshake */
|
|
}
|
|
|
|
done:
|
|
if (buf.data)
|
|
PORT_Free(buf.data);
|
|
return rv;
|
|
}
|
|
|
|
/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete
|
|
* ssl3 ServerHello message.
|
|
* Caller must hold Handshake and RecvBuf locks.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleServerHello(sslSocket *ss, SSL3Opaque *b, PRUint32 length)
|
|
{
|
|
sslSessionID *sid = ss->sec.ci.sid;
|
|
PRInt32 temp; /* allow for consume number failure */
|
|
PRBool suite_found = PR_FALSE;
|
|
int i;
|
|
int errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO;
|
|
SECStatus rv;
|
|
SECItem sidBytes = {siBuffer, NULL, 0};
|
|
PRBool sid_match;
|
|
PRBool isTLS = PR_FALSE;
|
|
SSL3AlertDescription desc = illegal_parameter;
|
|
SSL3ProtocolVersion version;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle server_hello handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
PORT_Assert( ss->ssl3.initialized );
|
|
|
|
if (ss->ssl3.hs.ws != wait_server_hello) {
|
|
errCode = SSL_ERROR_RX_UNEXPECTED_SERVER_HELLO;
|
|
desc = unexpected_message;
|
|
goto alert_loser;
|
|
}
|
|
|
|
/* clean up anything left from previous handshake. */
|
|
if (ss->ssl3.clientCertChain != NULL) {
|
|
CERT_DestroyCertificateList(ss->ssl3.clientCertChain);
|
|
ss->ssl3.clientCertChain = NULL;
|
|
}
|
|
if (ss->ssl3.clientCertificate != NULL) {
|
|
CERT_DestroyCertificate(ss->ssl3.clientCertificate);
|
|
ss->ssl3.clientCertificate = NULL;
|
|
}
|
|
if (ss->ssl3.clientPrivateKey != NULL) {
|
|
SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey);
|
|
ss->ssl3.clientPrivateKey = NULL;
|
|
}
|
|
|
|
temp = ssl3_ConsumeHandshakeNumber(ss, 2, &b, &length);
|
|
if (temp < 0) {
|
|
goto loser; /* alert has been sent */
|
|
}
|
|
version = (SSL3ProtocolVersion)temp;
|
|
|
|
if (IS_DTLS(ss)) {
|
|
/* RFC 4347 required that you verify that the server versions
|
|
* match (Section 4.2.1) in the HelloVerifyRequest and the
|
|
* ServerHello.
|
|
*
|
|
* RFC 6347 suggests (SHOULD) that servers always use 1.0
|
|
* in HelloVerifyRequest and allows the versions not to match,
|
|
* especially when 1.2 is being negotiated.
|
|
*
|
|
* Therefore we do not check for matching here.
|
|
*/
|
|
version = dtls_DTLSVersionToTLSVersion(version);
|
|
if (version == 0) { /* Insane version number */
|
|
goto alert_loser;
|
|
}
|
|
}
|
|
|
|
rv = ssl3_NegotiateVersion(ss, version, PR_FALSE);
|
|
if (rv != SECSuccess) {
|
|
desc = (version > SSL_LIBRARY_VERSION_3_0) ? protocol_version
|
|
: handshake_failure;
|
|
errCode = SSL_ERROR_UNSUPPORTED_VERSION;
|
|
goto alert_loser;
|
|
}
|
|
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_version;
|
|
isTLS = (ss->version > SSL_LIBRARY_VERSION_3_0);
|
|
|
|
rv = ssl3_InitHandshakeHashes(ss);
|
|
if (rv != SECSuccess) {
|
|
desc = internal_error;
|
|
errCode = PORT_GetError();
|
|
goto alert_loser;
|
|
}
|
|
|
|
rv = ssl3_ConsumeHandshake(
|
|
ss, &ss->ssl3.hs.server_random, SSL3_RANDOM_LENGTH, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* alert has been sent */
|
|
}
|
|
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &sidBytes, 1, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* alert has been sent */
|
|
}
|
|
if (sidBytes.len > SSL3_SESSIONID_BYTES) {
|
|
if (isTLS)
|
|
desc = decode_error;
|
|
goto alert_loser; /* malformed. */
|
|
}
|
|
|
|
/* find selected cipher suite in our list. */
|
|
temp = ssl3_ConsumeHandshakeNumber(ss, 2, &b, &length);
|
|
if (temp < 0) {
|
|
goto loser; /* alert has been sent */
|
|
}
|
|
ssl3_config_match_init(ss);
|
|
for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) {
|
|
ssl3CipherSuiteCfg *suite = &ss->cipherSuites[i];
|
|
if (temp == suite->cipher_suite) {
|
|
SSLVersionRange vrange = {ss->version, ss->version};
|
|
if (!config_match(suite, ss->ssl3.policy, PR_TRUE, &vrange, ss)) {
|
|
/* config_match already checks whether the cipher suite is
|
|
* acceptable for the version, but the check is repeated here
|
|
* in order to give a more precise error code. */
|
|
if (!ssl3_CipherSuiteAllowedForVersionRange(temp, &vrange)) {
|
|
desc = handshake_failure;
|
|
errCode = SSL_ERROR_CIPHER_DISALLOWED_FOR_VERSION;
|
|
goto alert_loser;
|
|
}
|
|
|
|
break; /* failure */
|
|
}
|
|
|
|
suite_found = PR_TRUE;
|
|
break; /* success */
|
|
}
|
|
}
|
|
if (!suite_found) {
|
|
desc = handshake_failure;
|
|
errCode = SSL_ERROR_NO_CYPHER_OVERLAP;
|
|
goto alert_loser;
|
|
}
|
|
ss->ssl3.hs.cipher_suite = (ssl3CipherSuite)temp;
|
|
ss->ssl3.hs.suite_def = ssl_LookupCipherSuiteDef((ssl3CipherSuite)temp);
|
|
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_cipher_suite;
|
|
PORT_Assert(ss->ssl3.hs.suite_def);
|
|
if (!ss->ssl3.hs.suite_def) {
|
|
PORT_SetError(errCode = SEC_ERROR_LIBRARY_FAILURE);
|
|
goto loser; /* we don't send alerts for our screw-ups. */
|
|
}
|
|
|
|
/* find selected compression method in our list. */
|
|
temp = ssl3_ConsumeHandshakeNumber(ss, 1, &b, &length);
|
|
if (temp < 0) {
|
|
goto loser; /* alert has been sent */
|
|
}
|
|
suite_found = PR_FALSE;
|
|
for (i = 0; i < compressionMethodsCount; i++) {
|
|
if (temp == compressions[i]) {
|
|
if (!compressionEnabled(ss, compressions[i])) {
|
|
break; /* failure */
|
|
}
|
|
suite_found = PR_TRUE;
|
|
break; /* success */
|
|
}
|
|
}
|
|
if (!suite_found) {
|
|
desc = handshake_failure;
|
|
errCode = SSL_ERROR_NO_COMPRESSION_OVERLAP;
|
|
goto alert_loser;
|
|
}
|
|
ss->ssl3.hs.compression = (SSLCompressionMethod)temp;
|
|
|
|
/* Note that if !isTLS and the extra stuff is not extensions, we
|
|
* do NOT goto alert_loser.
|
|
* There are some old SSL 3.0 implementations that do send stuff
|
|
* after the end of the server hello, and we deliberately ignore
|
|
* such stuff in the interest of maximal interoperability (being
|
|
* "generous in what you accept").
|
|
* Update: Starting in NSS 3.12.6, we handle the renegotiation_info
|
|
* extension in SSL 3.0.
|
|
*/
|
|
if (length != 0) {
|
|
SECItem extensions;
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &extensions, 2, &b, &length);
|
|
if (rv != SECSuccess || length != 0) {
|
|
if (isTLS)
|
|
goto alert_loser;
|
|
} else {
|
|
rv = ssl3_HandleHelloExtensions(ss, &extensions.data,
|
|
&extensions.len);
|
|
if (rv != SECSuccess)
|
|
goto alert_loser;
|
|
}
|
|
}
|
|
if ((ss->opt.requireSafeNegotiation ||
|
|
(ss->firstHsDone && (ss->peerRequestedProtection ||
|
|
ss->opt.enableRenegotiation == SSL_RENEGOTIATE_REQUIRES_XTN))) &&
|
|
!ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) {
|
|
desc = handshake_failure;
|
|
errCode = ss->firstHsDone ? SSL_ERROR_RENEGOTIATION_NOT_ALLOWED
|
|
: SSL_ERROR_UNSAFE_NEGOTIATION;
|
|
goto alert_loser;
|
|
}
|
|
|
|
/* Any errors after this point are not "malformed" errors. */
|
|
desc = handshake_failure;
|
|
|
|
/* we need to call ssl3_SetupPendingCipherSpec here so we can check the
|
|
* key exchange algorithm. */
|
|
rv = ssl3_SetupPendingCipherSpec(ss);
|
|
if (rv != SECSuccess) {
|
|
goto alert_loser; /* error code is set. */
|
|
}
|
|
|
|
/* We may or may not have sent a session id, we may get one back or
|
|
* not and if so it may match the one we sent.
|
|
* Attempt to restore the master secret to see if this is so...
|
|
* Don't consider failure to find a matching SID an error.
|
|
*/
|
|
sid_match = (PRBool)(sidBytes.len > 0 &&
|
|
sidBytes.len == sid->u.ssl3.sessionIDLength &&
|
|
!PORT_Memcmp(sid->u.ssl3.sessionID, sidBytes.data, sidBytes.len));
|
|
|
|
if (sid_match &&
|
|
sid->version == ss->version &&
|
|
sid->u.ssl3.cipherSuite == ss->ssl3.hs.cipher_suite) do {
|
|
ssl3CipherSpec *pwSpec = ss->ssl3.pwSpec;
|
|
|
|
SECItem wrappedMS; /* wrapped master secret. */
|
|
|
|
/* [draft-ietf-tls-session-hash-06; Section 5.3]
|
|
*
|
|
* o If the original session did not use the "extended_master_secret"
|
|
* extension but the new ServerHello contains the extension, the
|
|
* client MUST abort the handshake.
|
|
*/
|
|
if (!sid->u.ssl3.keys.extendedMasterSecretUsed &&
|
|
ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn)) {
|
|
errCode = SSL_ERROR_UNEXPECTED_EXTENDED_MASTER_SECRET;
|
|
goto alert_loser;
|
|
}
|
|
|
|
/*
|
|
* o If the original session used an extended master secret but the new
|
|
* ServerHello does not contain the "extended_master_secret"
|
|
* extension, the client SHOULD abort the handshake.
|
|
*
|
|
* TODO(ekr@rtfm.com): Add option to refuse to resume when EMS is not
|
|
* used at all (bug 1176526).
|
|
*/
|
|
if (sid->u.ssl3.keys.extendedMasterSecretUsed &&
|
|
!ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn)) {
|
|
errCode = SSL_ERROR_MISSING_EXTENDED_MASTER_SECRET;
|
|
goto alert_loser;
|
|
}
|
|
|
|
ss->sec.authAlgorithm = sid->authAlgorithm;
|
|
ss->sec.authKeyBits = sid->authKeyBits;
|
|
ss->sec.keaType = sid->keaType;
|
|
ss->sec.keaKeyBits = sid->keaKeyBits;
|
|
|
|
/* 3 cases here:
|
|
* a) key is wrapped (implies using PKCS11)
|
|
* b) key is unwrapped, but we're still using PKCS11
|
|
* c) key is unwrapped, and we're bypassing PKCS11.
|
|
*/
|
|
if (sid->u.ssl3.keys.msIsWrapped) {
|
|
PK11SlotInfo *slot;
|
|
PK11SymKey * wrapKey; /* wrapping key */
|
|
CK_FLAGS keyFlags = 0;
|
|
|
|
#ifndef NO_PKCS11_BYPASS
|
|
if (ss->opt.bypassPKCS11) {
|
|
/* we cannot restart a non-bypass session in a
|
|
** bypass socket.
|
|
*/
|
|
break;
|
|
}
|
|
#endif
|
|
/* unwrap master secret with PKCS11 */
|
|
slot = SECMOD_LookupSlot(sid->u.ssl3.masterModuleID,
|
|
sid->u.ssl3.masterSlotID);
|
|
if (slot == NULL) {
|
|
break; /* not considered an error. */
|
|
}
|
|
if (!PK11_IsPresent(slot)) {
|
|
PK11_FreeSlot(slot);
|
|
break; /* not considered an error. */
|
|
}
|
|
wrapKey = PK11_GetWrapKey(slot, sid->u.ssl3.masterWrapIndex,
|
|
sid->u.ssl3.masterWrapMech,
|
|
sid->u.ssl3.masterWrapSeries,
|
|
ss->pkcs11PinArg);
|
|
PK11_FreeSlot(slot);
|
|
if (wrapKey == NULL) {
|
|
break; /* not considered an error. */
|
|
}
|
|
|
|
if (ss->version > SSL_LIBRARY_VERSION_3_0) { /* isTLS */
|
|
keyFlags = CKF_SIGN | CKF_VERIFY;
|
|
}
|
|
|
|
wrappedMS.data = sid->u.ssl3.keys.wrapped_master_secret;
|
|
wrappedMS.len = sid->u.ssl3.keys.wrapped_master_secret_len;
|
|
pwSpec->master_secret =
|
|
PK11_UnwrapSymKeyWithFlags(wrapKey, sid->u.ssl3.masterWrapMech,
|
|
NULL, &wrappedMS, CKM_SSL3_MASTER_KEY_DERIVE,
|
|
CKA_DERIVE, sizeof(SSL3MasterSecret), keyFlags);
|
|
errCode = PORT_GetError();
|
|
PK11_FreeSymKey(wrapKey);
|
|
if (pwSpec->master_secret == NULL) {
|
|
break; /* errorCode set just after call to UnwrapSymKey. */
|
|
}
|
|
#ifndef NO_PKCS11_BYPASS
|
|
} else if (ss->opt.bypassPKCS11) {
|
|
/* MS is not wrapped */
|
|
wrappedMS.data = sid->u.ssl3.keys.wrapped_master_secret;
|
|
wrappedMS.len = sid->u.ssl3.keys.wrapped_master_secret_len;
|
|
memcpy(pwSpec->raw_master_secret, wrappedMS.data, wrappedMS.len);
|
|
pwSpec->msItem.data = pwSpec->raw_master_secret;
|
|
pwSpec->msItem.len = wrappedMS.len;
|
|
#endif
|
|
} else {
|
|
/* We CAN restart a bypass session in a non-bypass socket. */
|
|
/* need to import the raw master secret to session object */
|
|
PK11SlotInfo *slot = PK11_GetInternalSlot();
|
|
wrappedMS.data = sid->u.ssl3.keys.wrapped_master_secret;
|
|
wrappedMS.len = sid->u.ssl3.keys.wrapped_master_secret_len;
|
|
pwSpec->master_secret =
|
|
PK11_ImportSymKey(slot, CKM_SSL3_MASTER_KEY_DERIVE,
|
|
PK11_OriginUnwrap, CKA_ENCRYPT,
|
|
&wrappedMS, NULL);
|
|
PK11_FreeSlot(slot);
|
|
if (pwSpec->master_secret == NULL) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Got a Match */
|
|
SSL_AtomicIncrementLong(& ssl3stats.hsh_sid_cache_hits );
|
|
|
|
/* If we sent a session ticket, then this is a stateless resume. */
|
|
if (ss->xtnData.sentSessionTicketInClientHello)
|
|
SSL_AtomicIncrementLong(& ssl3stats.hsh_sid_stateless_resumes );
|
|
|
|
if (ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn))
|
|
ss->ssl3.hs.ws = wait_new_session_ticket;
|
|
else
|
|
ss->ssl3.hs.ws = wait_change_cipher;
|
|
|
|
ss->ssl3.hs.isResuming = PR_TRUE;
|
|
|
|
/* copy the peer cert from the SID */
|
|
if (sid->peerCert != NULL) {
|
|
ss->sec.peerCert = CERT_DupCertificate(sid->peerCert);
|
|
}
|
|
|
|
/* NULL value for PMS because we are reusing the old MS */
|
|
rv = ssl3_InitPendingCipherSpec(ss, NULL);
|
|
if (rv != SECSuccess) {
|
|
goto alert_loser; /* err code was set */
|
|
}
|
|
return SECSuccess;
|
|
} while (0);
|
|
|
|
if (sid_match)
|
|
SSL_AtomicIncrementLong(& ssl3stats.hsh_sid_cache_not_ok );
|
|
else
|
|
SSL_AtomicIncrementLong(& ssl3stats.hsh_sid_cache_misses );
|
|
|
|
/* throw the old one away */
|
|
sid->u.ssl3.keys.resumable = PR_FALSE;
|
|
if (ss->sec.uncache)
|
|
(*ss->sec.uncache)(sid);
|
|
ssl_FreeSID(sid);
|
|
|
|
/* get a new sid */
|
|
ss->sec.ci.sid = sid = ssl3_NewSessionID(ss, PR_FALSE);
|
|
if (sid == NULL) {
|
|
goto alert_loser; /* memory error is set. */
|
|
}
|
|
|
|
sid->version = ss->version;
|
|
sid->u.ssl3.sessionIDLength = sidBytes.len;
|
|
PORT_Memcpy(sid->u.ssl3.sessionID, sidBytes.data, sidBytes.len);
|
|
|
|
sid->u.ssl3.keys.extendedMasterSecretUsed =
|
|
ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn);
|
|
|
|
ss->ssl3.hs.isResuming = PR_FALSE;
|
|
if (ss->ssl3.hs.kea_def->signKeyType != sign_null) {
|
|
/* All current cipher suites other than those with sign_null (i.e.,
|
|
* (EC)DH_anon_* suites) require a certificate, so use that signal. */
|
|
ss->ssl3.hs.ws = wait_server_cert;
|
|
} else {
|
|
/* All the remaining cipher suites must be (EC)DH_anon_* and so
|
|
* must be ephemeral. Note, if we ever add PSK this might
|
|
* change. */
|
|
PORT_Assert(ss->ssl3.hs.kea_def->ephemeral);
|
|
ss->ssl3.hs.ws = wait_server_key;
|
|
}
|
|
return SECSuccess;
|
|
|
|
alert_loser:
|
|
(void)SSL3_SendAlert(ss, alert_fatal, desc);
|
|
|
|
loser:
|
|
errCode = ssl_MapLowLevelError(errCode);
|
|
return SECFailure;
|
|
}
|
|
|
|
|
|
/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete
|
|
* ssl3 ServerKeyExchange message.
|
|
* Caller must hold Handshake and RecvBuf locks.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleServerKeyExchange(sslSocket *ss, SSL3Opaque *b, PRUint32 length)
|
|
{
|
|
PLArenaPool * arena = NULL;
|
|
SECKEYPublicKey *peerKey = NULL;
|
|
PRBool isTLS, isTLS12;
|
|
SECStatus rv;
|
|
int errCode = SSL_ERROR_RX_MALFORMED_SERVER_KEY_EXCH;
|
|
SSL3AlertDescription desc = illegal_parameter;
|
|
SSL3Hashes hashes;
|
|
SECItem signature = {siBuffer, NULL, 0};
|
|
SSLSignatureAndHashAlg sigAndHash;
|
|
|
|
sigAndHash.hashAlg = ssl_hash_none;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle server_key_exchange handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
if (ss->ssl3.hs.ws != wait_server_key) {
|
|
errCode = SSL_ERROR_RX_UNEXPECTED_SERVER_KEY_EXCH;
|
|
desc = unexpected_message;
|
|
goto alert_loser;
|
|
}
|
|
|
|
isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
isTLS12 = (PRBool)(ss->ssl3.prSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2);
|
|
|
|
switch (ss->ssl3.hs.kea_def->exchKeyType) {
|
|
|
|
case kt_rsa: {
|
|
SECItem modulus = {siBuffer, NULL, 0};
|
|
SECItem exponent = {siBuffer, NULL, 0};
|
|
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &modulus, 2, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed. */
|
|
}
|
|
/* This exchange method is only used by export cipher suites.
|
|
* Those are broken and so this code will eventually be removed. */
|
|
if (SECKEY_BigIntegerBitLength(&modulus) < 512) {
|
|
desc = isTLS ? insufficient_security : illegal_parameter;
|
|
goto alert_loser;
|
|
}
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &exponent, 2, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed. */
|
|
}
|
|
if (isTLS12) {
|
|
rv = ssl3_ConsumeSignatureAndHashAlgorithm(ss, &b, &length,
|
|
&sigAndHash);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed or unsupported. */
|
|
}
|
|
rv = ssl3_CheckSignatureAndHashAlgorithmConsistency(ss,
|
|
&sigAndHash, ss->sec.peerCert);
|
|
if (rv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
}
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &signature, 2, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed. */
|
|
}
|
|
if (length != 0) {
|
|
if (isTLS)
|
|
desc = decode_error;
|
|
goto alert_loser; /* malformed. */
|
|
}
|
|
|
|
/* failures after this point are not malformed handshakes. */
|
|
/* TLS: send decrypt_error if signature failed. */
|
|
desc = isTLS ? decrypt_error : handshake_failure;
|
|
|
|
/*
|
|
* check to make sure the hash is signed by right guy
|
|
*/
|
|
rv = ssl3_ComputeExportRSAKeyHash(sigAndHash.hashAlg, modulus, exponent,
|
|
&ss->ssl3.hs.client_random,
|
|
&ss->ssl3.hs.server_random,
|
|
&hashes, ss->opt.bypassPKCS11);
|
|
if (rv != SECSuccess) {
|
|
errCode =
|
|
ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
|
|
goto alert_loser;
|
|
}
|
|
rv = ssl3_VerifySignedHashes(&hashes, ss->sec.peerCert, &signature,
|
|
isTLS, ss->pkcs11PinArg);
|
|
if (rv != SECSuccess) {
|
|
errCode =
|
|
ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
|
|
goto alert_loser;
|
|
}
|
|
|
|
/*
|
|
* we really need to build a new key here because we can no longer
|
|
* ignore calling SECKEY_DestroyPublicKey. Using the key may allocate
|
|
* pkcs11 slots and ID's.
|
|
*/
|
|
arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
|
|
if (arena == NULL) {
|
|
goto no_memory;
|
|
}
|
|
|
|
peerKey = PORT_ArenaZNew(arena, SECKEYPublicKey);
|
|
if (peerKey == NULL) {
|
|
goto no_memory;
|
|
}
|
|
|
|
peerKey->arena = arena;
|
|
peerKey->keyType = rsaKey;
|
|
peerKey->pkcs11Slot = NULL;
|
|
peerKey->pkcs11ID = CK_INVALID_HANDLE;
|
|
if (SECITEM_CopyItem(arena, &peerKey->u.rsa.modulus, &modulus) ||
|
|
SECITEM_CopyItem(arena, &peerKey->u.rsa.publicExponent, &exponent))
|
|
{
|
|
goto no_memory;
|
|
}
|
|
ss->sec.peerKey = peerKey;
|
|
ss->ssl3.hs.ws = wait_cert_request;
|
|
return SECSuccess;
|
|
}
|
|
|
|
case kt_dh: {
|
|
SECItem dh_p = {siBuffer, NULL, 0};
|
|
SECItem dh_g = {siBuffer, NULL, 0};
|
|
SECItem dh_Ys = {siBuffer, NULL, 0};
|
|
unsigned dh_p_bits;
|
|
unsigned dh_g_bits;
|
|
unsigned dh_Ys_bits;
|
|
PRInt32 minDH;
|
|
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &dh_p, 2, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed. */
|
|
}
|
|
|
|
rv = NSS_OptionGet(NSS_DH_MIN_KEY_SIZE, &minDH);
|
|
if (rv != SECSuccess) {
|
|
minDH = SSL_DH_MIN_P_BITS;
|
|
}
|
|
dh_p_bits = SECKEY_BigIntegerBitLength(&dh_p);
|
|
if (dh_p_bits < minDH) {
|
|
errCode = SSL_ERROR_WEAK_SERVER_EPHEMERAL_DH_KEY;
|
|
goto alert_loser;
|
|
}
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &dh_g, 2, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed. */
|
|
}
|
|
/* Abort if dh_g is 0, 1, or obviously too big. */
|
|
dh_g_bits = SECKEY_BigIntegerBitLength(&dh_g);
|
|
if (dh_g_bits > dh_p_bits || dh_g_bits <= 1)
|
|
goto alert_loser;
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &dh_Ys, 2, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed. */
|
|
}
|
|
dh_Ys_bits = SECKEY_BigIntegerBitLength(&dh_Ys);
|
|
if (dh_Ys_bits > dh_p_bits || dh_Ys_bits <= 1)
|
|
goto alert_loser;
|
|
if (isTLS12) {
|
|
rv = ssl3_ConsumeSignatureAndHashAlgorithm(ss, &b, &length,
|
|
&sigAndHash);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed or unsupported. */
|
|
}
|
|
rv = ssl3_CheckSignatureAndHashAlgorithmConsistency(ss,
|
|
&sigAndHash, ss->sec.peerCert);
|
|
if (rv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
}
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &signature, 2, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed. */
|
|
}
|
|
if (length != 0) {
|
|
if (isTLS)
|
|
desc = decode_error;
|
|
goto alert_loser; /* malformed. */
|
|
}
|
|
|
|
PRINT_BUF(60, (NULL, "Server DH p", dh_p.data, dh_p.len));
|
|
PRINT_BUF(60, (NULL, "Server DH g", dh_g.data, dh_g.len));
|
|
PRINT_BUF(60, (NULL, "Server DH Ys", dh_Ys.data, dh_Ys.len));
|
|
|
|
/* failures after this point are not malformed handshakes. */
|
|
/* TLS: send decrypt_error if signature failed. */
|
|
desc = isTLS ? decrypt_error : handshake_failure;
|
|
|
|
/*
|
|
* check to make sure the hash is signed by right guy
|
|
*/
|
|
rv = ssl3_ComputeDHKeyHash(sigAndHash.hashAlg, dh_p, dh_g, dh_Ys,
|
|
&ss->ssl3.hs.client_random,
|
|
&ss->ssl3.hs.server_random,
|
|
&hashes, ss->opt.bypassPKCS11);
|
|
if (rv != SECSuccess) {
|
|
errCode =
|
|
ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
|
|
goto alert_loser;
|
|
}
|
|
rv = ssl3_VerifySignedHashes(&hashes, ss->sec.peerCert, &signature,
|
|
isTLS, ss->pkcs11PinArg);
|
|
if (rv != SECSuccess) {
|
|
errCode =
|
|
ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
|
|
goto alert_loser;
|
|
}
|
|
|
|
/*
|
|
* we really need to build a new key here because we can no longer
|
|
* ignore calling SECKEY_DestroyPublicKey. Using the key may allocate
|
|
* pkcs11 slots and ID's.
|
|
*/
|
|
arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
|
|
if (arena == NULL) {
|
|
goto no_memory;
|
|
}
|
|
|
|
peerKey = PORT_ArenaZNew(arena, SECKEYPublicKey);
|
|
if (peerKey == NULL) {
|
|
goto no_memory;
|
|
}
|
|
|
|
peerKey->arena = arena;
|
|
peerKey->keyType = dhKey;
|
|
peerKey->pkcs11Slot = NULL;
|
|
peerKey->pkcs11ID = CK_INVALID_HANDLE;
|
|
|
|
if (SECITEM_CopyItem(arena, &peerKey->u.dh.prime, &dh_p) ||
|
|
SECITEM_CopyItem(arena, &peerKey->u.dh.base, &dh_g) ||
|
|
SECITEM_CopyItem(arena, &peerKey->u.dh.publicValue, &dh_Ys))
|
|
{
|
|
goto no_memory;
|
|
}
|
|
ss->sec.peerKey = peerKey;
|
|
ss->ssl3.hs.ws = wait_cert_request;
|
|
return SECSuccess;
|
|
}
|
|
|
|
#ifndef NSS_DISABLE_ECC
|
|
case kt_ecdh:
|
|
rv = ssl3_HandleECDHServerKeyExchange(ss, b, length);
|
|
return rv;
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
default:
|
|
desc = handshake_failure;
|
|
errCode = SEC_ERROR_UNSUPPORTED_KEYALG;
|
|
break; /* goto alert_loser; */
|
|
}
|
|
|
|
alert_loser:
|
|
(void)SSL3_SendAlert(ss, alert_fatal, desc);
|
|
loser:
|
|
if (arena) {
|
|
PORT_FreeArena(arena, PR_FALSE);
|
|
}
|
|
PORT_SetError( errCode );
|
|
return SECFailure;
|
|
|
|
no_memory: /* no-memory error has already been set. */
|
|
if (arena) {
|
|
PORT_FreeArena(arena, PR_FALSE);
|
|
}
|
|
ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
/*
|
|
* Returns the TLS signature algorithm for the client authentication key and
|
|
* whether it is an RSA or DSA key that may be able to sign only SHA-1 hashes.
|
|
*/
|
|
static SECStatus
|
|
ssl3_ExtractClientKeyInfo(sslSocket *ss,
|
|
SSLSignType *sigAlg,
|
|
PRBool *preferSha1)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
SECKEYPublicKey *pubk;
|
|
|
|
pubk = CERT_ExtractPublicKey(ss->ssl3.clientCertificate);
|
|
if (pubk == NULL) {
|
|
rv = SECFailure;
|
|
goto done;
|
|
}
|
|
|
|
rv = ssl3_TLSSignatureAlgorithmForKeyType(pubk->keyType, sigAlg);
|
|
if (rv != SECSuccess) {
|
|
goto done;
|
|
}
|
|
|
|
/* If the key is a 1024-bit RSA or DSA key, assume conservatively that
|
|
* it may be unable to sign SHA-256 hashes. This is the case for older
|
|
* Estonian ID cards that have 1024-bit RSA keys. In FIPS 186-2 and
|
|
* older, DSA key size is at most 1024 bits and the hash function must
|
|
* be SHA-1.
|
|
*/
|
|
if (pubk->keyType == rsaKey || pubk->keyType == dsaKey) {
|
|
*preferSha1 = SECKEY_PublicKeyStrength(pubk) <= 128;
|
|
} else {
|
|
*preferSha1 = PR_FALSE;
|
|
}
|
|
|
|
done:
|
|
if (pubk)
|
|
SECKEY_DestroyPublicKey(pubk);
|
|
return rv;
|
|
}
|
|
|
|
/* Destroys the backup handshake hash context if we don't need it. Note that
|
|
* this function selects the hash algorithm for client authentication
|
|
* signatures; ssl3_SendCertificateVerify uses the presence of the backup hash
|
|
* to determine whether to use SHA-1 or SHA-256. */
|
|
static void
|
|
ssl3_DestroyBackupHandshakeHashIfNotNeeded(sslSocket *ss,
|
|
const SECItem *algorithms)
|
|
{
|
|
SECStatus rv;
|
|
SSLSignType sigAlg;
|
|
PRBool preferSha1;
|
|
PRBool supportsSha1 = PR_FALSE;
|
|
PRBool supportsSha256 = PR_FALSE;
|
|
PRBool needBackupHash = PR_FALSE;
|
|
unsigned int i;
|
|
|
|
#ifndef NO_PKCS11_BYPASS
|
|
/* Backup handshake hash is not supported in PKCS #11 bypass mode. */
|
|
if (ss->opt.bypassPKCS11) {
|
|
PORT_Assert(!ss->ssl3.hs.backupHash);
|
|
return;
|
|
}
|
|
#endif
|
|
PORT_Assert(ss->ssl3.hs.backupHash);
|
|
|
|
/* Determine the key's signature algorithm and whether it prefers SHA-1. */
|
|
rv = ssl3_ExtractClientKeyInfo(ss, &sigAlg, &preferSha1);
|
|
if (rv != SECSuccess) {
|
|
goto done;
|
|
}
|
|
|
|
/* Determine the server's hash support for that signature algorithm. */
|
|
for (i = 0; i < algorithms->len; i += 2) {
|
|
if (algorithms->data[i+1] == sigAlg) {
|
|
if (algorithms->data[i] == ssl_hash_sha1) {
|
|
supportsSha1 = PR_TRUE;
|
|
} else if (algorithms->data[i] == ssl_hash_sha256) {
|
|
supportsSha256 = PR_TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If either the server does not support SHA-256 or the client key prefers
|
|
* SHA-1, leave the backup hash. */
|
|
if (supportsSha1 && (preferSha1 || !supportsSha256)) {
|
|
needBackupHash = PR_TRUE;
|
|
}
|
|
|
|
done:
|
|
if (!needBackupHash) {
|
|
PK11_DestroyContext(ss->ssl3.hs.backupHash, PR_TRUE);
|
|
ss->ssl3.hs.backupHash = NULL;
|
|
}
|
|
}
|
|
|
|
typedef struct dnameNode {
|
|
struct dnameNode *next;
|
|
SECItem name;
|
|
} dnameNode;
|
|
|
|
/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete
|
|
* ssl3 Certificate Request message.
|
|
* Caller must hold Handshake and RecvBuf locks.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleCertificateRequest(sslSocket *ss, SSL3Opaque *b, PRUint32 length)
|
|
{
|
|
PLArenaPool * arena = NULL;
|
|
dnameNode * node;
|
|
PRInt32 remaining;
|
|
PRBool isTLS = PR_FALSE;
|
|
PRBool isTLS12 = PR_FALSE;
|
|
int i;
|
|
int errCode = SSL_ERROR_RX_MALFORMED_CERT_REQUEST;
|
|
int nnames = 0;
|
|
SECStatus rv;
|
|
SSL3AlertDescription desc = illegal_parameter;
|
|
SECItem cert_types = {siBuffer, NULL, 0};
|
|
SECItem algorithms = {siBuffer, NULL, 0};
|
|
CERTDistNames ca_list;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle certificate_request handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
if (ss->ssl3.hs.ws != wait_cert_request) {
|
|
desc = unexpected_message;
|
|
errCode = SSL_ERROR_RX_UNEXPECTED_CERT_REQUEST;
|
|
goto alert_loser;
|
|
}
|
|
|
|
PORT_Assert(ss->ssl3.clientCertChain == NULL);
|
|
PORT_Assert(ss->ssl3.clientCertificate == NULL);
|
|
PORT_Assert(ss->ssl3.clientPrivateKey == NULL);
|
|
|
|
isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
isTLS12 = (PRBool)(ss->ssl3.prSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2);
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &cert_types, 1, &b, &length);
|
|
if (rv != SECSuccess)
|
|
goto loser; /* malformed, alert has been sent */
|
|
|
|
if (isTLS12) {
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &algorithms, 2, &b, &length);
|
|
if (rv != SECSuccess)
|
|
goto loser; /* malformed, alert has been sent */
|
|
/* An empty or odd-length value is invalid.
|
|
* SignatureAndHashAlgorithm
|
|
* supported_signature_algorithms<2..2^16-2>;
|
|
*/
|
|
if (algorithms.len == 0 || (algorithms.len & 1) != 0)
|
|
goto alert_loser;
|
|
}
|
|
|
|
arena = ca_list.arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
|
|
if (arena == NULL)
|
|
goto no_mem;
|
|
|
|
remaining = ssl3_ConsumeHandshakeNumber(ss, 2, &b, &length);
|
|
if (remaining < 0)
|
|
goto loser; /* malformed, alert has been sent */
|
|
|
|
if ((PRUint32)remaining > length)
|
|
goto alert_loser;
|
|
|
|
ca_list.head = node = PORT_ArenaZNew(arena, dnameNode);
|
|
if (node == NULL)
|
|
goto no_mem;
|
|
|
|
while (remaining > 0) {
|
|
PRInt32 len;
|
|
|
|
if (remaining < 2)
|
|
goto alert_loser; /* malformed */
|
|
|
|
node->name.len = len = ssl3_ConsumeHandshakeNumber(ss, 2, &b, &length);
|
|
if (len <= 0)
|
|
goto loser; /* malformed, alert has been sent */
|
|
|
|
remaining -= 2;
|
|
if (remaining < len)
|
|
goto alert_loser; /* malformed */
|
|
|
|
node->name.data = b;
|
|
b += len;
|
|
length -= len;
|
|
remaining -= len;
|
|
nnames++;
|
|
if (remaining <= 0)
|
|
break; /* success */
|
|
|
|
node->next = PORT_ArenaZNew(arena, dnameNode);
|
|
node = node->next;
|
|
if (node == NULL)
|
|
goto no_mem;
|
|
}
|
|
|
|
ca_list.nnames = nnames;
|
|
ca_list.names = PORT_ArenaNewArray(arena, SECItem, nnames);
|
|
if (nnames > 0 && ca_list.names == NULL)
|
|
goto no_mem;
|
|
|
|
for(i = 0, node = (dnameNode*)ca_list.head;
|
|
i < nnames;
|
|
i++, node = node->next) {
|
|
ca_list.names[i] = node->name;
|
|
}
|
|
|
|
if (length != 0)
|
|
goto alert_loser; /* malformed */
|
|
|
|
desc = no_certificate;
|
|
ss->ssl3.hs.ws = wait_hello_done;
|
|
|
|
if (ss->getClientAuthData != NULL) {
|
|
PORT_Assert((ss->ssl3.hs.preliminaryInfo & ssl_preinfo_all) ==
|
|
ssl_preinfo_all);
|
|
/* XXX Should pass cert_types and algorithms in this call!! */
|
|
rv = (SECStatus)(*ss->getClientAuthData)(ss->getClientAuthDataArg,
|
|
ss->fd, &ca_list,
|
|
&ss->ssl3.clientCertificate,
|
|
&ss->ssl3.clientPrivateKey);
|
|
} else {
|
|
rv = SECFailure; /* force it to send a no_certificate alert */
|
|
}
|
|
switch (rv) {
|
|
case SECWouldBlock: /* getClientAuthData has put up a dialog box. */
|
|
ssl3_SetAlwaysBlock(ss);
|
|
break; /* not an error */
|
|
|
|
case SECSuccess:
|
|
/* check what the callback function returned */
|
|
if ((!ss->ssl3.clientCertificate) || (!ss->ssl3.clientPrivateKey)) {
|
|
/* we are missing either the key or cert */
|
|
if (ss->ssl3.clientCertificate) {
|
|
/* got a cert, but no key - free it */
|
|
CERT_DestroyCertificate(ss->ssl3.clientCertificate);
|
|
ss->ssl3.clientCertificate = NULL;
|
|
}
|
|
if (ss->ssl3.clientPrivateKey) {
|
|
/* got a key, but no cert - free it */
|
|
SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey);
|
|
ss->ssl3.clientPrivateKey = NULL;
|
|
}
|
|
goto send_no_certificate;
|
|
}
|
|
/* Setting ssl3.clientCertChain non-NULL will cause
|
|
* ssl3_HandleServerHelloDone to call SendCertificate.
|
|
*/
|
|
ss->ssl3.clientCertChain = CERT_CertChainFromCert(
|
|
ss->ssl3.clientCertificate,
|
|
certUsageSSLClient, PR_FALSE);
|
|
if (ss->ssl3.clientCertChain == NULL) {
|
|
CERT_DestroyCertificate(ss->ssl3.clientCertificate);
|
|
ss->ssl3.clientCertificate = NULL;
|
|
SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey);
|
|
ss->ssl3.clientPrivateKey = NULL;
|
|
goto send_no_certificate;
|
|
}
|
|
if (ss->ssl3.hs.hashType == handshake_hash_single) {
|
|
ssl3_DestroyBackupHandshakeHashIfNotNeeded(ss, &algorithms);
|
|
}
|
|
break; /* not an error */
|
|
|
|
case SECFailure:
|
|
default:
|
|
send_no_certificate:
|
|
if (isTLS) {
|
|
ss->ssl3.sendEmptyCert = PR_TRUE;
|
|
} else {
|
|
(void)SSL3_SendAlert(ss, alert_warning, no_certificate);
|
|
}
|
|
rv = SECSuccess;
|
|
break;
|
|
}
|
|
goto done;
|
|
|
|
no_mem:
|
|
rv = SECFailure;
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
goto done;
|
|
|
|
alert_loser:
|
|
if (isTLS && desc == illegal_parameter)
|
|
desc = decode_error;
|
|
(void)SSL3_SendAlert(ss, alert_fatal, desc);
|
|
loser:
|
|
PORT_SetError(errCode);
|
|
rv = SECFailure;
|
|
done:
|
|
if (arena != NULL)
|
|
PORT_FreeArena(arena, PR_FALSE);
|
|
return rv;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_CheckFalseStart(sslSocket *ss)
|
|
{
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
PORT_Assert( !ss->ssl3.hs.authCertificatePending );
|
|
PORT_Assert( !ss->ssl3.hs.canFalseStart );
|
|
|
|
if (!ss->canFalseStartCallback) {
|
|
SSL_TRC(3, ("%d: SSL[%d]: no false start callback so no false start",
|
|
SSL_GETPID(), ss->fd));
|
|
} else {
|
|
PRBool maybeFalseStart;
|
|
SECStatus rv;
|
|
|
|
/* An attacker can control the selected ciphersuite so we only wish to
|
|
* do False Start in the case that the selected ciphersuite is
|
|
* sufficiently strong that the attack can gain no advantage.
|
|
* Therefore we always require an 80-bit cipher. */
|
|
ssl_GetSpecReadLock(ss);
|
|
maybeFalseStart = ss->ssl3.cwSpec->cipher_def->secret_key_size >= 10;
|
|
ssl_ReleaseSpecReadLock(ss);
|
|
|
|
if (!maybeFalseStart) {
|
|
SSL_TRC(3, ("%d: SSL[%d]: no false start due to weak cipher",
|
|
SSL_GETPID(), ss->fd));
|
|
} else {
|
|
PORT_Assert((ss->ssl3.hs.preliminaryInfo & ssl_preinfo_all) ==
|
|
ssl_preinfo_all);
|
|
rv = (ss->canFalseStartCallback)(ss->fd,
|
|
ss->canFalseStartCallbackData,
|
|
&ss->ssl3.hs.canFalseStart);
|
|
if (rv == SECSuccess) {
|
|
SSL_TRC(3, ("%d: SSL[%d]: false start callback returned %s",
|
|
SSL_GETPID(), ss->fd,
|
|
ss->ssl3.hs.canFalseStart ? "TRUE" : "FALSE"));
|
|
} else {
|
|
SSL_TRC(3, ("%d: SSL[%d]: false start callback failed (%s)",
|
|
SSL_GETPID(), ss->fd,
|
|
PR_ErrorToName(PR_GetError())));
|
|
}
|
|
return rv;
|
|
}
|
|
}
|
|
|
|
ss->ssl3.hs.canFalseStart = PR_FALSE;
|
|
return SECSuccess;
|
|
}
|
|
|
|
PRBool
|
|
ssl3_WaitingForStartOfServerSecondRound(sslSocket *ss)
|
|
{
|
|
PRBool result;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
switch (ss->ssl3.hs.ws) {
|
|
case wait_new_session_ticket:
|
|
result = PR_TRUE;
|
|
break;
|
|
case wait_change_cipher:
|
|
result = !ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn);
|
|
break;
|
|
default:
|
|
result = PR_FALSE;
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static SECStatus ssl3_SendClientSecondRound(sslSocket *ss);
|
|
|
|
/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete
|
|
* ssl3 Server Hello Done message.
|
|
* Caller must hold Handshake and RecvBuf locks.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleServerHelloDone(sslSocket *ss)
|
|
{
|
|
SECStatus rv;
|
|
SSL3WaitState ws = ss->ssl3.hs.ws;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle server_hello_done handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
/* Skipping CertificateRequest is always permitted. */
|
|
if (ws != wait_hello_done &&
|
|
ws != wait_cert_request) {
|
|
SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_DONE);
|
|
return SECFailure;
|
|
}
|
|
|
|
rv = ssl3_SendClientSecondRound(ss);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/* Called from ssl3_HandleServerHelloDone and ssl3_AuthCertificateComplete.
|
|
*
|
|
* Caller must hold Handshake and RecvBuf locks.
|
|
*/
|
|
static SECStatus
|
|
ssl3_SendClientSecondRound(sslSocket *ss)
|
|
{
|
|
SECStatus rv;
|
|
PRBool sendClientCert;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
sendClientCert = !ss->ssl3.sendEmptyCert &&
|
|
ss->ssl3.clientCertChain != NULL &&
|
|
ss->ssl3.clientPrivateKey != NULL;
|
|
|
|
if (!sendClientCert &&
|
|
ss->ssl3.hs.hashType == handshake_hash_single &&
|
|
ss->ssl3.hs.backupHash) {
|
|
/* Don't need the backup handshake hash. */
|
|
PK11_DestroyContext(ss->ssl3.hs.backupHash, PR_TRUE);
|
|
ss->ssl3.hs.backupHash = NULL;
|
|
}
|
|
|
|
/* We must wait for the server's certificate to be authenticated before
|
|
* sending the client certificate in order to disclosing the client
|
|
* certificate to an attacker that does not have a valid cert for the
|
|
* domain we are connecting to.
|
|
*
|
|
* XXX: We should do the same for the NPN extension, but for that we
|
|
* need an option to give the application the ability to leak the NPN
|
|
* information to get better performance.
|
|
*
|
|
* During the initial handshake on a connection, we never send/receive
|
|
* application data until we have authenticated the server's certificate;
|
|
* i.e. we have fully authenticated the handshake before using the cipher
|
|
* specs agreed upon for that handshake. During a renegotiation, we may
|
|
* continue sending and receiving application data during the handshake
|
|
* interleaved with the handshake records. If we were to send the client's
|
|
* second round for a renegotiation before the server's certificate was
|
|
* authenticated, then the application data sent/received after this point
|
|
* would be using cipher spec that hadn't been authenticated. By waiting
|
|
* until the server's certificate has been authenticated during
|
|
* renegotiations, we ensure that renegotiations have the same property
|
|
* as initial handshakes; i.e. we have fully authenticated the handshake
|
|
* before using the cipher specs agreed upon for that handshake for
|
|
* application data.
|
|
*/
|
|
if (ss->ssl3.hs.restartTarget) {
|
|
PR_NOT_REACHED("unexpected ss->ssl3.hs.restartTarget");
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
if (ss->ssl3.hs.authCertificatePending &&
|
|
(sendClientCert || ss->ssl3.sendEmptyCert || ss->firstHsDone)) {
|
|
SSL_TRC(3, ("%d: SSL3[%p]: deferring ssl3_SendClientSecondRound because"
|
|
" certificate authentication is still pending.",
|
|
SSL_GETPID(), ss->fd));
|
|
ss->ssl3.hs.restartTarget = ssl3_SendClientSecondRound;
|
|
return SECWouldBlock;
|
|
}
|
|
|
|
ssl_GetXmitBufLock(ss); /*******************************/
|
|
|
|
if (ss->ssl3.sendEmptyCert) {
|
|
ss->ssl3.sendEmptyCert = PR_FALSE;
|
|
rv = ssl3_SendEmptyCertificate(ss);
|
|
/* Don't send verify */
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* error code is set. */
|
|
}
|
|
} else if (sendClientCert) {
|
|
rv = ssl3_SendCertificate(ss);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* error code is set. */
|
|
}
|
|
}
|
|
|
|
rv = ssl3_SendClientKeyExchange(ss);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err is set. */
|
|
}
|
|
|
|
if (sendClientCert) {
|
|
rv = ssl3_SendCertificateVerify(ss);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err is set. */
|
|
}
|
|
}
|
|
|
|
rv = ssl3_SendChangeCipherSpecs(ss);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err code was set. */
|
|
}
|
|
|
|
/* This must be done after we've set ss->ssl3.cwSpec in
|
|
* ssl3_SendChangeCipherSpecs because SSL_GetChannelInfo uses information
|
|
* from cwSpec. This must be done before we call ssl3_CheckFalseStart
|
|
* because the false start callback (if any) may need the information from
|
|
* the functions that depend on this being set.
|
|
*/
|
|
ss->enoughFirstHsDone = PR_TRUE;
|
|
|
|
if (!ss->firstHsDone) {
|
|
/* XXX: If the server's certificate hasn't been authenticated by this
|
|
* point, then we may be leaking this NPN message to an attacker.
|
|
*/
|
|
rv = ssl3_SendNextProto(ss);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err code was set. */
|
|
}
|
|
|
|
if (ss->opt.enableFalseStart) {
|
|
if (!ss->ssl3.hs.authCertificatePending) {
|
|
/* When we fix bug 589047, we will need to know whether we are
|
|
* false starting before we try to flush the client second
|
|
* round to the network. With that in mind, we purposefully
|
|
* call ssl3_CheckFalseStart before calling ssl3_SendFinished,
|
|
* which includes a call to ssl3_FlushHandshake, so that
|
|
* no application develops a reliance on such flushing being
|
|
* done before its false start callback is called.
|
|
*/
|
|
ssl_ReleaseXmitBufLock(ss);
|
|
rv = ssl3_CheckFalseStart(ss);
|
|
ssl_GetXmitBufLock(ss);
|
|
if (rv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
} else {
|
|
/* The certificate authentication and the server's Finished
|
|
* message are racing each other. If the certificate
|
|
* authentication wins, then we will try to false start in
|
|
* ssl3_AuthCertificateComplete.
|
|
*/
|
|
SSL_TRC(3, ("%d: SSL3[%p]: deferring false start check because"
|
|
" certificate authentication is still pending.",
|
|
SSL_GETPID(), ss->fd));
|
|
}
|
|
}
|
|
}
|
|
|
|
rv = ssl3_SendFinished(ss, 0);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err code was set. */
|
|
}
|
|
|
|
ssl_ReleaseXmitBufLock(ss); /*******************************/
|
|
|
|
if (ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn))
|
|
ss->ssl3.hs.ws = wait_new_session_ticket;
|
|
else
|
|
ss->ssl3.hs.ws = wait_change_cipher;
|
|
|
|
PORT_Assert(ssl3_WaitingForStartOfServerSecondRound(ss));
|
|
|
|
return SECSuccess;
|
|
|
|
loser:
|
|
ssl_ReleaseXmitBufLock(ss);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Routines used by servers
|
|
*/
|
|
static SECStatus
|
|
ssl3_SendHelloRequest(sslSocket *ss)
|
|
{
|
|
SECStatus rv;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: send hello_request handshake", SSL_GETPID(),
|
|
ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) );
|
|
|
|
rv = ssl3_AppendHandshakeHeader(ss, hello_request, 0);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake */
|
|
}
|
|
rv = ssl3_FlushHandshake(ss, 0);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by ssl3_FlushHandshake */
|
|
}
|
|
ss->ssl3.hs.ws = wait_client_hello;
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* Called from:
|
|
* ssl3_HandleClientHello()
|
|
*/
|
|
static SECComparison
|
|
ssl3_ServerNameCompare(const SECItem *name1, const SECItem *name2)
|
|
{
|
|
if (!name1 != !name2) {
|
|
return SECLessThan;
|
|
}
|
|
if (!name1) {
|
|
return SECEqual;
|
|
}
|
|
if (name1->type != name2->type) {
|
|
return SECLessThan;
|
|
}
|
|
return SECITEM_CompareItem(name1, name2);
|
|
}
|
|
|
|
/* Sets memory error when returning NULL.
|
|
* Called from:
|
|
* ssl3_SendClientHello()
|
|
* ssl3_HandleServerHello()
|
|
* ssl3_HandleClientHello()
|
|
* ssl3_HandleV2ClientHello()
|
|
*/
|
|
sslSessionID *
|
|
ssl3_NewSessionID(sslSocket *ss, PRBool is_server)
|
|
{
|
|
sslSessionID *sid;
|
|
|
|
sid = PORT_ZNew(sslSessionID);
|
|
if (sid == NULL)
|
|
return sid;
|
|
|
|
if (is_server) {
|
|
const SECItem * srvName;
|
|
SECStatus rv = SECSuccess;
|
|
|
|
ssl_GetSpecReadLock(ss); /********************************/
|
|
srvName = &ss->ssl3.prSpec->srvVirtName;
|
|
if (srvName->len && srvName->data) {
|
|
rv = SECITEM_CopyItem(NULL, &sid->u.ssl3.srvName, srvName);
|
|
}
|
|
ssl_ReleaseSpecReadLock(ss); /************************************/
|
|
if (rv != SECSuccess) {
|
|
PORT_Free(sid);
|
|
return NULL;
|
|
}
|
|
}
|
|
sid->peerID = (ss->peerID == NULL) ? NULL : PORT_Strdup(ss->peerID);
|
|
sid->urlSvrName = (ss->url == NULL) ? NULL : PORT_Strdup(ss->url);
|
|
sid->addr = ss->sec.ci.peer;
|
|
sid->port = ss->sec.ci.port;
|
|
sid->references = 1;
|
|
sid->cached = never_cached;
|
|
sid->version = ss->version;
|
|
|
|
sid->u.ssl3.keys.resumable = PR_TRUE;
|
|
sid->u.ssl3.policy = SSL_ALLOWED;
|
|
sid->u.ssl3.clientWriteKey = NULL;
|
|
sid->u.ssl3.serverWriteKey = NULL;
|
|
sid->u.ssl3.keys.extendedMasterSecretUsed = PR_FALSE;
|
|
|
|
if (is_server) {
|
|
SECStatus rv;
|
|
int pid = SSL_GETPID();
|
|
|
|
sid->u.ssl3.sessionIDLength = SSL3_SESSIONID_BYTES;
|
|
sid->u.ssl3.sessionID[0] = (pid >> 8) & 0xff;
|
|
sid->u.ssl3.sessionID[1] = pid & 0xff;
|
|
rv = PK11_GenerateRandom(sid->u.ssl3.sessionID + 2,
|
|
SSL3_SESSIONID_BYTES -2);
|
|
if (rv != SECSuccess) {
|
|
ssl_FreeSID(sid);
|
|
ssl_MapLowLevelError(SSL_ERROR_GENERATE_RANDOM_FAILURE);
|
|
return NULL;
|
|
}
|
|
}
|
|
return sid;
|
|
}
|
|
|
|
/* Called from: ssl3_HandleClientHello, ssl3_HandleV2ClientHello */
|
|
static SECStatus
|
|
ssl3_SendServerHelloSequence(sslSocket *ss)
|
|
{
|
|
const ssl3KEADef *kea_def;
|
|
SECStatus rv;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: begin send server_hello sequence",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss) );
|
|
|
|
rv = ssl3_SendServerHello(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err code is set. */
|
|
}
|
|
rv = ssl3_SendCertificate(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code is set. */
|
|
}
|
|
rv = ssl3_SendCertificateStatus(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code is set. */
|
|
}
|
|
/* We have to do this after the call to ssl3_SendServerHello,
|
|
* because kea_def is set up by ssl3_SendServerHello().
|
|
*/
|
|
kea_def = ss->ssl3.hs.kea_def;
|
|
ss->ssl3.hs.usedStepDownKey = PR_FALSE;
|
|
|
|
if (kea_def->is_limited && kea_def->exchKeyType == kt_rsa) {
|
|
/* see if we can legally use the key in the cert. */
|
|
unsigned int keyLen; /* bytes */
|
|
|
|
keyLen = PK11_GetPrivateModulusLen(
|
|
ss->serverCerts[kea_def->exchKeyType].SERVERKEY);
|
|
|
|
if (keyLen > 0 &&
|
|
keyLen * BPB <= kea_def->key_size_limit ) {
|
|
/* XXX AND cert is not signing only!! */
|
|
/* just fall through and use it. */
|
|
} else if (ss->stepDownKeyPair != NULL) {
|
|
ss->ssl3.hs.usedStepDownKey = PR_TRUE;
|
|
rv = ssl3_SendServerKeyExchange(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err code was set. */
|
|
}
|
|
} else {
|
|
#ifndef HACKED_EXPORT_SERVER
|
|
PORT_SetError(SSL_ERROR_PUB_KEY_SIZE_LIMIT_EXCEEDED);
|
|
return rv;
|
|
#endif
|
|
}
|
|
} else if (kea_def->ephemeral) {
|
|
rv = ssl3_SendServerKeyExchange(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err code was set. */
|
|
}
|
|
}
|
|
|
|
if (ss->opt.requestCertificate) {
|
|
rv = ssl3_SendCertificateRequest(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err code is set. */
|
|
}
|
|
}
|
|
rv = ssl3_SendServerHelloDone(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err code is set. */
|
|
}
|
|
|
|
ss->ssl3.hs.ws = (ss->opt.requestCertificate) ? wait_client_cert
|
|
: wait_client_key;
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* An empty TLS Renegotiation Info (RI) extension */
|
|
static const PRUint8 emptyRIext[5] = {0xff, 0x01, 0x00, 0x01, 0x00};
|
|
|
|
static PRBool
|
|
ssl3_KEAAllowsSessionTicket(SSL3KeyExchangeAlgorithm kea)
|
|
{
|
|
switch (kea) {
|
|
case kea_dhe_dss:
|
|
case kea_dhe_dss_export:
|
|
case kea_dh_dss_export:
|
|
case kea_dh_dss:
|
|
/* TODO: Fix session tickets for DSS. The server code rejects the
|
|
* session ticket received from the client. Bug 1174677 */
|
|
return PR_FALSE;
|
|
default:
|
|
return PR_TRUE;
|
|
};
|
|
}
|
|
|
|
/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete
|
|
* ssl3 Client Hello message.
|
|
* Caller must hold Handshake and RecvBuf locks.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleClientHello(sslSocket *ss, SSL3Opaque *b, PRUint32 length)
|
|
{
|
|
sslSessionID * sid = NULL;
|
|
PRInt32 tmp;
|
|
unsigned int i;
|
|
int j;
|
|
SECStatus rv;
|
|
int errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO;
|
|
SSL3AlertDescription desc = illegal_parameter;
|
|
SSL3AlertLevel level = alert_fatal;
|
|
SSL3ProtocolVersion version;
|
|
SECItem sidBytes = {siBuffer, NULL, 0};
|
|
SECItem cookieBytes = {siBuffer, NULL, 0};
|
|
SECItem suites = {siBuffer, NULL, 0};
|
|
SECItem comps = {siBuffer, NULL, 0};
|
|
PRBool haveSpecWriteLock = PR_FALSE;
|
|
PRBool haveXmitBufLock = PR_FALSE;
|
|
PRBool canOfferSessionTicket = PR_FALSE;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle client_hello handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
PORT_Assert( ss->ssl3.initialized );
|
|
ss->ssl3.hs.preliminaryInfo = 0;
|
|
|
|
if (!ss->sec.isServer ||
|
|
(ss->ssl3.hs.ws != wait_client_hello &&
|
|
ss->ssl3.hs.ws != idle_handshake)) {
|
|
desc = unexpected_message;
|
|
errCode = SSL_ERROR_RX_UNEXPECTED_CLIENT_HELLO;
|
|
goto alert_loser;
|
|
}
|
|
if (ss->ssl3.hs.ws == idle_handshake &&
|
|
ss->opt.enableRenegotiation == SSL_RENEGOTIATE_NEVER) {
|
|
desc = no_renegotiation;
|
|
level = alert_warning;
|
|
errCode = SSL_ERROR_RENEGOTIATION_NOT_ALLOWED;
|
|
goto alert_loser;
|
|
}
|
|
|
|
/* Get peer name of client */
|
|
rv = ssl_GetPeerInfo(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code is set. */
|
|
}
|
|
|
|
/* Clearing the handshake pointers so that ssl_Do1stHandshake won't
|
|
* call ssl2_HandleMessage.
|
|
*
|
|
* The issue here is that TLS ordinarily starts out in
|
|
* ssl2_HandleV3HandshakeRecord() because of the backward-compatibility
|
|
* code paths. That function zeroes these next pointers. But with DTLS,
|
|
* we don't even try to do the v2 ClientHello so we skip that function
|
|
* and need to reset these values here.
|
|
*/
|
|
if (IS_DTLS(ss)) {
|
|
ss->nextHandshake = 0;
|
|
ss->securityHandshake = 0;
|
|
}
|
|
|
|
/* We might be starting session renegotiation in which case we should
|
|
* clear previous state.
|
|
*/
|
|
PORT_Memset(&ss->xtnData, 0, sizeof(TLSExtensionData));
|
|
ss->statelessResume = PR_FALSE;
|
|
|
|
if (IS_DTLS(ss)) {
|
|
dtls_RehandshakeCleanup(ss);
|
|
}
|
|
|
|
tmp = ssl3_ConsumeHandshakeNumber(ss, 2, &b, &length);
|
|
if (tmp < 0)
|
|
goto loser; /* malformed, alert already sent */
|
|
|
|
/* Translate the version */
|
|
if (IS_DTLS(ss)) {
|
|
ss->clientHelloVersion = version =
|
|
dtls_DTLSVersionToTLSVersion((SSL3ProtocolVersion)tmp);
|
|
} else {
|
|
ss->clientHelloVersion = version = (SSL3ProtocolVersion)tmp;
|
|
}
|
|
|
|
rv = ssl3_NegotiateVersion(ss, version, PR_TRUE);
|
|
if (rv != SECSuccess) {
|
|
desc = (version > SSL_LIBRARY_VERSION_3_0) ? protocol_version
|
|
: handshake_failure;
|
|
errCode = SSL_ERROR_UNSUPPORTED_VERSION;
|
|
goto alert_loser;
|
|
}
|
|
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_version;
|
|
|
|
rv = ssl3_InitHandshakeHashes(ss);
|
|
if (rv != SECSuccess) {
|
|
desc = internal_error;
|
|
errCode = PORT_GetError();
|
|
goto alert_loser;
|
|
}
|
|
|
|
/* grab the client random data. */
|
|
rv = ssl3_ConsumeHandshake(
|
|
ss, &ss->ssl3.hs.client_random, SSL3_RANDOM_LENGTH, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed */
|
|
}
|
|
|
|
/* grab the client's SID, if present. */
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &sidBytes, 1, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed */
|
|
}
|
|
|
|
/* grab the client's cookie, if present. */
|
|
if (IS_DTLS(ss)) {
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &cookieBytes, 1, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed */
|
|
}
|
|
}
|
|
|
|
/* grab the list of cipher suites. */
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &suites, 2, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed */
|
|
}
|
|
|
|
/* If the ClientHello version is less than our maximum version, check for a
|
|
* TLS_FALLBACK_SCSV and reject the connection if found. */
|
|
if (ss->vrange.max > ss->clientHelloVersion) {
|
|
for (i = 0; i + 1 < suites.len; i += 2) {
|
|
PRUint16 suite_i = (suites.data[i] << 8) | suites.data[i + 1];
|
|
if (suite_i != TLS_FALLBACK_SCSV)
|
|
continue;
|
|
desc = inappropriate_fallback;
|
|
errCode = SSL_ERROR_INAPPROPRIATE_FALLBACK_ALERT;
|
|
goto alert_loser;
|
|
}
|
|
}
|
|
|
|
/* grab the list of compression methods. */
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &comps, 1, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed */
|
|
}
|
|
|
|
/* TLS 1.3 requires that compression be empty */
|
|
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
|
|
if (comps.len != 1 || comps.data[0] != ssl_compression_null) {
|
|
goto loser;
|
|
}
|
|
}
|
|
desc = handshake_failure;
|
|
|
|
/* Handle TLS hello extensions for SSL3 & TLS. We do not know if
|
|
* we are restarting a previous session until extensions have been
|
|
* parsed, since we might have received a SessionTicket extension.
|
|
* Note: we allow extensions even when negotiating SSL3 for the sake
|
|
* of interoperability (and backwards compatibility).
|
|
*/
|
|
|
|
if (length) {
|
|
/* Get length of hello extensions */
|
|
PRInt32 extension_length;
|
|
extension_length = ssl3_ConsumeHandshakeNumber(ss, 2, &b, &length);
|
|
if (extension_length < 0) {
|
|
goto loser; /* alert already sent */
|
|
}
|
|
if (extension_length != length) {
|
|
ssl3_DecodeError(ss); /* send alert */
|
|
goto loser;
|
|
}
|
|
rv = ssl3_HandleHelloExtensions(ss, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed */
|
|
}
|
|
}
|
|
if (!ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) {
|
|
/* If we didn't receive an RI extension, look for the SCSV,
|
|
* and if found, treat it just like an empty RI extension
|
|
* by processing a local copy of an empty RI extension.
|
|
*/
|
|
for (i = 0; i + 1 < suites.len; i += 2) {
|
|
PRUint16 suite_i = (suites.data[i] << 8) | suites.data[i + 1];
|
|
if (suite_i == TLS_EMPTY_RENEGOTIATION_INFO_SCSV) {
|
|
SSL3Opaque * b2 = (SSL3Opaque *)emptyRIext;
|
|
PRUint32 L2 = sizeof emptyRIext;
|
|
(void)ssl3_HandleHelloExtensions(ss, &b2, &L2);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (ss->firstHsDone &&
|
|
(ss->opt.enableRenegotiation == SSL_RENEGOTIATE_REQUIRES_XTN ||
|
|
ss->opt.enableRenegotiation == SSL_RENEGOTIATE_TRANSITIONAL) &&
|
|
!ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) {
|
|
desc = no_renegotiation;
|
|
level = alert_warning;
|
|
errCode = SSL_ERROR_RENEGOTIATION_NOT_ALLOWED;
|
|
goto alert_loser;
|
|
}
|
|
if ((ss->opt.requireSafeNegotiation ||
|
|
(ss->firstHsDone && ss->peerRequestedProtection)) &&
|
|
!ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) {
|
|
desc = handshake_failure;
|
|
errCode = SSL_ERROR_UNSAFE_NEGOTIATION;
|
|
goto alert_loser;
|
|
}
|
|
|
|
/* We do stateful resumes only if either of the following
|
|
* conditions are satisfied: (1) the client does not support the
|
|
* session ticket extension, or (2) the client support the session
|
|
* ticket extension, but sent an empty ticket.
|
|
*/
|
|
if (!ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn) ||
|
|
ss->xtnData.emptySessionTicket) {
|
|
if (sidBytes.len > 0 && !ss->opt.noCache) {
|
|
SSL_TRC(7, ("%d: SSL3[%d]: server, lookup client session-id for 0x%08x%08x%08x%08x",
|
|
SSL_GETPID(), ss->fd, ss->sec.ci.peer.pr_s6_addr32[0],
|
|
ss->sec.ci.peer.pr_s6_addr32[1],
|
|
ss->sec.ci.peer.pr_s6_addr32[2],
|
|
ss->sec.ci.peer.pr_s6_addr32[3]));
|
|
if (ssl_sid_lookup) {
|
|
sid = (*ssl_sid_lookup)(&ss->sec.ci.peer, sidBytes.data,
|
|
sidBytes.len, ss->dbHandle);
|
|
} else {
|
|
errCode = SSL_ERROR_SERVER_CACHE_NOT_CONFIGURED;
|
|
goto loser;
|
|
}
|
|
}
|
|
} else if (ss->statelessResume) {
|
|
/* Fill in the client's session ID if doing a stateless resume.
|
|
* (When doing stateless resumes, server echos client's SessionID.)
|
|
*/
|
|
sid = ss->sec.ci.sid;
|
|
PORT_Assert(sid != NULL); /* Should have already been filled in.*/
|
|
|
|
if (sidBytes.len > 0 && sidBytes.len <= SSL3_SESSIONID_BYTES) {
|
|
sid->u.ssl3.sessionIDLength = sidBytes.len;
|
|
PORT_Memcpy(sid->u.ssl3.sessionID, sidBytes.data,
|
|
sidBytes.len);
|
|
sid->u.ssl3.sessionIDLength = sidBytes.len;
|
|
} else {
|
|
sid->u.ssl3.sessionIDLength = 0;
|
|
}
|
|
ss->sec.ci.sid = NULL;
|
|
}
|
|
|
|
/* We only send a session ticket extension if the client supports
|
|
* the extension and we are unable to do either a stateful or
|
|
* stateless resume.
|
|
*
|
|
* TODO: send a session ticket if performing a stateful
|
|
* resumption. (As per RFC4507, a server may issue a session
|
|
* ticket while doing a (stateless or stateful) session resume,
|
|
* but OpenSSL-0.9.8g does not accept session tickets while
|
|
* resuming.)
|
|
*/
|
|
if (ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn) && sid == NULL) {
|
|
canOfferSessionTicket = PR_TRUE;
|
|
}
|
|
|
|
if (sid != NULL) {
|
|
/* We've found a session cache entry for this client.
|
|
* Now, if we're going to require a client-auth cert,
|
|
* and we don't already have this client's cert in the session cache,
|
|
* and this is the first handshake on this connection (not a redo),
|
|
* then drop this old cache entry and start a new session.
|
|
*/
|
|
if ((sid->peerCert == NULL) && ss->opt.requestCertificate &&
|
|
((ss->opt.requireCertificate == SSL_REQUIRE_ALWAYS) ||
|
|
(ss->opt.requireCertificate == SSL_REQUIRE_NO_ERROR) ||
|
|
((ss->opt.requireCertificate == SSL_REQUIRE_FIRST_HANDSHAKE)
|
|
&& !ss->firstHsDone))) {
|
|
|
|
SSL_AtomicIncrementLong(& ssl3stats.hch_sid_cache_not_ok );
|
|
if (ss->sec.uncache)
|
|
ss->sec.uncache(sid);
|
|
ssl_FreeSID(sid);
|
|
sid = NULL;
|
|
}
|
|
}
|
|
|
|
#ifndef NSS_DISABLE_ECC
|
|
/* Disable any ECC cipher suites for which we have no cert. */
|
|
ssl3_FilterECCipherSuitesByServerCerts(ss);
|
|
#endif
|
|
|
|
if (IS_DTLS(ss)) {
|
|
ssl3_DisableNonDTLSSuites(ss);
|
|
}
|
|
|
|
#ifdef PARANOID
|
|
/* Look for a matching cipher suite. */
|
|
j = ssl3_config_match_init(ss);
|
|
if (j <= 0) { /* no ciphers are working/supported by PK11 */
|
|
errCode = PORT_GetError(); /* error code is already set. */
|
|
goto alert_loser;
|
|
}
|
|
#endif
|
|
|
|
/* If we already have a session for this client, be sure to pick the
|
|
** same cipher suite and compression method we picked before.
|
|
** This is not a loop, despite appearances.
|
|
*/
|
|
if (sid) do {
|
|
ssl3CipherSuiteCfg *suite;
|
|
#ifdef PARANOID
|
|
SSLVersionRange vrange = {ss->version, ss->version};
|
|
#endif
|
|
|
|
/* Check that the cached compression method is still enabled. */
|
|
if (!compressionEnabled(ss, sid->u.ssl3.compression))
|
|
break;
|
|
|
|
/* Check that the cached compression method is in the client's list */
|
|
for (i = 0; i < comps.len; i++) {
|
|
if (comps.data[i] == sid->u.ssl3.compression)
|
|
break;
|
|
}
|
|
if (i == comps.len)
|
|
break;
|
|
|
|
suite = ss->cipherSuites;
|
|
/* Find the entry for the cipher suite used in the cached session. */
|
|
for (j = ssl_V3_SUITES_IMPLEMENTED; j > 0; --j, ++suite) {
|
|
if (suite->cipher_suite == sid->u.ssl3.cipherSuite)
|
|
break;
|
|
}
|
|
PORT_Assert(j > 0);
|
|
if (j <= 0)
|
|
break;
|
|
#ifdef PARANOID
|
|
/* Double check that the cached cipher suite is still enabled,
|
|
* implemented, and allowed by policy. Might have been disabled.
|
|
* The product policy won't change during the process lifetime.
|
|
* Implemented ("isPresent") shouldn't change for servers.
|
|
*/
|
|
if (!config_match(suite, ss->ssl3.policy, PR_TRUE, &vrange, ss))
|
|
break;
|
|
#else
|
|
if (!suite->enabled)
|
|
break;
|
|
#endif
|
|
/* Double check that the cached cipher suite is in the client's list */
|
|
for (i = 0; i + 1 < suites.len; i += 2) {
|
|
PRUint16 suite_i = (suites.data[i] << 8) | suites.data[i + 1];
|
|
if (suite_i == suite->cipher_suite) {
|
|
ss->ssl3.hs.cipher_suite = suite->cipher_suite;
|
|
ss->ssl3.hs.suite_def =
|
|
ssl_LookupCipherSuiteDef(ss->ssl3.hs.cipher_suite);
|
|
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_cipher_suite;
|
|
|
|
/* Use the cached compression method. */
|
|
ss->ssl3.hs.compression = sid->u.ssl3.compression;
|
|
goto compression_found;
|
|
}
|
|
}
|
|
} while (0);
|
|
|
|
/* START A NEW SESSION */
|
|
|
|
#ifndef PARANOID
|
|
/* Look for a matching cipher suite. */
|
|
j = ssl3_config_match_init(ss);
|
|
if (j <= 0) { /* no ciphers are working/supported by PK11 */
|
|
errCode = PORT_GetError(); /* error code is already set. */
|
|
goto alert_loser;
|
|
}
|
|
#endif
|
|
|
|
/* Select a cipher suite.
|
|
**
|
|
** NOTE: This suite selection algorithm should be the same as the one in
|
|
** ssl3_HandleV2ClientHello().
|
|
**
|
|
** If TLS 1.0 is enabled, we could handle the case where the client
|
|
** offered TLS 1.1 but offered only export cipher suites by choosing TLS
|
|
** 1.0 and selecting one of those export cipher suites. However, a secure
|
|
** TLS 1.1 client should not have export cipher suites enabled at all,
|
|
** and a TLS 1.1 client should definitely not be offering *only* export
|
|
** cipher suites. Therefore, we refuse to negotiate export cipher suites
|
|
** with any client that indicates support for TLS 1.1 or higher when we
|
|
** (the server) have TLS 1.1 support enabled.
|
|
*/
|
|
for (j = 0; j < ssl_V3_SUITES_IMPLEMENTED; j++) {
|
|
ssl3CipherSuiteCfg *suite = &ss->cipherSuites[j];
|
|
SSLVersionRange vrange = {ss->version, ss->version};
|
|
if (!config_match(suite, ss->ssl3.policy, PR_TRUE, &vrange, ss)) {
|
|
continue;
|
|
}
|
|
for (i = 0; i + 1 < suites.len; i += 2) {
|
|
PRUint16 suite_i = (suites.data[i] << 8) | suites.data[i + 1];
|
|
if (suite_i == suite->cipher_suite) {
|
|
ss->ssl3.hs.cipher_suite = suite->cipher_suite;
|
|
ss->ssl3.hs.suite_def =
|
|
ssl_LookupCipherSuiteDef(ss->ssl3.hs.cipher_suite);
|
|
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_cipher_suite;
|
|
goto suite_found;
|
|
}
|
|
}
|
|
}
|
|
errCode = SSL_ERROR_NO_CYPHER_OVERLAP;
|
|
goto alert_loser;
|
|
|
|
suite_found:
|
|
if (canOfferSessionTicket)
|
|
canOfferSessionTicket = ssl3_KEAAllowsSessionTicket(
|
|
ss->ssl3.hs.suite_def->key_exchange_alg);
|
|
|
|
if (canOfferSessionTicket) {
|
|
ssl3_RegisterServerHelloExtensionSender(ss,
|
|
ssl_session_ticket_xtn, ssl3_SendSessionTicketXtn);
|
|
}
|
|
|
|
/* Select a compression algorithm. */
|
|
for (i = 0; i < comps.len; i++) {
|
|
if (!compressionEnabled(ss, comps.data[i]))
|
|
continue;
|
|
for (j = 0; j < compressionMethodsCount; j++) {
|
|
if (comps.data[i] == compressions[j]) {
|
|
ss->ssl3.hs.compression =
|
|
(SSLCompressionMethod)compressions[j];
|
|
goto compression_found;
|
|
}
|
|
}
|
|
}
|
|
errCode = SSL_ERROR_NO_COMPRESSION_OVERLAP;
|
|
/* null compression must be supported */
|
|
goto alert_loser;
|
|
|
|
compression_found:
|
|
suites.data = NULL;
|
|
comps.data = NULL;
|
|
|
|
ss->sec.send = ssl3_SendApplicationData;
|
|
|
|
/* If there are any failures while processing the old sid,
|
|
* we don't consider them to be errors. Instead, We just behave
|
|
* as if the client had sent us no sid to begin with, and make a new one.
|
|
* The exception here is attempts to resume extended_master_secret
|
|
* sessions without the extension, which causes an alert.
|
|
*/
|
|
if (sid != NULL) do {
|
|
ssl3CipherSpec *pwSpec;
|
|
SECItem wrappedMS; /* wrapped key */
|
|
|
|
if (sid->version != ss->version ||
|
|
sid->u.ssl3.cipherSuite != ss->ssl3.hs.cipher_suite ||
|
|
sid->u.ssl3.compression != ss->ssl3.hs.compression) {
|
|
break; /* not an error */
|
|
}
|
|
|
|
/* [draft-ietf-tls-session-hash-06; Section 5.3]
|
|
* o If the original session did not use the "extended_master_secret"
|
|
* extension but the new ClientHello contains the extension, then the
|
|
* server MUST NOT perform the abbreviated handshake. Instead, it
|
|
* SHOULD continue with a full handshake (as described in
|
|
* Section 5.2) to negotiate a new session.
|
|
*
|
|
* o If the original session used the "extended_master_secret"
|
|
* extension but the new ClientHello does not contain the extension,
|
|
* the server MUST abort the abbreviated handshake.
|
|
*/
|
|
if (ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn)) {
|
|
if (!sid->u.ssl3.keys.extendedMasterSecretUsed) {
|
|
break; /* not an error */
|
|
}
|
|
} else {
|
|
if (sid->u.ssl3.keys.extendedMasterSecretUsed) {
|
|
/* Note: we do not destroy the session */
|
|
desc = handshake_failure;
|
|
errCode = SSL_ERROR_MISSING_EXTENDED_MASTER_SECRET;
|
|
goto alert_loser;
|
|
}
|
|
}
|
|
|
|
if (ss->sec.ci.sid) {
|
|
if (ss->sec.uncache)
|
|
ss->sec.uncache(ss->sec.ci.sid);
|
|
PORT_Assert(ss->sec.ci.sid != sid); /* should be impossible, but ... */
|
|
if (ss->sec.ci.sid != sid) {
|
|
ssl_FreeSID(ss->sec.ci.sid);
|
|
}
|
|
ss->sec.ci.sid = NULL;
|
|
}
|
|
/* we need to resurrect the master secret.... */
|
|
|
|
ssl_GetSpecWriteLock(ss); haveSpecWriteLock = PR_TRUE;
|
|
pwSpec = ss->ssl3.pwSpec;
|
|
if (sid->u.ssl3.keys.msIsWrapped) {
|
|
PK11SymKey * wrapKey; /* wrapping key */
|
|
CK_FLAGS keyFlags = 0;
|
|
#ifndef NO_PKCS11_BYPASS
|
|
if (ss->opt.bypassPKCS11) {
|
|
/* we cannot restart a non-bypass session in a
|
|
** bypass socket.
|
|
*/
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
wrapKey = getWrappingKey(ss, NULL, sid->u.ssl3.exchKeyType,
|
|
sid->u.ssl3.masterWrapMech,
|
|
ss->pkcs11PinArg);
|
|
if (!wrapKey) {
|
|
/* we have a SID cache entry, but no wrapping key for it??? */
|
|
break;
|
|
}
|
|
|
|
if (ss->version > SSL_LIBRARY_VERSION_3_0) { /* isTLS */
|
|
keyFlags = CKF_SIGN | CKF_VERIFY;
|
|
}
|
|
|
|
wrappedMS.data = sid->u.ssl3.keys.wrapped_master_secret;
|
|
wrappedMS.len = sid->u.ssl3.keys.wrapped_master_secret_len;
|
|
|
|
/* unwrap the master secret. */
|
|
pwSpec->master_secret =
|
|
PK11_UnwrapSymKeyWithFlags(wrapKey, sid->u.ssl3.masterWrapMech,
|
|
NULL, &wrappedMS, CKM_SSL3_MASTER_KEY_DERIVE,
|
|
CKA_DERIVE, sizeof(SSL3MasterSecret), keyFlags);
|
|
PK11_FreeSymKey(wrapKey);
|
|
if (pwSpec->master_secret == NULL) {
|
|
break; /* not an error */
|
|
}
|
|
#ifndef NO_PKCS11_BYPASS
|
|
} else if (ss->opt.bypassPKCS11) {
|
|
wrappedMS.data = sid->u.ssl3.keys.wrapped_master_secret;
|
|
wrappedMS.len = sid->u.ssl3.keys.wrapped_master_secret_len;
|
|
memcpy(pwSpec->raw_master_secret, wrappedMS.data, wrappedMS.len);
|
|
pwSpec->msItem.data = pwSpec->raw_master_secret;
|
|
pwSpec->msItem.len = wrappedMS.len;
|
|
#endif
|
|
} else {
|
|
/* We CAN restart a bypass session in a non-bypass socket. */
|
|
/* need to import the raw master secret to session object */
|
|
PK11SlotInfo * slot;
|
|
wrappedMS.data = sid->u.ssl3.keys.wrapped_master_secret;
|
|
wrappedMS.len = sid->u.ssl3.keys.wrapped_master_secret_len;
|
|
slot = PK11_GetInternalSlot();
|
|
pwSpec->master_secret =
|
|
PK11_ImportSymKey(slot, CKM_SSL3_MASTER_KEY_DERIVE,
|
|
PK11_OriginUnwrap, CKA_ENCRYPT, &wrappedMS,
|
|
NULL);
|
|
PK11_FreeSlot(slot);
|
|
if (pwSpec->master_secret == NULL) {
|
|
break; /* not an error */
|
|
}
|
|
}
|
|
ss->sec.ci.sid = sid;
|
|
if (sid->peerCert != NULL) {
|
|
ss->sec.peerCert = CERT_DupCertificate(sid->peerCert);
|
|
}
|
|
|
|
/*
|
|
* Old SID passed all tests, so resume this old session.
|
|
*
|
|
* XXX make sure compression still matches
|
|
*/
|
|
SSL_AtomicIncrementLong(& ssl3stats.hch_sid_cache_hits );
|
|
if (ss->statelessResume)
|
|
SSL_AtomicIncrementLong(& ssl3stats.hch_sid_stateless_resumes );
|
|
ss->ssl3.hs.isResuming = PR_TRUE;
|
|
|
|
ss->sec.authAlgorithm = sid->authAlgorithm;
|
|
ss->sec.authKeyBits = sid->authKeyBits;
|
|
ss->sec.keaType = sid->keaType;
|
|
ss->sec.keaKeyBits = sid->keaKeyBits;
|
|
|
|
/* server sids don't remember the server cert we previously sent,
|
|
** but they do remember the kea type we originally used, so we
|
|
** can locate it again, provided that the current ssl socket
|
|
** has had its server certs configured the same as the previous one.
|
|
*/
|
|
ss->sec.localCert =
|
|
CERT_DupCertificate(ss->serverCerts[sid->keaType].serverCert);
|
|
|
|
/* Copy cached name in to pending spec */
|
|
if (sid != NULL &&
|
|
sid->version > SSL_LIBRARY_VERSION_3_0 &&
|
|
sid->u.ssl3.srvName.len && sid->u.ssl3.srvName.data) {
|
|
/* Set server name from sid */
|
|
SECItem *sidName = &sid->u.ssl3.srvName;
|
|
SECItem *pwsName = &ss->ssl3.pwSpec->srvVirtName;
|
|
if (pwsName->data) {
|
|
SECITEM_FreeItem(pwsName, PR_FALSE);
|
|
}
|
|
rv = SECITEM_CopyItem(NULL, pwsName, sidName);
|
|
if (rv != SECSuccess) {
|
|
errCode = PORT_GetError();
|
|
desc = internal_error;
|
|
goto alert_loser;
|
|
}
|
|
}
|
|
|
|
/* Clean up sni name array */
|
|
if (ssl3_ExtensionNegotiated(ss, ssl_server_name_xtn) &&
|
|
ss->xtnData.sniNameArr) {
|
|
PORT_Free(ss->xtnData.sniNameArr);
|
|
ss->xtnData.sniNameArr = NULL;
|
|
ss->xtnData.sniNameArrSize = 0;
|
|
}
|
|
|
|
ssl_GetXmitBufLock(ss); haveXmitBufLock = PR_TRUE;
|
|
|
|
rv = ssl3_SendServerHello(ss);
|
|
if (rv != SECSuccess) {
|
|
errCode = PORT_GetError();
|
|
goto loser;
|
|
}
|
|
|
|
if (haveSpecWriteLock) {
|
|
ssl_ReleaseSpecWriteLock(ss);
|
|
haveSpecWriteLock = PR_FALSE;
|
|
}
|
|
|
|
/* NULL value for PMS because we are re-using the old MS */
|
|
rv = ssl3_InitPendingCipherSpec(ss, NULL);
|
|
if (rv != SECSuccess) {
|
|
errCode = PORT_GetError();
|
|
goto loser;
|
|
}
|
|
|
|
rv = ssl3_SendChangeCipherSpecs(ss);
|
|
if (rv != SECSuccess) {
|
|
errCode = PORT_GetError();
|
|
goto loser;
|
|
}
|
|
rv = ssl3_SendFinished(ss, 0);
|
|
ss->ssl3.hs.ws = wait_change_cipher;
|
|
if (rv != SECSuccess) {
|
|
errCode = PORT_GetError();
|
|
goto loser;
|
|
}
|
|
|
|
if (haveXmitBufLock) {
|
|
ssl_ReleaseXmitBufLock(ss);
|
|
haveXmitBufLock = PR_FALSE;
|
|
}
|
|
|
|
return SECSuccess;
|
|
} while (0);
|
|
|
|
if (haveSpecWriteLock) {
|
|
ssl_ReleaseSpecWriteLock(ss);
|
|
haveSpecWriteLock = PR_FALSE;
|
|
}
|
|
|
|
if (sid) { /* we had a sid, but it's no longer valid, free it */
|
|
SSL_AtomicIncrementLong(& ssl3stats.hch_sid_cache_not_ok );
|
|
if (ss->sec.uncache)
|
|
ss->sec.uncache(sid);
|
|
ssl_FreeSID(sid);
|
|
sid = NULL;
|
|
}
|
|
SSL_AtomicIncrementLong(& ssl3stats.hch_sid_cache_misses );
|
|
|
|
if (ssl3_ExtensionNegotiated(ss, ssl_server_name_xtn)) {
|
|
int ret = 0;
|
|
if (ss->sniSocketConfig) do { /* not a loop */
|
|
PORT_Assert((ss->ssl3.hs.preliminaryInfo & ssl_preinfo_all) ==
|
|
ssl_preinfo_all);
|
|
|
|
ret = SSL_SNI_SEND_ALERT;
|
|
/* If extension is negotiated, the len of names should > 0. */
|
|
if (ss->xtnData.sniNameArrSize) {
|
|
/* Calling client callback to reconfigure the socket. */
|
|
ret = (SECStatus)(*ss->sniSocketConfig)(ss->fd,
|
|
ss->xtnData.sniNameArr,
|
|
ss->xtnData.sniNameArrSize,
|
|
ss->sniSocketConfigArg);
|
|
}
|
|
if (ret <= SSL_SNI_SEND_ALERT) {
|
|
/* Application does not know the name or was not able to
|
|
* properly reconfigure the socket. */
|
|
errCode = SSL_ERROR_UNRECOGNIZED_NAME_ALERT;
|
|
desc = unrecognized_name;
|
|
break;
|
|
} else if (ret == SSL_SNI_CURRENT_CONFIG_IS_USED) {
|
|
SECStatus rv = SECSuccess;
|
|
SECItem * cwsName, *pwsName;
|
|
|
|
ssl_GetSpecWriteLock(ss); /*******************************/
|
|
pwsName = &ss->ssl3.pwSpec->srvVirtName;
|
|
cwsName = &ss->ssl3.cwSpec->srvVirtName;
|
|
#ifndef SSL_SNI_ALLOW_NAME_CHANGE_2HS
|
|
/* not allow name change on the 2d HS */
|
|
if (ss->firstHsDone) {
|
|
if (ssl3_ServerNameCompare(pwsName, cwsName)) {
|
|
ssl_ReleaseSpecWriteLock(ss); /******************/
|
|
errCode = SSL_ERROR_UNRECOGNIZED_NAME_ALERT;
|
|
desc = handshake_failure;
|
|
ret = SSL_SNI_SEND_ALERT;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
if (pwsName->data) {
|
|
SECITEM_FreeItem(pwsName, PR_FALSE);
|
|
}
|
|
if (cwsName->data) {
|
|
rv = SECITEM_CopyItem(NULL, pwsName, cwsName);
|
|
}
|
|
ssl_ReleaseSpecWriteLock(ss); /**************************/
|
|
if (rv != SECSuccess) {
|
|
errCode = SSL_ERROR_INTERNAL_ERROR_ALERT;
|
|
desc = internal_error;
|
|
ret = SSL_SNI_SEND_ALERT;
|
|
break;
|
|
}
|
|
} else if ((unsigned int)ret < ss->xtnData.sniNameArrSize) {
|
|
/* Application has configured new socket info. Lets check it
|
|
* and save the name. */
|
|
SECStatus rv;
|
|
SECItem * name = &ss->xtnData.sniNameArr[ret];
|
|
int configedCiphers;
|
|
SECItem * pwsName;
|
|
|
|
/* get rid of the old name and save the newly picked. */
|
|
/* This code is protected by ssl3HandshakeLock. */
|
|
ssl_GetSpecWriteLock(ss); /*******************************/
|
|
#ifndef SSL_SNI_ALLOW_NAME_CHANGE_2HS
|
|
/* not allow name change on the 2d HS */
|
|
if (ss->firstHsDone) {
|
|
SECItem *cwsName = &ss->ssl3.cwSpec->srvVirtName;
|
|
if (ssl3_ServerNameCompare(name, cwsName)) {
|
|
ssl_ReleaseSpecWriteLock(ss); /******************/
|
|
errCode = SSL_ERROR_UNRECOGNIZED_NAME_ALERT;
|
|
desc = handshake_failure;
|
|
ret = SSL_SNI_SEND_ALERT;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
pwsName = &ss->ssl3.pwSpec->srvVirtName;
|
|
if (pwsName->data) {
|
|
SECITEM_FreeItem(pwsName, PR_FALSE);
|
|
}
|
|
rv = SECITEM_CopyItem(NULL, pwsName, name);
|
|
ssl_ReleaseSpecWriteLock(ss); /***************************/
|
|
if (rv != SECSuccess) {
|
|
errCode = SSL_ERROR_INTERNAL_ERROR_ALERT;
|
|
desc = internal_error;
|
|
ret = SSL_SNI_SEND_ALERT;
|
|
break;
|
|
}
|
|
configedCiphers = ssl3_config_match_init(ss);
|
|
if (configedCiphers <= 0) {
|
|
/* no ciphers are working/supported */
|
|
errCode = PORT_GetError();
|
|
desc = handshake_failure;
|
|
ret = SSL_SNI_SEND_ALERT;
|
|
break;
|
|
}
|
|
/* Need to tell the client that application has picked
|
|
* the name from the offered list and reconfigured the socket.
|
|
*/
|
|
ssl3_RegisterServerHelloExtensionSender(ss, ssl_server_name_xtn,
|
|
ssl3_SendServerNameXtn);
|
|
} else {
|
|
/* Callback returned index outside of the boundary. */
|
|
PORT_Assert((unsigned int)ret < ss->xtnData.sniNameArrSize);
|
|
errCode = SSL_ERROR_INTERNAL_ERROR_ALERT;
|
|
desc = internal_error;
|
|
ret = SSL_SNI_SEND_ALERT;
|
|
break;
|
|
}
|
|
} while (0);
|
|
/* Free sniNameArr. The data that each SECItem in the array
|
|
* points into is the data from the input buffer "b". It will
|
|
* not be available outside the scope of this or it's child
|
|
* functions.*/
|
|
if (ss->xtnData.sniNameArr) {
|
|
PORT_Free(ss->xtnData.sniNameArr);
|
|
ss->xtnData.sniNameArr = NULL;
|
|
ss->xtnData.sniNameArrSize = 0;
|
|
}
|
|
if (ret <= SSL_SNI_SEND_ALERT) {
|
|
/* desc and errCode should be set. */
|
|
goto alert_loser;
|
|
}
|
|
}
|
|
#ifndef SSL_SNI_ALLOW_NAME_CHANGE_2HS
|
|
else if (ss->firstHsDone) {
|
|
/* Check that we don't have the name is current spec
|
|
* if this extension was not negotiated on the 2d hs. */
|
|
PRBool passed = PR_TRUE;
|
|
ssl_GetSpecReadLock(ss); /*******************************/
|
|
if (ss->ssl3.cwSpec->srvVirtName.data) {
|
|
passed = PR_FALSE;
|
|
}
|
|
ssl_ReleaseSpecReadLock(ss); /***************************/
|
|
if (!passed) {
|
|
errCode = SSL_ERROR_UNRECOGNIZED_NAME_ALERT;
|
|
desc = handshake_failure;
|
|
goto alert_loser;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
sid = ssl3_NewSessionID(ss, PR_TRUE);
|
|
if (sid == NULL) {
|
|
errCode = PORT_GetError();
|
|
goto loser; /* memory error is set. */
|
|
}
|
|
ss->sec.ci.sid = sid;
|
|
|
|
sid->u.ssl3.keys.extendedMasterSecretUsed =
|
|
ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn);
|
|
ss->ssl3.hs.isResuming = PR_FALSE;
|
|
ssl_GetXmitBufLock(ss);
|
|
rv = ssl3_SendServerHelloSequence(ss);
|
|
ssl_ReleaseXmitBufLock(ss);
|
|
if (rv != SECSuccess) {
|
|
errCode = PORT_GetError();
|
|
desc = handshake_failure;
|
|
goto alert_loser;
|
|
}
|
|
|
|
if (haveXmitBufLock) {
|
|
ssl_ReleaseXmitBufLock(ss);
|
|
haveXmitBufLock = PR_FALSE;
|
|
}
|
|
|
|
return SECSuccess;
|
|
|
|
alert_loser:
|
|
if (haveSpecWriteLock) {
|
|
ssl_ReleaseSpecWriteLock(ss);
|
|
haveSpecWriteLock = PR_FALSE;
|
|
}
|
|
(void)SSL3_SendAlert(ss, level, desc);
|
|
/* FALLTHRU */
|
|
loser:
|
|
if (haveSpecWriteLock) {
|
|
ssl_ReleaseSpecWriteLock(ss);
|
|
haveSpecWriteLock = PR_FALSE;
|
|
}
|
|
|
|
if (haveXmitBufLock) {
|
|
ssl_ReleaseXmitBufLock(ss);
|
|
haveXmitBufLock = PR_FALSE;
|
|
}
|
|
|
|
PORT_SetError(errCode);
|
|
return SECFailure;
|
|
}
|
|
|
|
/*
|
|
* ssl3_HandleV2ClientHello is used when a V2 formatted hello comes
|
|
* in asking to use the V3 handshake.
|
|
* Called from ssl2_HandleClientHelloMessage() in sslcon.c
|
|
*/
|
|
SECStatus
|
|
ssl3_HandleV2ClientHello(sslSocket *ss, unsigned char *buffer, int length)
|
|
{
|
|
sslSessionID * sid = NULL;
|
|
unsigned char * suites;
|
|
unsigned char * random;
|
|
SSL3ProtocolVersion version;
|
|
SECStatus rv;
|
|
int i;
|
|
int j;
|
|
int sid_length;
|
|
int suite_length;
|
|
int rand_length;
|
|
int errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO;
|
|
SSL3AlertDescription desc = handshake_failure;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle v2 client_hello", SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
|
|
ssl_GetSSL3HandshakeLock(ss);
|
|
|
|
PORT_Memset(&ss->xtnData, 0, sizeof(TLSExtensionData));
|
|
|
|
rv = ssl3_InitState(ss);
|
|
if (rv != SECSuccess) {
|
|
ssl_ReleaseSSL3HandshakeLock(ss);
|
|
return rv; /* ssl3_InitState has set the error code. */
|
|
}
|
|
rv = ssl3_RestartHandshakeHashes(ss);
|
|
if (rv != SECSuccess) {
|
|
ssl_ReleaseSSL3HandshakeLock(ss);
|
|
return rv;
|
|
}
|
|
|
|
if (ss->ssl3.hs.ws != wait_client_hello) {
|
|
desc = unexpected_message;
|
|
errCode = SSL_ERROR_RX_UNEXPECTED_CLIENT_HELLO;
|
|
goto loser; /* alert_loser */
|
|
}
|
|
|
|
version = (buffer[1] << 8) | buffer[2];
|
|
suite_length = (buffer[3] << 8) | buffer[4];
|
|
sid_length = (buffer[5] << 8) | buffer[6];
|
|
rand_length = (buffer[7] << 8) | buffer[8];
|
|
ss->clientHelloVersion = version;
|
|
|
|
rv = ssl3_NegotiateVersion(ss, version, PR_TRUE);
|
|
if (rv != SECSuccess) {
|
|
/* send back which ever alert client will understand. */
|
|
desc = (version > SSL_LIBRARY_VERSION_3_0) ? protocol_version
|
|
: handshake_failure;
|
|
errCode = SSL_ERROR_UNSUPPORTED_VERSION;
|
|
goto alert_loser;
|
|
}
|
|
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_version;
|
|
|
|
rv = ssl3_InitHandshakeHashes(ss);
|
|
if (rv != SECSuccess) {
|
|
desc = internal_error;
|
|
errCode = PORT_GetError();
|
|
goto alert_loser;
|
|
}
|
|
|
|
/* if we get a non-zero SID, just ignore it. */
|
|
if (length !=
|
|
SSL_HL_CLIENT_HELLO_HBYTES + suite_length + sid_length + rand_length) {
|
|
SSL_DBG(("%d: SSL3[%d]: bad v2 client hello message, len=%d should=%d",
|
|
SSL_GETPID(), ss->fd, length,
|
|
SSL_HL_CLIENT_HELLO_HBYTES + suite_length + sid_length +
|
|
rand_length));
|
|
goto loser; /* malformed */ /* alert_loser */
|
|
}
|
|
|
|
suites = buffer + SSL_HL_CLIENT_HELLO_HBYTES;
|
|
random = suites + suite_length + sid_length;
|
|
|
|
if (rand_length < SSL_MIN_CHALLENGE_BYTES ||
|
|
rand_length > SSL_MAX_CHALLENGE_BYTES) {
|
|
goto loser; /* malformed */ /* alert_loser */
|
|
}
|
|
|
|
PORT_Assert(SSL_MAX_CHALLENGE_BYTES == SSL3_RANDOM_LENGTH);
|
|
|
|
PORT_Memset(&ss->ssl3.hs.client_random, 0, SSL3_RANDOM_LENGTH);
|
|
PORT_Memcpy(
|
|
&ss->ssl3.hs.client_random.rand[SSL3_RANDOM_LENGTH - rand_length],
|
|
random, rand_length);
|
|
|
|
PRINT_BUF(60, (ss, "client random:", &ss->ssl3.hs.client_random.rand[0],
|
|
SSL3_RANDOM_LENGTH));
|
|
#ifndef NSS_DISABLE_ECC
|
|
/* Disable any ECC cipher suites for which we have no cert. */
|
|
ssl3_FilterECCipherSuitesByServerCerts(ss);
|
|
#endif
|
|
i = ssl3_config_match_init(ss);
|
|
if (i <= 0) {
|
|
errCode = PORT_GetError(); /* error code is already set. */
|
|
goto alert_loser;
|
|
}
|
|
|
|
/* Select a cipher suite.
|
|
**
|
|
** NOTE: This suite selection algorithm should be the same as the one in
|
|
** ssl3_HandleClientHello().
|
|
**
|
|
** See the comments about export cipher suites in ssl3_HandleClientHello().
|
|
*/
|
|
for (j = 0; j < ssl_V3_SUITES_IMPLEMENTED; j++) {
|
|
ssl3CipherSuiteCfg *suite = &ss->cipherSuites[j];
|
|
SSLVersionRange vrange = {ss->version, ss->version};
|
|
if (!config_match(suite, ss->ssl3.policy, PR_TRUE, &vrange, ss)) {
|
|
continue;
|
|
}
|
|
for (i = 0; i+2 < suite_length; i += 3) {
|
|
PRUint32 suite_i = (suites[i] << 16)|(suites[i+1] << 8)|suites[i+2];
|
|
if (suite_i == suite->cipher_suite) {
|
|
ss->ssl3.hs.cipher_suite = suite->cipher_suite;
|
|
ss->ssl3.hs.suite_def =
|
|
ssl_LookupCipherSuiteDef(ss->ssl3.hs.cipher_suite);
|
|
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_cipher_suite;
|
|
goto suite_found;
|
|
}
|
|
}
|
|
}
|
|
errCode = SSL_ERROR_NO_CYPHER_OVERLAP;
|
|
goto alert_loser;
|
|
|
|
suite_found:
|
|
|
|
/* Look for the SCSV, and if found, treat it just like an empty RI
|
|
* extension by processing a local copy of an empty RI extension.
|
|
*/
|
|
for (i = 0; i+2 < suite_length; i += 3) {
|
|
PRUint32 suite_i = (suites[i] << 16) | (suites[i+1] << 8) | suites[i+2];
|
|
if (suite_i == TLS_EMPTY_RENEGOTIATION_INFO_SCSV) {
|
|
SSL3Opaque * b2 = (SSL3Opaque *)emptyRIext;
|
|
PRUint32 L2 = sizeof emptyRIext;
|
|
(void)ssl3_HandleHelloExtensions(ss, &b2, &L2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ss->opt.requireSafeNegotiation &&
|
|
!ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) {
|
|
desc = handshake_failure;
|
|
errCode = SSL_ERROR_UNSAFE_NEGOTIATION;
|
|
goto alert_loser;
|
|
}
|
|
|
|
ss->ssl3.hs.compression = ssl_compression_null;
|
|
ss->sec.send = ssl3_SendApplicationData;
|
|
|
|
/* we don't even search for a cache hit here. It's just a miss. */
|
|
SSL_AtomicIncrementLong(& ssl3stats.hch_sid_cache_misses );
|
|
sid = ssl3_NewSessionID(ss, PR_TRUE);
|
|
if (sid == NULL) {
|
|
errCode = PORT_GetError();
|
|
goto loser; /* memory error is set. */
|
|
}
|
|
ss->sec.ci.sid = sid;
|
|
/* do not worry about memory leak of sid since it now belongs to ci */
|
|
|
|
/* We have to update the handshake hashes before we can send stuff */
|
|
rv = ssl3_UpdateHandshakeHashes(ss, buffer, length);
|
|
if (rv != SECSuccess) {
|
|
errCode = PORT_GetError();
|
|
goto loser;
|
|
}
|
|
|
|
ssl_GetXmitBufLock(ss);
|
|
rv = ssl3_SendServerHelloSequence(ss);
|
|
ssl_ReleaseXmitBufLock(ss);
|
|
if (rv != SECSuccess) {
|
|
errCode = PORT_GetError();
|
|
goto loser;
|
|
}
|
|
|
|
/* XXX_1 The call stack to here is:
|
|
* ssl_Do1stHandshake -> ssl2_HandleClientHelloMessage -> here.
|
|
* ssl2_HandleClientHelloMessage returns whatever we return here.
|
|
* ssl_Do1stHandshake will continue looping if it gets back either
|
|
* SECSuccess or SECWouldBlock.
|
|
* SECSuccess is preferable here. See XXX_1 in sslgathr.c.
|
|
*/
|
|
ssl_ReleaseSSL3HandshakeLock(ss);
|
|
return SECSuccess;
|
|
|
|
alert_loser:
|
|
SSL3_SendAlert(ss, alert_fatal, desc);
|
|
loser:
|
|
ssl_ReleaseSSL3HandshakeLock(ss);
|
|
PORT_SetError(errCode);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* The negotiated version number has been already placed in ss->version.
|
|
**
|
|
** Called from: ssl3_HandleClientHello (resuming session),
|
|
** ssl3_SendServerHelloSequence <- ssl3_HandleClientHello (new session),
|
|
** ssl3_SendServerHelloSequence <- ssl3_HandleV2ClientHello (new session)
|
|
*/
|
|
static SECStatus
|
|
ssl3_SendServerHello(sslSocket *ss)
|
|
{
|
|
sslSessionID *sid;
|
|
SECStatus rv;
|
|
PRUint32 maxBytes = 65535;
|
|
PRUint32 length;
|
|
PRInt32 extensions_len = 0;
|
|
SSL3ProtocolVersion version;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: send server_hello handshake", SSL_GETPID(),
|
|
ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
if (!IS_DTLS(ss)) {
|
|
PORT_Assert(MSB(ss->version) == MSB(SSL_LIBRARY_VERSION_3_0));
|
|
|
|
if (MSB(ss->version) != MSB(SSL_LIBRARY_VERSION_3_0)) {
|
|
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
|
|
return SECFailure;
|
|
}
|
|
} else {
|
|
PORT_Assert(MSB(ss->version) == MSB(SSL_LIBRARY_VERSION_DTLS_1_0));
|
|
|
|
if (MSB(ss->version) != MSB(SSL_LIBRARY_VERSION_DTLS_1_0)) {
|
|
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
|
|
sid = ss->sec.ci.sid;
|
|
|
|
extensions_len = ssl3_CallHelloExtensionSenders(ss, PR_FALSE, maxBytes,
|
|
&ss->xtnData.serverSenders[0]);
|
|
if (extensions_len > 0)
|
|
extensions_len += 2; /* Add sizeof total extension length */
|
|
|
|
length = sizeof(SSL3ProtocolVersion) + SSL3_RANDOM_LENGTH + 1 +
|
|
((sid == NULL) ? 0: sid->u.ssl3.sessionIDLength) +
|
|
sizeof(ssl3CipherSuite) + 1 + extensions_len;
|
|
rv = ssl3_AppendHandshakeHeader(ss, server_hello, length);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
|
|
if (IS_DTLS(ss)) {
|
|
version = dtls_TLSVersionToDTLSVersion(ss->version);
|
|
} else {
|
|
version = ss->version;
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeNumber(ss, version, 2);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
rv = ssl3_GetNewRandom(&ss->ssl3.hs.server_random);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_GENERATE_RANDOM_FAILURE);
|
|
return rv;
|
|
}
|
|
rv = ssl3_AppendHandshake(
|
|
ss, &ss->ssl3.hs.server_random, SSL3_RANDOM_LENGTH);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
|
|
if (sid)
|
|
rv = ssl3_AppendHandshakeVariable(
|
|
ss, sid->u.ssl3.sessionID, sid->u.ssl3.sessionIDLength, 1);
|
|
else
|
|
rv = ssl3_AppendHandshakeNumber(ss, 0, 1);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeNumber(ss, ss->ssl3.hs.cipher_suite, 2);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
rv = ssl3_AppendHandshakeNumber(ss, ss->ssl3.hs.compression, 1);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
if (extensions_len) {
|
|
PRInt32 sent_len;
|
|
|
|
extensions_len -= 2;
|
|
rv = ssl3_AppendHandshakeNumber(ss, extensions_len, 2);
|
|
if (rv != SECSuccess)
|
|
return rv; /* err set by ssl3_SetupPendingCipherSpec */
|
|
sent_len = ssl3_CallHelloExtensionSenders(ss, PR_TRUE, extensions_len,
|
|
&ss->xtnData.serverSenders[0]);
|
|
PORT_Assert(sent_len == extensions_len);
|
|
if (sent_len != extensions_len) {
|
|
if (sent_len >= 0)
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
rv = ssl3_SetupPendingCipherSpec(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by ssl3_SetupPendingCipherSpec */
|
|
}
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_PickSignatureHashAlgorithm(sslSocket *ss,
|
|
SSLSignatureAndHashAlg* out);
|
|
|
|
static SECStatus
|
|
ssl3_SendDHServerKeyExchange(sslSocket *ss)
|
|
{
|
|
const ssl3KEADef * kea_def = ss->ssl3.hs.kea_def;
|
|
SECStatus rv = SECFailure;
|
|
int length;
|
|
PRBool isTLS;
|
|
SECItem signed_hash = {siBuffer, NULL, 0};
|
|
SSL3Hashes hashes;
|
|
SSLSignatureAndHashAlg sigAndHash;
|
|
SECKEYDHParams dhParam;
|
|
|
|
ssl3KeyPair *keyPair = NULL;
|
|
SECKEYPublicKey *pubKey = NULL; /* Ephemeral DH key */
|
|
SECKEYPrivateKey *privKey = NULL; /* Ephemeral DH key */
|
|
int certIndex = -1;
|
|
|
|
if (kea_def->kea != kea_dhe_dss && kea_def->kea != kea_dhe_rsa) {
|
|
/* TODO: Support DH_anon. It might be sufficient to drop the signature.
|
|
See bug 1170510. */
|
|
PORT_SetError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
dhParam.prime.data = ss->dheParams->prime.data;
|
|
dhParam.prime.len = ss->dheParams->prime.len;
|
|
dhParam.base.data = ss->dheParams->base.data;
|
|
dhParam.base.len = ss->dheParams->base.len;
|
|
|
|
PRINT_BUF(60, (NULL, "Server DH p", dhParam.prime.data,
|
|
dhParam.prime.len));
|
|
PRINT_BUF(60, (NULL, "Server DH g", dhParam.base.data,
|
|
dhParam.base.len));
|
|
|
|
/* Generate ephemeral DH keypair */
|
|
privKey = SECKEY_CreateDHPrivateKey(&dhParam, &pubKey, NULL);
|
|
if (!privKey || !pubKey) {
|
|
ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL);
|
|
rv = SECFailure;
|
|
goto loser;
|
|
}
|
|
|
|
keyPair = ssl3_NewKeyPair(privKey, pubKey);
|
|
if (!keyPair) {
|
|
ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL);
|
|
goto loser;
|
|
}
|
|
|
|
PRINT_BUF(50, (ss, "DH public value:",
|
|
pubKey->u.dh.publicValue.data,
|
|
pubKey->u.dh.publicValue.len));
|
|
|
|
if (ssl3_PickSignatureHashAlgorithm(ss, &sigAndHash) != SECSuccess) {
|
|
ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL);
|
|
goto loser;
|
|
}
|
|
|
|
rv = ssl3_ComputeDHKeyHash(sigAndHash.hashAlg,
|
|
pubKey->u.dh.prime,
|
|
pubKey->u.dh.base,
|
|
pubKey->u.dh.publicValue,
|
|
&ss->ssl3.hs.client_random,
|
|
&ss->ssl3.hs.server_random,
|
|
&hashes, ss->opt.bypassPKCS11);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
|
|
goto loser;
|
|
}
|
|
|
|
/* It has been suggested to test kea_def->signKeyType instead, and to use
|
|
* ssl_auth_* instead. Investigate what to do. See bug 102794. */
|
|
if (kea_def->kea == kea_dhe_rsa)
|
|
certIndex = ssl_kea_rsa;
|
|
else
|
|
certIndex = ssl_kea_dh;
|
|
|
|
isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
rv = ssl3_SignHashes(&hashes, ss->serverCerts[certIndex].SERVERKEY,
|
|
&signed_hash, isTLS);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* ssl3_SignHashes has set err. */
|
|
}
|
|
if (signed_hash.data == NULL) {
|
|
PORT_SetError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
|
|
goto loser;
|
|
}
|
|
length = 2 + pubKey->u.dh.prime.len +
|
|
2 + pubKey->u.dh.base.len +
|
|
2 + pubKey->u.dh.publicValue.len +
|
|
2 + signed_hash.len;
|
|
|
|
if (ss->ssl3.pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
|
|
length += 2;
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeHeader(ss, server_key_exchange, length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by AppendHandshake. */
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeVariable(ss, pubKey->u.dh.prime.data,
|
|
pubKey->u.dh.prime.len, 2);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by AppendHandshake. */
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeVariable(ss, pubKey->u.dh.base.data,
|
|
pubKey->u.dh.base.len, 2);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by AppendHandshake. */
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeVariable(ss, pubKey->u.dh.publicValue.data,
|
|
pubKey->u.dh.publicValue.len, 2);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by AppendHandshake. */
|
|
}
|
|
|
|
if (ss->ssl3.pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
|
|
rv = ssl3_AppendSignatureAndHashAlgorithm(ss, &sigAndHash);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by AppendHandshake. */
|
|
}
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeVariable(ss, signed_hash.data,
|
|
signed_hash.len, 2);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by AppendHandshake. */
|
|
}
|
|
PORT_Free(signed_hash.data);
|
|
ss->dheKeyPair = keyPair;
|
|
return SECSuccess;
|
|
|
|
loser:
|
|
if (signed_hash.data)
|
|
PORT_Free(signed_hash.data);
|
|
if (privKey)
|
|
SECKEY_DestroyPrivateKey(privKey);
|
|
if (pubKey)
|
|
SECKEY_DestroyPublicKey(pubKey);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* ssl3_PickSignatureHashAlgorithm selects a hash algorithm to use when signing
|
|
* elements of the handshake. (The negotiated cipher suite determines the
|
|
* signature algorithm.) Prior to TLS 1.2, the MD5/SHA1 combination is always
|
|
* used. With TLS 1.2, a client may advertise its support for signature and
|
|
* hash combinations. */
|
|
static SECStatus
|
|
ssl3_PickSignatureHashAlgorithm(sslSocket *ss,
|
|
SSLSignatureAndHashAlg* out)
|
|
{
|
|
SSLSignType sigAlg;
|
|
PRUint32 policy;
|
|
unsigned int i, j;
|
|
|
|
switch (ss->ssl3.hs.kea_def->kea) {
|
|
case kea_rsa:
|
|
case kea_rsa_export:
|
|
case kea_rsa_export_1024:
|
|
case kea_dh_rsa:
|
|
case kea_dh_rsa_export:
|
|
case kea_dhe_rsa:
|
|
case kea_dhe_rsa_export:
|
|
case kea_rsa_fips:
|
|
case kea_ecdh_rsa:
|
|
case kea_ecdhe_rsa:
|
|
sigAlg = ssl_sign_rsa;
|
|
break;
|
|
case kea_dh_dss:
|
|
case kea_dh_dss_export:
|
|
case kea_dhe_dss:
|
|
case kea_dhe_dss_export:
|
|
sigAlg = ssl_sign_dsa;
|
|
break;
|
|
case kea_ecdh_ecdsa:
|
|
case kea_ecdhe_ecdsa:
|
|
sigAlg = ssl_sign_ecdsa;
|
|
break;
|
|
default:
|
|
PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG);
|
|
return SECFailure;
|
|
}
|
|
out->sigAlg = sigAlg;
|
|
|
|
if (ss->version <= SSL_LIBRARY_VERSION_TLS_1_1) {
|
|
/* SEC_OID_UNKNOWN means the MD5/SHA1 combo hash used in TLS 1.1 and
|
|
* prior. */
|
|
out->hashAlg = ssl_hash_none;
|
|
return SECSuccess;
|
|
}
|
|
|
|
if (ss->ssl3.hs.numClientSigAndHash == 0) {
|
|
/* If the client didn't provide any signature_algorithms extension then
|
|
* we can assume that they support SHA-1:
|
|
* https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 */
|
|
out->hashAlg = ssl_hash_sha1;
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* Here we look for the first server preference that the client has
|
|
* indicated support for in their signature_algorithms extension. */
|
|
for (i = 0; i < ss->ssl3.signatureAlgorithmCount; ++i) {
|
|
const SSLSignatureAndHashAlg *serverPref =
|
|
&ss->ssl3.signatureAlgorithms[i];
|
|
SECOidTag hashOID;
|
|
if (serverPref->sigAlg != sigAlg) {
|
|
continue;
|
|
}
|
|
hashOID = ssl3_TLSHashAlgorithmToOID(serverPref->hashAlg);
|
|
if ((NSS_GetAlgorithmPolicy(hashOID, &policy) != SECSuccess)
|
|
|| !(policy & NSS_USE_ALG_IN_SSL_KX)) {
|
|
/* we ignore hashes we don't support */
|
|
continue;
|
|
}
|
|
for (j = 0; j < ss->ssl3.hs.numClientSigAndHash; j++) {
|
|
const SSLSignatureAndHashAlg *clientPref =
|
|
&ss->ssl3.hs.clientSigAndHash[j];
|
|
if (clientPref->hashAlg == serverPref->hashAlg &&
|
|
clientPref->sigAlg == sigAlg) {
|
|
out->hashAlg = serverPref->hashAlg;
|
|
return SECSuccess;
|
|
}
|
|
}
|
|
}
|
|
|
|
PORT_SetError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
|
|
|
|
static SECStatus
|
|
ssl3_SendServerKeyExchange(sslSocket *ss)
|
|
{
|
|
const ssl3KEADef * kea_def = ss->ssl3.hs.kea_def;
|
|
SECStatus rv = SECFailure;
|
|
int length;
|
|
PRBool isTLS;
|
|
SECItem signed_hash = {siBuffer, NULL, 0};
|
|
SSL3Hashes hashes;
|
|
SECKEYPublicKey * sdPub; /* public key for step-down */
|
|
SSLSignatureAndHashAlg sigAndHash;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: send server_key_exchange handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
if (ssl3_PickSignatureHashAlgorithm(ss, &sigAndHash) != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
|
|
switch (kea_def->exchKeyType) {
|
|
case kt_rsa:
|
|
/* Perform SSL Step-Down here. */
|
|
sdPub = ss->stepDownKeyPair->pubKey;
|
|
PORT_Assert(sdPub != NULL);
|
|
if (!sdPub) {
|
|
PORT_SetError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_ComputeExportRSAKeyHash(sigAndHash.hashAlg,
|
|
sdPub->u.rsa.modulus,
|
|
sdPub->u.rsa.publicExponent,
|
|
&ss->ssl3.hs.client_random,
|
|
&ss->ssl3.hs.server_random,
|
|
&hashes, ss->opt.bypassPKCS11);
|
|
if (rv != SECSuccess) {
|
|
ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
|
|
return rv;
|
|
}
|
|
|
|
isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
rv = ssl3_SignHashes(&hashes, ss->serverCerts[kt_rsa].SERVERKEY,
|
|
&signed_hash, isTLS);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* ssl3_SignHashes has set err. */
|
|
}
|
|
if (signed_hash.data == NULL) {
|
|
/* how can this happen and rv == SECSuccess ?? */
|
|
PORT_SetError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
|
|
goto loser;
|
|
}
|
|
length = 2 + sdPub->u.rsa.modulus.len +
|
|
2 + sdPub->u.rsa.publicExponent.len +
|
|
2 + signed_hash.len;
|
|
|
|
if (ss->ssl3.pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
|
|
length += 2;
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeHeader(ss, server_key_exchange, length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by AppendHandshake. */
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeVariable(ss, sdPub->u.rsa.modulus.data,
|
|
sdPub->u.rsa.modulus.len, 2);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by AppendHandshake. */
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeVariable(
|
|
ss, sdPub->u.rsa.publicExponent.data,
|
|
sdPub->u.rsa.publicExponent.len, 2);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by AppendHandshake. */
|
|
}
|
|
|
|
if (ss->ssl3.pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
|
|
rv = ssl3_AppendSignatureAndHashAlgorithm(ss, &sigAndHash);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by AppendHandshake. */
|
|
}
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeVariable(ss, signed_hash.data,
|
|
signed_hash.len, 2);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* err set by AppendHandshake. */
|
|
}
|
|
PORT_Free(signed_hash.data);
|
|
return SECSuccess;
|
|
|
|
case ssl_kea_dh: {
|
|
rv = ssl3_SendDHServerKeyExchange(ss);
|
|
return rv;
|
|
}
|
|
|
|
#ifndef NSS_DISABLE_ECC
|
|
case kt_ecdh: {
|
|
rv = ssl3_SendECDHServerKeyExchange(ss, &sigAndHash);
|
|
return rv;
|
|
}
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
case kt_null:
|
|
default:
|
|
PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG);
|
|
break;
|
|
}
|
|
loser:
|
|
if (signed_hash.data != NULL)
|
|
PORT_Free(signed_hash.data);
|
|
return SECFailure;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_EncodeCertificateRequestSigAlgs(sslSocket *ss, PRUint8 *buf,
|
|
unsigned maxLen, PRUint32 *len)
|
|
{
|
|
unsigned int i;
|
|
|
|
PORT_Assert(maxLen >= ss->ssl3.signatureAlgorithmCount * 2);
|
|
if (maxLen < ss->ssl3.signatureAlgorithmCount * 2) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
*len = 0;
|
|
for (i = 0; i < ss->ssl3.signatureAlgorithmCount; ++i) {
|
|
const SSLSignatureAndHashAlg *alg = &ss->ssl3.signatureAlgorithms[i];
|
|
/* Note that we don't support a handshake hash with anything other than
|
|
* SHA-256, so asking for a signature from clients for something else
|
|
* would be inviting disaster. */
|
|
if (alg->hashAlg == ssl_hash_sha256) {
|
|
buf[(*len)++] = (PRUint8)alg->hashAlg;
|
|
buf[(*len)++] = (PRUint8)alg->sigAlg;
|
|
}
|
|
}
|
|
|
|
if (*len == 0) {
|
|
PORT_SetError(SSL_ERROR_NO_SUPPORTED_SIGNATURE_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_SendCertificateRequest(sslSocket *ss)
|
|
{
|
|
PRBool isTLS12;
|
|
SECItem * name;
|
|
CERTDistNames *ca_list;
|
|
const PRUint8 *certTypes;
|
|
SECItem * names = NULL;
|
|
SECStatus rv;
|
|
int length;
|
|
int i;
|
|
int calen = 0;
|
|
int nnames = 0;
|
|
int certTypesLength;
|
|
PRUint8 sigAlgs[MAX_SIGNATURE_ALGORITHMS * 2];
|
|
unsigned int sigAlgsLength = 0;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: send certificate_request handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
isTLS12 = (PRBool)(ss->ssl3.pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2);
|
|
|
|
/* ssl3.ca_list is initialized to NULL, and never changed. */
|
|
ca_list = ss->ssl3.ca_list;
|
|
if (!ca_list) {
|
|
ca_list = ssl3_server_ca_list;
|
|
}
|
|
|
|
if (ca_list != NULL) {
|
|
names = ca_list->names;
|
|
nnames = ca_list->nnames;
|
|
}
|
|
|
|
for (i = 0, name = names; i < nnames; i++, name++) {
|
|
calen += 2 + name->len;
|
|
}
|
|
|
|
certTypes = certificate_types;
|
|
certTypesLength = sizeof certificate_types;
|
|
|
|
length = 1 + certTypesLength + 2 + calen;
|
|
if (isTLS12) {
|
|
rv = ssl3_EncodeCertificateRequestSigAlgs(ss, sigAlgs, sizeof(sigAlgs),
|
|
&sigAlgsLength);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
length += 2 + sigAlgsLength;
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeHeader(ss, certificate_request, length);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
rv = ssl3_AppendHandshakeVariable(ss, certTypes, certTypesLength, 1);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
if (isTLS12) {
|
|
rv = ssl3_AppendHandshakeVariable(ss, sigAlgs, sigAlgsLength, 2);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
}
|
|
rv = ssl3_AppendHandshakeNumber(ss, calen, 2);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
for (i = 0, name = names; i < nnames; i++, name++) {
|
|
rv = ssl3_AppendHandshakeVariable(ss, name->data, name->len, 2);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
}
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_SendServerHelloDone(sslSocket *ss)
|
|
{
|
|
SECStatus rv;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: send server_hello_done handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
rv = ssl3_AppendHandshakeHeader(ss, server_hello_done, 0);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
rv = ssl3_FlushHandshake(ss, 0);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by ssl3_FlushHandshake */
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete
|
|
* ssl3 Certificate Verify message
|
|
* Caller must hold Handshake and RecvBuf locks.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleCertificateVerify(sslSocket *ss, SSL3Opaque *b, PRUint32 length,
|
|
SSL3Hashes *hashes)
|
|
{
|
|
SECItem signed_hash = {siBuffer, NULL, 0};
|
|
SECStatus rv;
|
|
int errCode = SSL_ERROR_RX_MALFORMED_CERT_VERIFY;
|
|
SSL3AlertDescription desc = handshake_failure;
|
|
PRBool isTLS, isTLS12;
|
|
SSLSignatureAndHashAlg sigAndHash;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle certificate_verify handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
isTLS12 = (PRBool)(ss->ssl3.prSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2);
|
|
|
|
if (ss->ssl3.hs.ws != wait_cert_verify) {
|
|
desc = unexpected_message;
|
|
errCode = SSL_ERROR_RX_UNEXPECTED_CERT_VERIFY;
|
|
goto alert_loser;
|
|
}
|
|
|
|
if (!hashes) {
|
|
PORT_Assert(0);
|
|
desc = internal_error;
|
|
errCode = SEC_ERROR_LIBRARY_FAILURE;
|
|
goto alert_loser;
|
|
}
|
|
|
|
if (isTLS12) {
|
|
rv = ssl3_ConsumeSignatureAndHashAlgorithm(ss, &b, &length,
|
|
&sigAndHash);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed or unsupported. */
|
|
}
|
|
rv = ssl3_CheckSignatureAndHashAlgorithmConsistency(
|
|
ss, &sigAndHash, ss->sec.peerCert);
|
|
if (rv != SECSuccess) {
|
|
errCode = PORT_GetError();
|
|
desc = decrypt_error;
|
|
goto alert_loser;
|
|
}
|
|
|
|
/* We only support CertificateVerify messages that use the handshake
|
|
* hash. */
|
|
if (sigAndHash.hashAlg != hashes->hashAlg) {
|
|
errCode = SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM;
|
|
desc = decrypt_error;
|
|
goto alert_loser;
|
|
}
|
|
}
|
|
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &signed_hash, 2, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser; /* malformed. */
|
|
}
|
|
|
|
/* XXX verify that the key & kea match */
|
|
rv = ssl3_VerifySignedHashes(hashes, ss->sec.peerCert, &signed_hash,
|
|
isTLS, ss->pkcs11PinArg);
|
|
if (rv != SECSuccess) {
|
|
errCode = PORT_GetError();
|
|
desc = isTLS ? decrypt_error : handshake_failure;
|
|
goto alert_loser;
|
|
}
|
|
|
|
signed_hash.data = NULL;
|
|
|
|
if (length != 0) {
|
|
desc = isTLS ? decode_error : illegal_parameter;
|
|
goto alert_loser; /* malformed */
|
|
}
|
|
ss->ssl3.hs.ws = wait_change_cipher;
|
|
return SECSuccess;
|
|
|
|
alert_loser:
|
|
SSL3_SendAlert(ss, alert_fatal, desc);
|
|
loser:
|
|
PORT_SetError(errCode);
|
|
return SECFailure;
|
|
}
|
|
|
|
|
|
/* find a slot that is able to generate a PMS and wrap it with RSA.
|
|
* Then generate and return the PMS.
|
|
* If the serverKeySlot parameter is non-null, this function will use
|
|
* that slot to do the job, otherwise it will find a slot.
|
|
*
|
|
* Called from ssl3_DeriveConnectionKeysPKCS11() (above)
|
|
* sendRSAClientKeyExchange() (above)
|
|
* ssl3_HandleRSAClientKeyExchange() (below)
|
|
* Caller must hold the SpecWriteLock, the SSL3HandshakeLock
|
|
*/
|
|
static PK11SymKey *
|
|
ssl3_GenerateRSAPMS(sslSocket *ss, ssl3CipherSpec *spec,
|
|
PK11SlotInfo * serverKeySlot)
|
|
{
|
|
PK11SymKey * pms = NULL;
|
|
PK11SlotInfo * slot = serverKeySlot;
|
|
void * pwArg = ss->pkcs11PinArg;
|
|
SECItem param;
|
|
CK_VERSION version;
|
|
CK_MECHANISM_TYPE mechanism_array[3];
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
if (slot == NULL) {
|
|
SSLCipherAlgorithm calg;
|
|
/* The specReadLock would suffice here, but we cannot assert on
|
|
** read locks. Also, all the callers who call with a non-null
|
|
** slot already hold the SpecWriteLock.
|
|
*/
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSpecWriteLock(ss));
|
|
PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec);
|
|
|
|
calg = spec->cipher_def->calg;
|
|
PORT_Assert(alg2Mech[calg].calg == calg);
|
|
|
|
/* First get an appropriate slot. */
|
|
mechanism_array[0] = CKM_SSL3_PRE_MASTER_KEY_GEN;
|
|
mechanism_array[1] = CKM_RSA_PKCS;
|
|
mechanism_array[2] = alg2Mech[calg].cmech;
|
|
|
|
slot = PK11_GetBestSlotMultiple(mechanism_array, 3, pwArg);
|
|
if (slot == NULL) {
|
|
/* can't find a slot with all three, find a slot with the minimum */
|
|
slot = PK11_GetBestSlotMultiple(mechanism_array, 2, pwArg);
|
|
if (slot == NULL) {
|
|
PORT_SetError(SSL_ERROR_TOKEN_SLOT_NOT_FOUND);
|
|
return pms; /* which is NULL */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Generate the pre-master secret ... */
|
|
if (IS_DTLS(ss)) {
|
|
SSL3ProtocolVersion temp;
|
|
|
|
temp = dtls_TLSVersionToDTLSVersion(ss->clientHelloVersion);
|
|
version.major = MSB(temp);
|
|
version.minor = LSB(temp);
|
|
} else {
|
|
version.major = MSB(ss->clientHelloVersion);
|
|
version.minor = LSB(ss->clientHelloVersion);
|
|
}
|
|
|
|
param.data = (unsigned char *)&version;
|
|
param.len = sizeof version;
|
|
|
|
pms = PK11_KeyGen(slot, CKM_SSL3_PRE_MASTER_KEY_GEN, ¶m, 0, pwArg);
|
|
if (!serverKeySlot)
|
|
PK11_FreeSlot(slot);
|
|
if (pms == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
|
|
}
|
|
return pms;
|
|
}
|
|
|
|
/* Note: The Bleichenbacher attack on PKCS#1 necessitates that we NEVER
|
|
* return any indication of failure of the Client Key Exchange message,
|
|
* where that failure is caused by the content of the client's message.
|
|
* This function must not return SECFailure for any reason that is directly
|
|
* or indirectly caused by the content of the client's encrypted PMS.
|
|
* We must not send an alert and also not drop the connection.
|
|
* Instead, we generate a random PMS. This will cause a failure
|
|
* in the processing the finished message, which is exactly where
|
|
* the failure must occur.
|
|
*
|
|
* Called from ssl3_HandleClientKeyExchange
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleRSAClientKeyExchange(sslSocket *ss,
|
|
SSL3Opaque *b,
|
|
PRUint32 length,
|
|
SECKEYPrivateKey *serverKey)
|
|
{
|
|
#ifndef NO_PKCS11_BYPASS
|
|
unsigned char * cr = (unsigned char *)&ss->ssl3.hs.client_random;
|
|
unsigned char * sr = (unsigned char *)&ss->ssl3.hs.server_random;
|
|
ssl3CipherSpec * pwSpec = ss->ssl3.pwSpec;
|
|
unsigned int outLen = 0;
|
|
PRBool isTLS = PR_FALSE;
|
|
SECItem pmsItem = {siBuffer, NULL, 0};
|
|
unsigned char rsaPmsBuf[SSL3_RSA_PMS_LENGTH];
|
|
#endif
|
|
SECStatus rv;
|
|
SECItem enc_pms;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
PORT_Assert( ss->ssl3.prSpec == ss->ssl3.pwSpec );
|
|
|
|
enc_pms.data = b;
|
|
enc_pms.len = length;
|
|
#ifndef NO_PKCS11_BYPASS
|
|
pmsItem.data = rsaPmsBuf;
|
|
pmsItem.len = sizeof rsaPmsBuf;
|
|
#endif
|
|
|
|
if (ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0) { /* isTLS */
|
|
PRInt32 kLen;
|
|
kLen = ssl3_ConsumeHandshakeNumber(ss, 2, &enc_pms.data, &enc_pms.len);
|
|
if (kLen < 0) {
|
|
PORT_SetError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
if ((unsigned)kLen < enc_pms.len) {
|
|
enc_pms.len = kLen;
|
|
}
|
|
#ifndef NO_PKCS11_BYPASS
|
|
isTLS = PR_TRUE;
|
|
#endif
|
|
} else {
|
|
#ifndef NO_PKCS11_BYPASS
|
|
isTLS = (PRBool)(ss->ssl3.hs.kea_def->tls_keygen != 0);
|
|
#endif
|
|
}
|
|
|
|
#ifndef NO_PKCS11_BYPASS
|
|
if (ss->opt.bypassPKCS11) {
|
|
/* We have not implemented a tls_ExtendedMasterKeyDeriveBypass
|
|
* and will not negotiate this extension in bypass mode. This
|
|
* assert just double-checks that.
|
|
*/
|
|
PORT_Assert(
|
|
!ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn));
|
|
|
|
/* TRIPLE BYPASS, get PMS directly from RSA decryption.
|
|
* Use PK11_PrivDecryptPKCS1 to decrypt the PMS to a buffer,
|
|
* then, check for version rollback attack, then
|
|
* do the equivalent of ssl3_DeriveMasterSecret, placing the MS in
|
|
* pwSpec->msItem. Finally call ssl3_InitPendingCipherSpec with
|
|
* ss and NULL, so that it will use the MS we've already derived here.
|
|
*/
|
|
|
|
rv = PK11_PrivDecryptPKCS1(serverKey, rsaPmsBuf, &outLen,
|
|
sizeof rsaPmsBuf, enc_pms.data, enc_pms.len);
|
|
if (rv != SECSuccess) {
|
|
/* triple bypass failed. Let's try for a double bypass. */
|
|
goto double_bypass;
|
|
} else if (ss->opt.detectRollBack) {
|
|
SSL3ProtocolVersion client_version =
|
|
(rsaPmsBuf[0] << 8) | rsaPmsBuf[1];
|
|
|
|
if (IS_DTLS(ss)) {
|
|
client_version = dtls_DTLSVersionToTLSVersion(client_version);
|
|
}
|
|
|
|
if (client_version != ss->clientHelloVersion) {
|
|
/* Version roll-back detected. ensure failure. */
|
|
rv = PK11_GenerateRandom(rsaPmsBuf, sizeof rsaPmsBuf);
|
|
}
|
|
}
|
|
/* have PMS, build MS without PKCS11 */
|
|
rv = ssl3_MasterSecretDeriveBypass(pwSpec, cr, sr, &pmsItem, isTLS,
|
|
PR_TRUE);
|
|
if (rv != SECSuccess) {
|
|
pwSpec->msItem.data = pwSpec->raw_master_secret;
|
|
pwSpec->msItem.len = SSL3_MASTER_SECRET_LENGTH;
|
|
PK11_GenerateRandom(pwSpec->msItem.data, pwSpec->msItem.len);
|
|
}
|
|
rv = ssl3_InitPendingCipherSpec(ss, NULL);
|
|
} else
|
|
#endif
|
|
{
|
|
PK11SymKey *tmpPms[2] = {NULL, NULL};
|
|
PK11SlotInfo *slot;
|
|
int useFauxPms = 0;
|
|
#define currentPms tmpPms[!useFauxPms]
|
|
#define unusedPms tmpPms[useFauxPms]
|
|
#define realPms tmpPms[1]
|
|
#define fauxPms tmpPms[0]
|
|
|
|
#ifndef NO_PKCS11_BYPASS
|
|
double_bypass:
|
|
#endif
|
|
|
|
/*
|
|
* Get as close to algorithm 2 from RFC 5246; Section 7.4.7.1
|
|
* as we can within the constraints of the PKCS#11 interface.
|
|
*
|
|
* 1. Unconditionally generate a bogus PMS (what RFC 5246
|
|
* calls R).
|
|
* 2. Attempt the RSA decryption to recover the PMS (what
|
|
* RFC 5246 calls M).
|
|
* 3. Set PMS = (M == NULL) ? R : M
|
|
* 4. Use ssl3_ComputeMasterSecret(PMS) to attempt to derive
|
|
* the MS from PMS. This includes performing the version
|
|
* check and length check.
|
|
* 5. If either the initial RSA decryption failed or
|
|
* ssl3_ComputeMasterSecret(PMS) failed, then discard
|
|
* M and set PMS = R. Else, discard R and set PMS = M.
|
|
*
|
|
* We do two derivations here because we can't rely on having
|
|
* a function that only performs the PMS version and length
|
|
* check. The only redundant cost is that this runs the PRF,
|
|
* which isn't necessary here.
|
|
*/
|
|
|
|
/* Generate the bogus PMS (R) */
|
|
slot = PK11_GetSlotFromPrivateKey(serverKey);
|
|
if (!slot) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (!PK11_DoesMechanism(slot, CKM_SSL3_MASTER_KEY_DERIVE)) {
|
|
PK11_FreeSlot(slot);
|
|
slot = PK11_GetBestSlot(CKM_SSL3_MASTER_KEY_DERIVE, NULL);
|
|
if (!slot) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
|
|
ssl_GetSpecWriteLock(ss);
|
|
fauxPms = ssl3_GenerateRSAPMS(ss, ss->ssl3.prSpec, slot);
|
|
ssl_ReleaseSpecWriteLock(ss);
|
|
PK11_FreeSlot(slot);
|
|
|
|
if (fauxPms == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
/*
|
|
* unwrap pms out of the incoming buffer
|
|
* Note: CKM_SSL3_MASTER_KEY_DERIVE is NOT the mechanism used to do
|
|
* the unwrap. Rather, it is the mechanism with which the
|
|
* unwrapped pms will be used.
|
|
*/
|
|
realPms = PK11_PubUnwrapSymKey(serverKey, &enc_pms,
|
|
CKM_SSL3_MASTER_KEY_DERIVE, CKA_DERIVE, 0);
|
|
/* Temporarily use the PMS if unwrapping the real PMS fails. */
|
|
useFauxPms |= (realPms == NULL);
|
|
|
|
/* Attempt to derive the MS from the PMS. This is the only way to
|
|
* check the version field in the RSA PMS. If this fails, we
|
|
* then use the faux PMS in place of the PMS. Note that this
|
|
* operation should never fail if we are using the faux PMS
|
|
* since it is correctly formatted. */
|
|
rv = ssl3_ComputeMasterSecret(ss, currentPms, NULL);
|
|
|
|
/* If we succeeded, then select the true PMS and discard the
|
|
* FPMS. Else, select the FPMS and select the true PMS */
|
|
useFauxPms |= (rv != SECSuccess);
|
|
|
|
if (unusedPms) {
|
|
PK11_FreeSymKey(unusedPms);
|
|
}
|
|
|
|
/* This step will derive the MS from the PMS, among other things. */
|
|
rv = ssl3_InitPendingCipherSpec(ss, currentPms);
|
|
PK11_FreeSymKey(currentPms);
|
|
}
|
|
|
|
if (rv != SECSuccess) {
|
|
SEND_ALERT
|
|
return SECFailure; /* error code set by ssl3_InitPendingCipherSpec */
|
|
}
|
|
|
|
#undef currentPms
|
|
#undef unusedPms
|
|
#undef realPms
|
|
#undef fauxPms
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_HandleDHClientKeyExchange(sslSocket *ss,
|
|
SSL3Opaque *b,
|
|
PRUint32 length,
|
|
SECKEYPublicKey *srvrPubKey,
|
|
SECKEYPrivateKey *serverKey)
|
|
{
|
|
PK11SymKey *pms;
|
|
SECStatus rv;
|
|
SECKEYPublicKey clntPubKey;
|
|
CK_MECHANISM_TYPE target;
|
|
PRBool isTLS;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
PORT_Assert( srvrPubKey );
|
|
|
|
clntPubKey.keyType = dhKey;
|
|
clntPubKey.u.dh.prime.len = srvrPubKey->u.dh.prime.len;
|
|
clntPubKey.u.dh.prime.data = srvrPubKey->u.dh.prime.data;
|
|
clntPubKey.u.dh.base.len = srvrPubKey->u.dh.base.len;
|
|
clntPubKey.u.dh.base.data = srvrPubKey->u.dh.base.data;
|
|
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &clntPubKey.u.dh.publicValue,
|
|
2, &b, &length);
|
|
if (rv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
|
|
isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
|
|
if (isTLS) target = CKM_TLS_MASTER_KEY_DERIVE_DH;
|
|
else target = CKM_SSL3_MASTER_KEY_DERIVE_DH;
|
|
|
|
/* Determine the PMS */
|
|
pms = PK11_PubDerive(serverKey, &clntPubKey, PR_FALSE, NULL, NULL,
|
|
CKM_DH_PKCS_DERIVE, target, CKA_DERIVE, 0, NULL);
|
|
if (pms == NULL) {
|
|
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
|
|
rv = SECFailure;
|
|
goto loser;
|
|
}
|
|
|
|
rv = ssl3_InitPendingCipherSpec(ss, pms);
|
|
PK11_FreeSymKey(pms); pms = NULL;
|
|
|
|
loser:
|
|
if (ss->dheKeyPair) {
|
|
ssl3_FreeKeyPair(ss->dheKeyPair);
|
|
ss->dheKeyPair = NULL;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
|
|
/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete
|
|
* ssl3 ClientKeyExchange message from the remote client
|
|
* Caller must hold Handshake and RecvBuf locks.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleClientKeyExchange(sslSocket *ss, SSL3Opaque *b, PRUint32 length)
|
|
{
|
|
SECKEYPrivateKey *serverKey = NULL;
|
|
SECStatus rv;
|
|
const ssl3KEADef *kea_def;
|
|
ssl3KeyPair *serverKeyPair = NULL;
|
|
SECKEYPublicKey *serverPubKey = NULL;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle client_key_exchange handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
if (ss->ssl3.hs.ws != wait_client_key) {
|
|
SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CLIENT_KEY_EXCH);
|
|
return SECFailure;
|
|
}
|
|
|
|
kea_def = ss->ssl3.hs.kea_def;
|
|
|
|
if (ss->ssl3.hs.usedStepDownKey) {
|
|
PORT_Assert(kea_def->is_limited /* XXX OR cert is signing only */
|
|
&& kea_def->exchKeyType == kt_rsa
|
|
&& ss->stepDownKeyPair != NULL);
|
|
if (!kea_def->is_limited ||
|
|
kea_def->exchKeyType != kt_rsa ||
|
|
ss->stepDownKeyPair == NULL) {
|
|
/* shouldn't happen, don't use step down if it does */
|
|
goto skip;
|
|
}
|
|
serverKeyPair = ss->stepDownKeyPair;
|
|
ss->sec.keaKeyBits = EXPORT_RSA_KEY_LENGTH * BPB;
|
|
} else
|
|
skip:
|
|
if (kea_def->kea == kea_dhe_dss ||
|
|
kea_def->kea == kea_dhe_rsa) {
|
|
if (ss->dheKeyPair) {
|
|
serverKeyPair = ss->dheKeyPair;
|
|
if (serverKeyPair->pubKey) {
|
|
ss->sec.keaKeyBits =
|
|
SECKEY_PublicKeyStrengthInBits(serverKeyPair->pubKey);
|
|
}
|
|
}
|
|
} else
|
|
#ifndef NSS_DISABLE_ECC
|
|
/* XXX Using SSLKEAType to index server certifiates
|
|
* does not work for (EC)DHE ciphers. Until we have
|
|
* an indexing mechanism general enough for all key
|
|
* exchange algorithms, we'll need to deal with each
|
|
* one seprately.
|
|
*/
|
|
if ((kea_def->kea == kea_ecdhe_rsa) ||
|
|
(kea_def->kea == kea_ecdhe_ecdsa)) {
|
|
if (ss->ephemeralECDHKeyPair != NULL) {
|
|
serverKeyPair = ss->ephemeralECDHKeyPair;
|
|
if (serverKeyPair->pubKey) {
|
|
ss->sec.keaKeyBits =
|
|
SECKEY_PublicKeyStrengthInBits(serverKeyPair->pubKey);
|
|
}
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
sslServerCerts * sc = ss->serverCerts + kea_def->exchKeyType;
|
|
serverKeyPair = sc->serverKeyPair;
|
|
ss->sec.keaKeyBits = sc->serverKeyBits;
|
|
}
|
|
|
|
if (serverKeyPair) {
|
|
serverKey = serverKeyPair->privKey;
|
|
}
|
|
|
|
if (serverKey == NULL) {
|
|
SEND_ALERT
|
|
PORT_SetError(SSL_ERROR_NO_SERVER_KEY_FOR_ALG);
|
|
return SECFailure;
|
|
}
|
|
|
|
ss->sec.keaType = kea_def->exchKeyType;
|
|
|
|
switch (kea_def->exchKeyType) {
|
|
case kt_rsa:
|
|
rv = ssl3_HandleRSAClientKeyExchange(ss, b, length, serverKey);
|
|
if (rv != SECSuccess) {
|
|
SEND_ALERT
|
|
return SECFailure; /* error code set */
|
|
}
|
|
break;
|
|
|
|
case ssl_kea_dh:
|
|
if (ss->dheKeyPair && ss->dheKeyPair->pubKey) {
|
|
serverPubKey = ss->dheKeyPair->pubKey;
|
|
}
|
|
if (!serverPubKey) {
|
|
PORT_SetError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_HandleDHClientKeyExchange(ss, b, length,
|
|
serverPubKey, serverKey);
|
|
if (rv != SECSuccess) {
|
|
SSL3_SendAlert(ss, alert_fatal, handshake_failure);
|
|
return SECFailure; /* error code set */
|
|
}
|
|
break;
|
|
|
|
#ifndef NSS_DISABLE_ECC
|
|
case kt_ecdh:
|
|
/* XXX We really ought to be able to store multiple
|
|
* EC certs (a requirement if we wish to support both
|
|
* ECDH-RSA and ECDH-ECDSA key exchanges concurrently).
|
|
* When we make that change, we'll need an index other
|
|
* than kt_ecdh to pick the right EC certificate.
|
|
*/
|
|
if (serverKeyPair) {
|
|
serverPubKey = serverKeyPair->pubKey;
|
|
}
|
|
if (serverPubKey == NULL) {
|
|
/* XXX Is this the right error code? */
|
|
PORT_SetError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_HandleECDHClientKeyExchange(ss, b, length,
|
|
serverPubKey, serverKey);
|
|
if (ss->ephemeralECDHKeyPair) {
|
|
ssl3_FreeKeyPair(ss->ephemeralECDHKeyPair);
|
|
ss->ephemeralECDHKeyPair = NULL;
|
|
}
|
|
if (rv != SECSuccess) {
|
|
return SECFailure; /* error code set */
|
|
}
|
|
break;
|
|
#endif /* NSS_DISABLE_ECC */
|
|
|
|
default:
|
|
(void) ssl3_HandshakeFailure(ss);
|
|
PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG);
|
|
return SECFailure;
|
|
}
|
|
ss->ssl3.hs.ws = ss->sec.peerCert ? wait_cert_verify : wait_change_cipher;
|
|
return SECSuccess;
|
|
|
|
}
|
|
|
|
/* This is TLS's equivalent of sending a no_certificate alert. */
|
|
static SECStatus
|
|
ssl3_SendEmptyCertificate(sslSocket *ss)
|
|
{
|
|
SECStatus rv;
|
|
|
|
rv = ssl3_AppendHandshakeHeader(ss, certificate, 3);
|
|
if (rv == SECSuccess) {
|
|
rv = ssl3_AppendHandshakeNumber(ss, 0, 3);
|
|
}
|
|
return rv; /* error, if any, set by functions called above. */
|
|
}
|
|
|
|
SECStatus
|
|
ssl3_HandleNewSessionTicket(sslSocket *ss, SSL3Opaque *b, PRUint32 length)
|
|
{
|
|
SECStatus rv;
|
|
SECItem ticketData;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle session_ticket handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
PORT_Assert(!ss->ssl3.hs.newSessionTicket.ticket.data);
|
|
PORT_Assert(!ss->ssl3.hs.receivedNewSessionTicket);
|
|
|
|
if (ss->ssl3.hs.ws != wait_new_session_ticket) {
|
|
SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_NEW_SESSION_TICKET);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* RFC5077 Section 3.3: "The client MUST NOT treat the ticket as valid
|
|
* until it has verified the server's Finished message." See the comment in
|
|
* ssl3_FinishHandshake for more details.
|
|
*/
|
|
ss->ssl3.hs.newSessionTicket.received_timestamp = ssl_Time();
|
|
if (length < 4) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, decode_error);
|
|
PORT_SetError(SSL_ERROR_RX_MALFORMED_NEW_SESSION_TICKET);
|
|
return SECFailure;
|
|
}
|
|
ss->ssl3.hs.newSessionTicket.ticket_lifetime_hint =
|
|
(PRUint32)ssl3_ConsumeHandshakeNumber(ss, 4, &b, &length);
|
|
|
|
rv = ssl3_ConsumeHandshakeVariable(ss, &ticketData, 2, &b, &length);
|
|
if (rv != SECSuccess || length != 0) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, decode_error);
|
|
PORT_SetError(SSL_ERROR_RX_MALFORMED_NEW_SESSION_TICKET);
|
|
return SECFailure; /* malformed */
|
|
}
|
|
/* If the server sent a zero-length ticket, ignore it and keep the
|
|
* existing ticket. */
|
|
if (ticketData.len != 0) {
|
|
rv = SECITEM_CopyItem(NULL, &ss->ssl3.hs.newSessionTicket.ticket,
|
|
&ticketData);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
ss->ssl3.hs.receivedNewSessionTicket = PR_TRUE;
|
|
}
|
|
|
|
ss->ssl3.hs.ws = wait_change_cipher;
|
|
return SECSuccess;
|
|
}
|
|
|
|
#ifdef NISCC_TEST
|
|
static PRInt32 connNum = 0;
|
|
|
|
static SECStatus
|
|
get_fake_cert(SECItem *pCertItem, int *pIndex)
|
|
{
|
|
PRFileDesc *cf;
|
|
char * testdir;
|
|
char * startat;
|
|
char * stopat;
|
|
const char *extension;
|
|
int fileNum;
|
|
PRInt32 numBytes = 0;
|
|
PRStatus prStatus;
|
|
PRFileInfo info;
|
|
char cfn[100];
|
|
|
|
pCertItem->data = 0;
|
|
if ((testdir = PR_GetEnv("NISCC_TEST")) == NULL) {
|
|
return SECSuccess;
|
|
}
|
|
*pIndex = (NULL != strstr(testdir, "root"));
|
|
extension = (strstr(testdir, "simple") ? "" : ".der");
|
|
fileNum = PR_ATOMIC_INCREMENT(&connNum) - 1;
|
|
if ((startat = PR_GetEnv("START_AT")) != NULL) {
|
|
fileNum += atoi(startat);
|
|
}
|
|
if ((stopat = PR_GetEnv("STOP_AT")) != NULL &&
|
|
fileNum >= atoi(stopat)) {
|
|
*pIndex = -1;
|
|
return SECSuccess;
|
|
}
|
|
sprintf(cfn, "%s/%08d%s", testdir, fileNum, extension);
|
|
cf = PR_Open(cfn, PR_RDONLY, 0);
|
|
if (!cf) {
|
|
goto loser;
|
|
}
|
|
prStatus = PR_GetOpenFileInfo(cf, &info);
|
|
if (prStatus != PR_SUCCESS) {
|
|
PR_Close(cf);
|
|
goto loser;
|
|
}
|
|
pCertItem = SECITEM_AllocItem(NULL, pCertItem, info.size);
|
|
if (pCertItem) {
|
|
numBytes = PR_Read(cf, pCertItem->data, info.size);
|
|
}
|
|
PR_Close(cf);
|
|
if (numBytes != info.size) {
|
|
SECITEM_FreeItem(pCertItem, PR_FALSE);
|
|
PORT_SetError(SEC_ERROR_IO);
|
|
goto loser;
|
|
}
|
|
fprintf(stderr, "using %s\n", cfn);
|
|
return SECSuccess;
|
|
|
|
loser:
|
|
fprintf(stderr, "failed to use %s\n", cfn);
|
|
*pIndex = -1;
|
|
return SECFailure;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Used by both client and server.
|
|
* Called from HandleServerHelloDone and from SendServerHelloSequence.
|
|
*/
|
|
static SECStatus
|
|
ssl3_SendCertificate(sslSocket *ss)
|
|
{
|
|
SECStatus rv;
|
|
CERTCertificateList *certChain;
|
|
int len = 0;
|
|
int i;
|
|
SSL3KEAType certIndex;
|
|
#ifdef NISCC_TEST
|
|
SECItem fakeCert;
|
|
int ndex = -1;
|
|
#endif
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: send certificate handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
if (ss->sec.localCert)
|
|
CERT_DestroyCertificate(ss->sec.localCert);
|
|
if (ss->sec.isServer) {
|
|
sslServerCerts * sc = NULL;
|
|
|
|
/* XXX SSLKEAType isn't really a good choice for
|
|
* indexing certificates (it breaks when we deal
|
|
* with (EC)DHE-* cipher suites. This hack ensures
|
|
* the RSA cert is picked for (EC)DHE-RSA.
|
|
* Revisit this when we add server side support
|
|
* for ECDHE-ECDSA or client-side authentication
|
|
* using EC certificates.
|
|
*/
|
|
if ((ss->ssl3.hs.kea_def->kea == kea_ecdhe_rsa) ||
|
|
(ss->ssl3.hs.kea_def->kea == kea_dhe_rsa)) {
|
|
certIndex = kt_rsa;
|
|
} else {
|
|
certIndex = ss->ssl3.hs.kea_def->exchKeyType;
|
|
}
|
|
sc = ss->serverCerts + certIndex;
|
|
certChain = sc->serverCertChain;
|
|
ss->sec.authKeyBits = sc->serverKeyBits;
|
|
ss->sec.authAlgorithm = ss->ssl3.hs.kea_def->signKeyType;
|
|
ss->sec.localCert = CERT_DupCertificate(sc->serverCert);
|
|
} else {
|
|
certChain = ss->ssl3.clientCertChain;
|
|
ss->sec.localCert = CERT_DupCertificate(ss->ssl3.clientCertificate);
|
|
}
|
|
|
|
#ifdef NISCC_TEST
|
|
rv = get_fake_cert(&fakeCert, &ndex);
|
|
#endif
|
|
|
|
if (certChain) {
|
|
for (i = 0; i < certChain->len; i++) {
|
|
#ifdef NISCC_TEST
|
|
if (fakeCert.len > 0 && i == ndex) {
|
|
len += fakeCert.len + 3;
|
|
} else {
|
|
len += certChain->certs[i].len + 3;
|
|
}
|
|
#else
|
|
len += certChain->certs[i].len + 3;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
rv = ssl3_AppendHandshakeHeader(ss, certificate, len + 3);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
rv = ssl3_AppendHandshakeNumber(ss, len, 3);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
if (certChain) {
|
|
for (i = 0; i < certChain->len; i++) {
|
|
#ifdef NISCC_TEST
|
|
if (fakeCert.len > 0 && i == ndex) {
|
|
rv = ssl3_AppendHandshakeVariable(ss, fakeCert.data,
|
|
fakeCert.len, 3);
|
|
SECITEM_FreeItem(&fakeCert, PR_FALSE);
|
|
} else {
|
|
rv = ssl3_AppendHandshakeVariable(ss, certChain->certs[i].data,
|
|
certChain->certs[i].len, 3);
|
|
}
|
|
#else
|
|
rv = ssl3_AppendHandshakeVariable(ss, certChain->certs[i].data,
|
|
certChain->certs[i].len, 3);
|
|
#endif
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
}
|
|
}
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* Used by server only.
|
|
* single-stapling, send only a single cert status
|
|
*/
|
|
static SECStatus
|
|
ssl3_SendCertificateStatus(sslSocket *ss)
|
|
{
|
|
SECStatus rv;
|
|
int len = 0;
|
|
SECItemArray *statusToSend = NULL;
|
|
SSL3KEAType certIndex;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: send certificate status handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
PORT_Assert( ss->sec.isServer);
|
|
|
|
if (!ssl3_ExtensionNegotiated(ss, ssl_cert_status_xtn))
|
|
return SECSuccess;
|
|
|
|
/* Use certStatus based on the cert being used. */
|
|
if ((ss->ssl3.hs.kea_def->kea == kea_ecdhe_rsa) ||
|
|
(ss->ssl3.hs.kea_def->kea == kea_dhe_rsa)) {
|
|
certIndex = kt_rsa;
|
|
} else {
|
|
certIndex = ss->ssl3.hs.kea_def->exchKeyType;
|
|
}
|
|
if (ss->certStatusArray[certIndex] && ss->certStatusArray[certIndex]->len) {
|
|
statusToSend = ss->certStatusArray[certIndex];
|
|
}
|
|
if (!statusToSend)
|
|
return SECSuccess;
|
|
|
|
/* Use the array's first item only (single stapling) */
|
|
len = 1 + statusToSend->items[0].len + 3;
|
|
|
|
rv = ssl3_AppendHandshakeHeader(ss, certificate_status, len);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* err set by AppendHandshake. */
|
|
}
|
|
rv = ssl3_AppendHandshakeNumber(ss, 1 /*ocsp*/, 1);
|
|
if (rv != SECSuccess)
|
|
return rv; /* err set by AppendHandshake. */
|
|
|
|
rv = ssl3_AppendHandshakeVariable(ss,
|
|
statusToSend->items[0].data,
|
|
statusToSend->items[0].len,
|
|
3);
|
|
if (rv != SECSuccess)
|
|
return rv; /* err set by AppendHandshake. */
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* This is used to delete the CA certificates in the peer certificate chain
|
|
* from the cert database after they've been validated.
|
|
*/
|
|
static void
|
|
ssl3_CleanupPeerCerts(sslSocket *ss)
|
|
{
|
|
PLArenaPool * arena = ss->ssl3.peerCertArena;
|
|
ssl3CertNode *certs = (ssl3CertNode *)ss->ssl3.peerCertChain;
|
|
|
|
for (; certs; certs = certs->next) {
|
|
CERT_DestroyCertificate(certs->cert);
|
|
}
|
|
if (arena) PORT_FreeArena(arena, PR_FALSE);
|
|
ss->ssl3.peerCertArena = NULL;
|
|
ss->ssl3.peerCertChain = NULL;
|
|
}
|
|
|
|
/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete
|
|
* ssl3 CertificateStatus message.
|
|
* Caller must hold Handshake and RecvBuf locks.
|
|
* This is always called before ssl3_HandleCertificate, even if the Certificate
|
|
* message is sent first.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleCertificateStatus(sslSocket *ss, SSL3Opaque *b, PRUint32 length)
|
|
{
|
|
PRInt32 status, len;
|
|
|
|
if (ss->ssl3.hs.ws != wait_certificate_status) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CERT_STATUS);
|
|
return SECFailure;
|
|
}
|
|
|
|
PORT_Assert(!ss->sec.isServer);
|
|
|
|
/* Consume the CertificateStatusType enum */
|
|
status = ssl3_ConsumeHandshakeNumber(ss, 1, &b, &length);
|
|
if (status != 1 /* ocsp */) {
|
|
goto format_loser;
|
|
}
|
|
|
|
len = ssl3_ConsumeHandshakeNumber(ss, 3, &b, &length);
|
|
if (len != length) {
|
|
goto format_loser;
|
|
}
|
|
|
|
#define MAX_CERTSTATUS_LEN 0x1ffff /* 128k - 1 */
|
|
if (length > MAX_CERTSTATUS_LEN)
|
|
goto format_loser;
|
|
#undef MAX_CERTSTATUS_LEN
|
|
|
|
/* Array size 1, because we currently implement single-stapling only */
|
|
SECITEM_AllocArray(NULL, &ss->sec.ci.sid->peerCertStatus, 1);
|
|
if (!ss->sec.ci.sid->peerCertStatus.items)
|
|
return SECFailure;
|
|
|
|
ss->sec.ci.sid->peerCertStatus.items[0].data = PORT_Alloc(length);
|
|
|
|
if (!ss->sec.ci.sid->peerCertStatus.items[0].data) {
|
|
SECITEM_FreeArray(&ss->sec.ci.sid->peerCertStatus, PR_FALSE);
|
|
return SECFailure;
|
|
}
|
|
|
|
PORT_Memcpy(ss->sec.ci.sid->peerCertStatus.items[0].data, b, length);
|
|
ss->sec.ci.sid->peerCertStatus.items[0].len = length;
|
|
ss->sec.ci.sid->peerCertStatus.items[0].type = siBuffer;
|
|
|
|
return ssl3_AuthCertificate(ss);
|
|
|
|
format_loser:
|
|
return ssl3_DecodeError(ss);
|
|
}
|
|
|
|
/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete
|
|
* ssl3 Certificate message.
|
|
* Caller must hold Handshake and RecvBuf locks.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleCertificate(sslSocket *ss, SSL3Opaque *b, PRUint32 length)
|
|
{
|
|
ssl3CertNode * c;
|
|
ssl3CertNode * lastCert = NULL;
|
|
PRInt32 remaining = 0;
|
|
PRInt32 size;
|
|
SECStatus rv;
|
|
PRBool isServer = (PRBool)(!!ss->sec.isServer);
|
|
PRBool isTLS;
|
|
SSL3AlertDescription desc;
|
|
int errCode = SSL_ERROR_RX_MALFORMED_CERTIFICATE;
|
|
SECItem certItem;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle certificate handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
if ((isServer && ss->ssl3.hs.ws != wait_client_cert) ||
|
|
(!isServer && ss->ssl3.hs.ws != wait_server_cert)) {
|
|
desc = unexpected_message;
|
|
errCode = SSL_ERROR_RX_UNEXPECTED_CERTIFICATE;
|
|
goto alert_loser;
|
|
}
|
|
|
|
if (ss->sec.peerCert != NULL) {
|
|
if (ss->sec.peerKey) {
|
|
SECKEY_DestroyPublicKey(ss->sec.peerKey);
|
|
ss->sec.peerKey = NULL;
|
|
}
|
|
CERT_DestroyCertificate(ss->sec.peerCert);
|
|
ss->sec.peerCert = NULL;
|
|
}
|
|
|
|
ssl3_CleanupPeerCerts(ss);
|
|
isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
|
|
/* It is reported that some TLS client sends a Certificate message
|
|
** with a zero-length message body. We'll treat that case like a
|
|
** normal no_certificates message to maximize interoperability.
|
|
*/
|
|
if (length) {
|
|
remaining = ssl3_ConsumeHandshakeNumber(ss, 3, &b, &length);
|
|
if (remaining < 0)
|
|
goto loser; /* fatal alert already sent by ConsumeHandshake. */
|
|
if ((PRUint32)remaining > length)
|
|
goto decode_loser;
|
|
}
|
|
|
|
if (!remaining) {
|
|
if (!(isTLS && isServer)) {
|
|
desc = bad_certificate;
|
|
goto alert_loser;
|
|
}
|
|
/* This is TLS's version of a no_certificate alert. */
|
|
/* I'm a server. I've requested a client cert. He hasn't got one. */
|
|
rv = ssl3_HandleNoCertificate(ss);
|
|
if (rv != SECSuccess) {
|
|
errCode = PORT_GetError();
|
|
goto loser;
|
|
}
|
|
ss->ssl3.hs.ws = wait_client_key;
|
|
return SECSuccess;
|
|
}
|
|
|
|
ss->ssl3.peerCertArena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
|
|
if (ss->ssl3.peerCertArena == NULL) {
|
|
goto loser; /* don't send alerts on memory errors */
|
|
}
|
|
|
|
/* First get the peer cert. */
|
|
remaining -= 3;
|
|
if (remaining < 0)
|
|
goto decode_loser;
|
|
|
|
size = ssl3_ConsumeHandshakeNumber(ss, 3, &b, &length);
|
|
if (size <= 0)
|
|
goto loser; /* fatal alert already sent by ConsumeHandshake. */
|
|
|
|
if (remaining < size)
|
|
goto decode_loser;
|
|
|
|
certItem.data = b;
|
|
certItem.len = size;
|
|
b += size;
|
|
length -= size;
|
|
remaining -= size;
|
|
|
|
ss->sec.peerCert = CERT_NewTempCertificate(ss->dbHandle, &certItem, NULL,
|
|
PR_FALSE, PR_TRUE);
|
|
if (ss->sec.peerCert == NULL) {
|
|
/* We should report an alert if the cert was bad, but not if the
|
|
* problem was just some local problem, like memory error.
|
|
*/
|
|
goto ambiguous_err;
|
|
}
|
|
|
|
/* Now get all of the CA certs. */
|
|
while (remaining > 0) {
|
|
remaining -= 3;
|
|
if (remaining < 0)
|
|
goto decode_loser;
|
|
|
|
size = ssl3_ConsumeHandshakeNumber(ss, 3, &b, &length);
|
|
if (size <= 0)
|
|
goto loser; /* fatal alert already sent by ConsumeHandshake. */
|
|
|
|
if (remaining < size)
|
|
goto decode_loser;
|
|
|
|
certItem.data = b;
|
|
certItem.len = size;
|
|
b += size;
|
|
length -= size;
|
|
remaining -= size;
|
|
|
|
c = PORT_ArenaNew(ss->ssl3.peerCertArena, ssl3CertNode);
|
|
if (c == NULL) {
|
|
goto loser; /* don't send alerts on memory errors */
|
|
}
|
|
|
|
c->cert = CERT_NewTempCertificate(ss->dbHandle, &certItem, NULL,
|
|
PR_FALSE, PR_TRUE);
|
|
if (c->cert == NULL) {
|
|
goto ambiguous_err;
|
|
}
|
|
|
|
c->next = NULL;
|
|
if (lastCert) {
|
|
lastCert->next = c;
|
|
} else {
|
|
ss->ssl3.peerCertChain = c;
|
|
}
|
|
lastCert = c;
|
|
}
|
|
|
|
if (remaining != 0)
|
|
goto decode_loser;
|
|
|
|
SECKEY_UpdateCertPQG(ss->sec.peerCert);
|
|
|
|
if (!isServer && ssl3_ExtensionNegotiated(ss, ssl_cert_status_xtn)) {
|
|
ss->ssl3.hs.ws = wait_certificate_status;
|
|
rv = SECSuccess;
|
|
} else {
|
|
rv = ssl3_AuthCertificate(ss); /* sets ss->ssl3.hs.ws */
|
|
}
|
|
|
|
return rv;
|
|
|
|
ambiguous_err:
|
|
errCode = PORT_GetError();
|
|
switch (errCode) {
|
|
case PR_OUT_OF_MEMORY_ERROR:
|
|
case SEC_ERROR_BAD_DATABASE:
|
|
case SEC_ERROR_NO_MEMORY:
|
|
if (isTLS) {
|
|
desc = internal_error;
|
|
goto alert_loser;
|
|
}
|
|
goto loser;
|
|
}
|
|
ssl3_SendAlertForCertError(ss, errCode);
|
|
goto loser;
|
|
|
|
decode_loser:
|
|
desc = isTLS ? decode_error : bad_certificate;
|
|
|
|
alert_loser:
|
|
(void)SSL3_SendAlert(ss, alert_fatal, desc);
|
|
|
|
loser:
|
|
(void)ssl_MapLowLevelError(errCode);
|
|
return SECFailure;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_AuthCertificate(sslSocket *ss)
|
|
{
|
|
SECStatus rv;
|
|
PRBool isServer = (PRBool)(!!ss->sec.isServer);
|
|
int errCode;
|
|
|
|
ss->ssl3.hs.authCertificatePending = PR_FALSE;
|
|
|
|
PORT_Assert((ss->ssl3.hs.preliminaryInfo & ssl_preinfo_all) ==
|
|
ssl_preinfo_all);
|
|
/*
|
|
* Ask caller-supplied callback function to validate cert chain.
|
|
*/
|
|
rv = (SECStatus)(*ss->authCertificate)(ss->authCertificateArg, ss->fd,
|
|
PR_TRUE, isServer);
|
|
if (rv) {
|
|
errCode = PORT_GetError();
|
|
if (rv != SECWouldBlock) {
|
|
if (ss->handleBadCert) {
|
|
rv = (*ss->handleBadCert)(ss->badCertArg, ss->fd);
|
|
}
|
|
}
|
|
|
|
if (rv == SECWouldBlock) {
|
|
if (ss->sec.isServer) {
|
|
errCode = SSL_ERROR_FEATURE_NOT_SUPPORTED_FOR_SERVERS;
|
|
rv = SECFailure;
|
|
goto loser;
|
|
}
|
|
|
|
ss->ssl3.hs.authCertificatePending = PR_TRUE;
|
|
rv = SECSuccess;
|
|
}
|
|
|
|
if (rv != SECSuccess) {
|
|
ssl3_SendAlertForCertError(ss, errCode);
|
|
goto loser;
|
|
}
|
|
}
|
|
|
|
ss->sec.ci.sid->peerCert = CERT_DupCertificate(ss->sec.peerCert);
|
|
|
|
if (!ss->sec.isServer) {
|
|
CERTCertificate *cert = ss->sec.peerCert;
|
|
|
|
/* set the server authentication and key exchange types and sizes
|
|
** from the value in the cert. If the key exchange key is different,
|
|
** it will get fixed when we handle the server key exchange message.
|
|
*/
|
|
SECKEYPublicKey * pubKey = CERT_ExtractPublicKey(cert);
|
|
ss->sec.authAlgorithm = ss->ssl3.hs.kea_def->signKeyType;
|
|
ss->sec.keaType = ss->ssl3.hs.kea_def->exchKeyType;
|
|
if (pubKey) {
|
|
KeyType pubKeyType;
|
|
PRInt32 minKey;
|
|
ss->sec.keaKeyBits = ss->sec.authKeyBits =
|
|
SECKEY_PublicKeyStrengthInBits(pubKey);
|
|
pubKeyType = SECKEY_GetPublicKeyType(pubKey);
|
|
minKey = ss->sec.authKeyBits;
|
|
switch (pubKeyType) {
|
|
case rsaKey:
|
|
case rsaPssKey:
|
|
case rsaOaepKey:
|
|
rv = NSS_OptionGet(NSS_RSA_MIN_KEY_SIZE, &minKey);
|
|
if (rv != SECSuccess) {
|
|
minKey = SSL_RSA_MIN_MODULUS_BITS;
|
|
}
|
|
break;
|
|
case dsaKey:
|
|
rv = NSS_OptionGet(NSS_DSA_MIN_KEY_SIZE, &minKey);
|
|
if (rv != SECSuccess) {
|
|
minKey = SSL_DSA_MIN_P_BITS;
|
|
}
|
|
break;
|
|
case dhKey:
|
|
rv = NSS_OptionGet(NSS_DH_MIN_KEY_SIZE, &minKey);
|
|
if (rv != SECSuccess) {
|
|
minKey = SSL_DH_MIN_P_BITS;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Too small: not good enough. Send a fatal alert. */
|
|
/* We aren't checking EC here on the understanding that we only
|
|
* support curves we like, a decision that might need revisiting. */
|
|
if ( ss->sec.authKeyBits < minKey) {
|
|
PORT_SetError(SSL_ERROR_WEAK_SERVER_CERT_KEY);
|
|
(void)SSL3_SendAlert(ss, alert_fatal,
|
|
ss->version >= SSL_LIBRARY_VERSION_TLS_1_0
|
|
? insufficient_security
|
|
: illegal_parameter);
|
|
SECKEY_DestroyPublicKey(pubKey);
|
|
return SECFailure;
|
|
}
|
|
SECKEY_DestroyPublicKey(pubKey);
|
|
pubKey = NULL;
|
|
}
|
|
|
|
/* Ephemeral suites require ServerKeyExchange. Export cipher suites
|
|
* with RSA key exchange also require ServerKeyExchange if the
|
|
* authentication key exceeds the key size limit. */
|
|
if (ss->ssl3.hs.kea_def->ephemeral ||
|
|
(ss->ssl3.hs.kea_def->is_limited &&
|
|
ss->ssl3.hs.kea_def->exchKeyType == ssl_kea_rsa &&
|
|
ss->sec.authKeyBits > ss->ssl3.hs.kea_def->key_size_limit)) {
|
|
ss->ssl3.hs.ws = wait_server_key; /* require server_key_exchange */
|
|
} else {
|
|
ss->ssl3.hs.ws = wait_cert_request; /* disallow server_key_exchange */
|
|
}
|
|
} else {
|
|
ss->ssl3.hs.ws = wait_client_key;
|
|
}
|
|
|
|
PORT_Assert(rv == SECSuccess);
|
|
if (rv != SECSuccess) {
|
|
errCode = SEC_ERROR_LIBRARY_FAILURE;
|
|
rv = SECFailure;
|
|
goto loser;
|
|
}
|
|
|
|
return rv;
|
|
|
|
loser:
|
|
(void)ssl_MapLowLevelError(errCode);
|
|
return SECFailure;
|
|
}
|
|
|
|
static SECStatus ssl3_FinishHandshake(sslSocket *ss);
|
|
|
|
static SECStatus
|
|
ssl3_AlwaysFail(sslSocket * ss)
|
|
{
|
|
PORT_SetError(PR_INVALID_STATE_ERROR);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* Caller must hold 1stHandshakeLock.
|
|
*/
|
|
SECStatus
|
|
ssl3_AuthCertificateComplete(sslSocket *ss, PRErrorCode error)
|
|
{
|
|
SECStatus rv;
|
|
|
|
PORT_Assert(ss->opt.noLocks || ssl_Have1stHandshakeLock(ss));
|
|
|
|
if (ss->sec.isServer) {
|
|
PORT_SetError(SSL_ERROR_FEATURE_NOT_SUPPORTED_FOR_SERVERS);
|
|
return SECFailure;
|
|
}
|
|
|
|
ssl_GetRecvBufLock(ss);
|
|
ssl_GetSSL3HandshakeLock(ss);
|
|
|
|
if (!ss->ssl3.hs.authCertificatePending) {
|
|
PORT_SetError(PR_INVALID_STATE_ERROR);
|
|
rv = SECFailure;
|
|
goto done;
|
|
}
|
|
|
|
ss->ssl3.hs.authCertificatePending = PR_FALSE;
|
|
|
|
if (error != 0) {
|
|
ss->ssl3.hs.restartTarget = ssl3_AlwaysFail;
|
|
ssl3_SendAlertForCertError(ss, error);
|
|
rv = SECSuccess;
|
|
} else if (ss->ssl3.hs.restartTarget != NULL) {
|
|
sslRestartTarget target = ss->ssl3.hs.restartTarget;
|
|
ss->ssl3.hs.restartTarget = NULL;
|
|
|
|
if (target == ssl3_FinishHandshake) {
|
|
SSL_TRC(3,("%d: SSL3[%p]: certificate authentication lost the race"
|
|
" with peer's finished message", SSL_GETPID(), ss->fd));
|
|
}
|
|
|
|
rv = target(ss);
|
|
/* Even if we blocked here, we have accomplished enough to claim
|
|
* success. Any remaining work will be taken care of by subsequent
|
|
* calls to SSL_ForceHandshake/PR_Send/PR_Read/etc.
|
|
*/
|
|
if (rv == SECWouldBlock) {
|
|
rv = SECSuccess;
|
|
}
|
|
} else {
|
|
SSL_TRC(3, ("%d: SSL3[%p]: certificate authentication won the race with"
|
|
" peer's finished message", SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert(!ss->ssl3.hs.isResuming);
|
|
PORT_Assert(ss->ssl3.hs.ws != idle_handshake);
|
|
|
|
if (ss->opt.enableFalseStart &&
|
|
!ss->firstHsDone &&
|
|
!ss->ssl3.hs.isResuming &&
|
|
ssl3_WaitingForStartOfServerSecondRound(ss)) {
|
|
/* ssl3_SendClientSecondRound deferred the false start check because
|
|
* certificate authentication was pending, so we do it now if we still
|
|
* haven't received any of the server's second round yet.
|
|
*/
|
|
rv = ssl3_CheckFalseStart(ss);
|
|
} else {
|
|
rv = SECSuccess;
|
|
}
|
|
}
|
|
|
|
done:
|
|
ssl_ReleaseSSL3HandshakeLock(ss);
|
|
ssl_ReleaseRecvBufLock(ss);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static SECStatus
|
|
ssl3_ComputeTLSFinished(ssl3CipherSpec *spec,
|
|
PRBool isServer,
|
|
const SSL3Hashes * hashes,
|
|
TLSFinished * tlsFinished)
|
|
{
|
|
SECStatus rv;
|
|
CK_TLS_MAC_PARAMS tls_mac_params;
|
|
SECItem param = {siBuffer, NULL, 0};
|
|
PK11Context *prf_context;
|
|
unsigned int retLen;
|
|
|
|
if (!spec->master_secret || spec->bypassCiphers) {
|
|
const char *label = isServer ? "server finished" : "client finished";
|
|
unsigned int len = 15;
|
|
|
|
return ssl3_TLSPRFWithMasterSecret(spec, label, len, hashes->u.raw,
|
|
hashes->len, tlsFinished->verify_data,
|
|
sizeof tlsFinished->verify_data);
|
|
}
|
|
|
|
if (spec->version < SSL_LIBRARY_VERSION_TLS_1_2) {
|
|
tls_mac_params.prfMechanism = CKM_TLS_PRF;
|
|
} else {
|
|
tls_mac_params.prfMechanism = CKM_SHA256;
|
|
}
|
|
tls_mac_params.ulMacLength = 12;
|
|
tls_mac_params.ulServerOrClient = isServer ? 1 : 2;
|
|
param.data = (unsigned char *)&tls_mac_params;
|
|
param.len = sizeof(tls_mac_params);
|
|
prf_context = PK11_CreateContextBySymKey(CKM_TLS_MAC, CKA_SIGN,
|
|
spec->master_secret, ¶m);
|
|
if (!prf_context)
|
|
return SECFailure;
|
|
|
|
rv = PK11_DigestBegin(prf_context);
|
|
rv |= PK11_DigestOp(prf_context, hashes->u.raw, hashes->len);
|
|
rv |= PK11_DigestFinal(prf_context, tlsFinished->verify_data, &retLen,
|
|
sizeof tlsFinished->verify_data);
|
|
PORT_Assert(rv != SECSuccess || retLen == sizeof tlsFinished->verify_data);
|
|
|
|
PK11_DestroyContext(prf_context, PR_TRUE);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/* The calling function must acquire and release the appropriate
|
|
* lock (e.g., ssl_GetSpecReadLock / ssl_ReleaseSpecReadLock for
|
|
* ss->ssl3.crSpec).
|
|
*/
|
|
SECStatus
|
|
ssl3_TLSPRFWithMasterSecret(ssl3CipherSpec *spec, const char *label,
|
|
unsigned int labelLen, const unsigned char *val, unsigned int valLen,
|
|
unsigned char *out, unsigned int outLen)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
|
|
if (spec->master_secret && !spec->bypassCiphers) {
|
|
SECItem param = {siBuffer, NULL, 0};
|
|
CK_MECHANISM_TYPE mech = CKM_TLS_PRF_GENERAL;
|
|
PK11Context *prf_context;
|
|
unsigned int retLen;
|
|
|
|
if (spec->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
|
|
mech = CKM_NSS_TLS_PRF_GENERAL_SHA256;
|
|
}
|
|
prf_context = PK11_CreateContextBySymKey(mech, CKA_SIGN,
|
|
spec->master_secret, ¶m);
|
|
if (!prf_context)
|
|
return SECFailure;
|
|
|
|
rv = PK11_DigestBegin(prf_context);
|
|
rv |= PK11_DigestOp(prf_context, (unsigned char *) label, labelLen);
|
|
rv |= PK11_DigestOp(prf_context, val, valLen);
|
|
rv |= PK11_DigestFinal(prf_context, out, &retLen, outLen);
|
|
PORT_Assert(rv != SECSuccess || retLen == outLen);
|
|
|
|
PK11_DestroyContext(prf_context, PR_TRUE);
|
|
} else {
|
|
/* bypass PKCS11 */
|
|
#ifdef NO_PKCS11_BYPASS
|
|
PORT_Assert(spec->master_secret);
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
rv = SECFailure;
|
|
#else
|
|
SECItem inData = { siBuffer, };
|
|
SECItem outData = { siBuffer, };
|
|
PRBool isFIPS = PR_FALSE;
|
|
|
|
inData.data = (unsigned char *) val;
|
|
inData.len = valLen;
|
|
outData.data = out;
|
|
outData.len = outLen;
|
|
if (spec->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
|
|
rv = TLS_P_hash(HASH_AlgSHA256, &spec->msItem, label, &inData,
|
|
&outData, isFIPS);
|
|
} else {
|
|
rv = TLS_PRF(&spec->msItem, label, &inData, &outData, isFIPS);
|
|
}
|
|
PORT_Assert(rv != SECSuccess || outData.len == outLen);
|
|
#endif
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* called from ssl3_SendClientSecondRound
|
|
* ssl3_HandleFinished
|
|
*/
|
|
static SECStatus
|
|
ssl3_SendNextProto(sslSocket *ss)
|
|
{
|
|
SECStatus rv;
|
|
int padding_len;
|
|
static const unsigned char padding[32] = {0};
|
|
|
|
if (ss->ssl3.nextProto.len == 0 ||
|
|
ss->ssl3.nextProtoState == SSL_NEXT_PROTO_SELECTED) {
|
|
return SECSuccess;
|
|
}
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
padding_len = 32 - ((ss->ssl3.nextProto.len + 2) % 32);
|
|
|
|
rv = ssl3_AppendHandshakeHeader(ss, next_proto, ss->ssl3.nextProto.len +
|
|
2 + padding_len);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by AppendHandshakeHeader */
|
|
}
|
|
rv = ssl3_AppendHandshakeVariable(ss, ss->ssl3.nextProto.data,
|
|
ss->ssl3.nextProto.len, 1);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by AppendHandshake */
|
|
}
|
|
rv = ssl3_AppendHandshakeVariable(ss, padding, padding_len, 1);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code set by AppendHandshake */
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* called from ssl3_SendFinished
|
|
*
|
|
* This function is simply a debugging aid and therefore does not return a
|
|
* SECStatus. */
|
|
static void
|
|
ssl3_RecordKeyLog(sslSocket *ss)
|
|
{
|
|
SECStatus rv;
|
|
SECItem *keyData;
|
|
char buf[14 /* "CLIENT_RANDOM " */ +
|
|
SSL3_RANDOM_LENGTH*2 /* client_random */ +
|
|
1 /* " " */ +
|
|
48*2 /* master secret */ +
|
|
1 /* new line */];
|
|
unsigned int j;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
if (!ssl_keylog_iob)
|
|
return;
|
|
|
|
rv = PK11_ExtractKeyValue(ss->ssl3.cwSpec->master_secret);
|
|
if (rv != SECSuccess)
|
|
return;
|
|
|
|
ssl_GetSpecReadLock(ss);
|
|
|
|
/* keyData does not need to be freed. */
|
|
keyData = PK11_GetKeyData(ss->ssl3.cwSpec->master_secret);
|
|
if (!keyData || !keyData->data || keyData->len != 48) {
|
|
ssl_ReleaseSpecReadLock(ss);
|
|
return;
|
|
}
|
|
|
|
/* https://developer.mozilla.org/en/NSS_Key_Log_Format */
|
|
|
|
/* There could be multiple, concurrent writers to the
|
|
* keylog, so we have to do everything in a single call to
|
|
* fwrite. */
|
|
|
|
memcpy(buf, "CLIENT_RANDOM ", 14);
|
|
j = 14;
|
|
hexEncode(buf + j, ss->ssl3.hs.client_random.rand, SSL3_RANDOM_LENGTH);
|
|
j += SSL3_RANDOM_LENGTH*2;
|
|
buf[j++] = ' ';
|
|
hexEncode(buf + j, keyData->data, 48);
|
|
j += 48*2;
|
|
buf[j++] = '\n';
|
|
|
|
PORT_Assert(j == sizeof(buf));
|
|
|
|
ssl_ReleaseSpecReadLock(ss);
|
|
|
|
if (fwrite(buf, sizeof(buf), 1, ssl_keylog_iob) != 1)
|
|
return;
|
|
fflush(ssl_keylog_iob);
|
|
return;
|
|
}
|
|
|
|
/* called from ssl3_SendClientSecondRound
|
|
* ssl3_HandleClientHello
|
|
* ssl3_HandleFinished
|
|
*/
|
|
static SECStatus
|
|
ssl3_SendFinished(sslSocket *ss, PRInt32 flags)
|
|
{
|
|
ssl3CipherSpec *cwSpec;
|
|
PRBool isTLS;
|
|
PRBool isServer = ss->sec.isServer;
|
|
SECStatus rv;
|
|
SSL3Sender sender = isServer ? sender_server : sender_client;
|
|
SSL3Hashes hashes;
|
|
TLSFinished tlsFinished;
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: send finished handshake", SSL_GETPID(), ss->fd));
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
ssl_GetSpecReadLock(ss);
|
|
cwSpec = ss->ssl3.cwSpec;
|
|
isTLS = (PRBool)(cwSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
rv = ssl3_ComputeHandshakeHashes(ss, cwSpec, &hashes, sender);
|
|
if (isTLS && rv == SECSuccess) {
|
|
rv = ssl3_ComputeTLSFinished(cwSpec, isServer, &hashes, &tlsFinished);
|
|
}
|
|
ssl_ReleaseSpecReadLock(ss);
|
|
if (rv != SECSuccess) {
|
|
goto fail; /* err code was set by ssl3_ComputeHandshakeHashes */
|
|
}
|
|
|
|
if (isTLS) {
|
|
if (isServer)
|
|
ss->ssl3.hs.finishedMsgs.tFinished[1] = tlsFinished;
|
|
else
|
|
ss->ssl3.hs.finishedMsgs.tFinished[0] = tlsFinished;
|
|
ss->ssl3.hs.finishedBytes = sizeof tlsFinished;
|
|
rv = ssl3_AppendHandshakeHeader(ss, finished, sizeof tlsFinished);
|
|
if (rv != SECSuccess)
|
|
goto fail; /* err set by AppendHandshake. */
|
|
rv = ssl3_AppendHandshake(ss, &tlsFinished, sizeof tlsFinished);
|
|
if (rv != SECSuccess)
|
|
goto fail; /* err set by AppendHandshake. */
|
|
} else {
|
|
if (isServer)
|
|
ss->ssl3.hs.finishedMsgs.sFinished[1] = hashes.u.s;
|
|
else
|
|
ss->ssl3.hs.finishedMsgs.sFinished[0] = hashes.u.s;
|
|
PORT_Assert(hashes.len == sizeof hashes.u.s);
|
|
ss->ssl3.hs.finishedBytes = sizeof hashes.u.s;
|
|
rv = ssl3_AppendHandshakeHeader(ss, finished, sizeof hashes.u.s);
|
|
if (rv != SECSuccess)
|
|
goto fail; /* err set by AppendHandshake. */
|
|
rv = ssl3_AppendHandshake(ss, &hashes.u.s, sizeof hashes.u.s);
|
|
if (rv != SECSuccess)
|
|
goto fail; /* err set by AppendHandshake. */
|
|
}
|
|
rv = ssl3_FlushHandshake(ss, flags);
|
|
if (rv != SECSuccess) {
|
|
goto fail; /* error code set by ssl3_FlushHandshake */
|
|
}
|
|
|
|
ssl3_RecordKeyLog(ss);
|
|
|
|
return SECSuccess;
|
|
|
|
fail:
|
|
return rv;
|
|
}
|
|
|
|
/* wrap the master secret, and put it into the SID.
|
|
* Caller holds the Spec read lock.
|
|
*/
|
|
SECStatus
|
|
ssl3_CacheWrappedMasterSecret(sslSocket *ss, sslSessionID *sid,
|
|
ssl3CipherSpec *spec, SSL3KEAType effectiveExchKeyType)
|
|
{
|
|
PK11SymKey * wrappingKey = NULL;
|
|
PK11SlotInfo * symKeySlot;
|
|
void * pwArg = ss->pkcs11PinArg;
|
|
SECStatus rv = SECFailure;
|
|
PRBool isServer = ss->sec.isServer;
|
|
CK_MECHANISM_TYPE mechanism = CKM_INVALID_MECHANISM;
|
|
symKeySlot = PK11_GetSlotFromKey(spec->master_secret);
|
|
if (!isServer) {
|
|
int wrapKeyIndex;
|
|
int incarnation;
|
|
|
|
/* these next few functions are mere accessors and don't fail. */
|
|
sid->u.ssl3.masterWrapIndex = wrapKeyIndex =
|
|
PK11_GetCurrentWrapIndex(symKeySlot);
|
|
PORT_Assert(wrapKeyIndex == 0); /* array has only one entry! */
|
|
|
|
sid->u.ssl3.masterWrapSeries = incarnation =
|
|
PK11_GetSlotSeries(symKeySlot);
|
|
sid->u.ssl3.masterSlotID = PK11_GetSlotID(symKeySlot);
|
|
sid->u.ssl3.masterModuleID = PK11_GetModuleID(symKeySlot);
|
|
sid->u.ssl3.masterValid = PR_TRUE;
|
|
/* Get the default wrapping key, for wrapping the master secret before
|
|
* placing it in the SID cache entry. */
|
|
wrappingKey = PK11_GetWrapKey(symKeySlot, wrapKeyIndex,
|
|
CKM_INVALID_MECHANISM, incarnation,
|
|
pwArg);
|
|
if (wrappingKey) {
|
|
mechanism = PK11_GetMechanism(wrappingKey); /* can't fail. */
|
|
} else {
|
|
int keyLength;
|
|
/* if the wrappingKey doesn't exist, attempt to create it.
|
|
* Note: we intentionally ignore errors here. If we cannot
|
|
* generate a wrapping key, it is not fatal to this SSL connection,
|
|
* but we will not be able to restart this session.
|
|
*/
|
|
mechanism = PK11_GetBestWrapMechanism(symKeySlot);
|
|
keyLength = PK11_GetBestKeyLength(symKeySlot, mechanism);
|
|
/* Zero length means fixed key length algorithm, or error.
|
|
* It's ambiguous.
|
|
*/
|
|
wrappingKey = PK11_KeyGen(symKeySlot, mechanism, NULL,
|
|
keyLength, pwArg);
|
|
if (wrappingKey) {
|
|
PK11_SetWrapKey(symKeySlot, wrapKeyIndex, wrappingKey);
|
|
}
|
|
}
|
|
} else {
|
|
/* server socket using session cache. */
|
|
mechanism = PK11_GetBestWrapMechanism(symKeySlot);
|
|
if (mechanism != CKM_INVALID_MECHANISM) {
|
|
wrappingKey =
|
|
getWrappingKey(ss, symKeySlot, effectiveExchKeyType,
|
|
mechanism, pwArg);
|
|
if (wrappingKey) {
|
|
mechanism = PK11_GetMechanism(wrappingKey); /* can't fail. */
|
|
}
|
|
}
|
|
}
|
|
|
|
sid->u.ssl3.masterWrapMech = mechanism;
|
|
PK11_FreeSlot(symKeySlot);
|
|
|
|
if (wrappingKey) {
|
|
SECItem wmsItem;
|
|
|
|
wmsItem.data = sid->u.ssl3.keys.wrapped_master_secret;
|
|
wmsItem.len = sizeof sid->u.ssl3.keys.wrapped_master_secret;
|
|
rv = PK11_WrapSymKey(mechanism, NULL, wrappingKey,
|
|
spec->master_secret, &wmsItem);
|
|
/* rv is examined below. */
|
|
sid->u.ssl3.keys.wrapped_master_secret_len = wmsItem.len;
|
|
PK11_FreeSymKey(wrappingKey);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete
|
|
* ssl3 Finished message from the peer.
|
|
* Caller must hold Handshake and RecvBuf locks.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleFinished(sslSocket *ss, SSL3Opaque *b, PRUint32 length,
|
|
const SSL3Hashes *hashes)
|
|
{
|
|
sslSessionID * sid = ss->sec.ci.sid;
|
|
SECStatus rv = SECSuccess;
|
|
PRBool isServer = ss->sec.isServer;
|
|
PRBool isTLS;
|
|
SSL3KEAType effectiveExchKeyType;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
SSL_TRC(3, ("%d: SSL3[%d]: handle finished handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
|
|
if (ss->ssl3.hs.ws != wait_finished) {
|
|
SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_FINISHED);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (!hashes) {
|
|
PORT_Assert(0);
|
|
SSL3_SendAlert(ss, alert_fatal, internal_error);
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
isTLS = (PRBool)(ss->ssl3.crSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
if (isTLS) {
|
|
TLSFinished tlsFinished;
|
|
|
|
if (length != sizeof tlsFinished) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, decode_error);
|
|
PORT_SetError(SSL_ERROR_RX_MALFORMED_FINISHED);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_ComputeTLSFinished(ss->ssl3.crSpec, !isServer,
|
|
hashes, &tlsFinished);
|
|
if (!isServer)
|
|
ss->ssl3.hs.finishedMsgs.tFinished[1] = tlsFinished;
|
|
else
|
|
ss->ssl3.hs.finishedMsgs.tFinished[0] = tlsFinished;
|
|
ss->ssl3.hs.finishedBytes = sizeof tlsFinished;
|
|
if (rv != SECSuccess ||
|
|
0 != NSS_SecureMemcmp(&tlsFinished, b, length)) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, decrypt_error);
|
|
PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE);
|
|
return SECFailure;
|
|
}
|
|
} else {
|
|
if (length != sizeof(SSL3Finished)) {
|
|
(void)ssl3_IllegalParameter(ss);
|
|
PORT_SetError(SSL_ERROR_RX_MALFORMED_FINISHED);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (!isServer)
|
|
ss->ssl3.hs.finishedMsgs.sFinished[1] = hashes->u.s;
|
|
else
|
|
ss->ssl3.hs.finishedMsgs.sFinished[0] = hashes->u.s;
|
|
PORT_Assert(hashes->len == sizeof hashes->u.s);
|
|
ss->ssl3.hs.finishedBytes = sizeof hashes->u.s;
|
|
if (0 != NSS_SecureMemcmp(&hashes->u.s, b, length)) {
|
|
(void)ssl3_HandshakeFailure(ss);
|
|
PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
|
|
ssl_GetXmitBufLock(ss); /*************************************/
|
|
|
|
if ((isServer && !ss->ssl3.hs.isResuming) ||
|
|
(!isServer && ss->ssl3.hs.isResuming)) {
|
|
PRInt32 flags = 0;
|
|
|
|
/* Send a NewSessionTicket message if the client sent us
|
|
* either an empty session ticket, or one that did not verify.
|
|
* (Note that if either of these conditions was met, then the
|
|
* server has sent a SessionTicket extension in the
|
|
* ServerHello message.)
|
|
*/
|
|
if (isServer && !ss->ssl3.hs.isResuming &&
|
|
ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn) &&
|
|
ssl3_KEAAllowsSessionTicket(ss->ssl3.hs.suite_def->key_exchange_alg)) {
|
|
/* RFC 5077 Section 3.3: "In the case of a full handshake, the
|
|
* server MUST verify the client's Finished message before sending
|
|
* the ticket." Presumably, this also means that the client's
|
|
* certificate, if any, must be verified beforehand too.
|
|
*/
|
|
rv = ssl3_SendNewSessionTicket(ss);
|
|
if (rv != SECSuccess) {
|
|
goto xmit_loser;
|
|
}
|
|
}
|
|
|
|
rv = ssl3_SendChangeCipherSpecs(ss);
|
|
if (rv != SECSuccess) {
|
|
goto xmit_loser; /* err is set. */
|
|
}
|
|
/* If this thread is in SSL_SecureSend (trying to write some data)
|
|
** then set the ssl_SEND_FLAG_FORCE_INTO_BUFFER flag, so that the
|
|
** last two handshake messages (change cipher spec and finished)
|
|
** will be sent in the same send/write call as the application data.
|
|
*/
|
|
if (ss->writerThread == PR_GetCurrentThread()) {
|
|
flags = ssl_SEND_FLAG_FORCE_INTO_BUFFER;
|
|
}
|
|
|
|
if (!isServer && !ss->firstHsDone) {
|
|
rv = ssl3_SendNextProto(ss);
|
|
if (rv != SECSuccess) {
|
|
goto xmit_loser; /* err code was set. */
|
|
}
|
|
}
|
|
|
|
if (IS_DTLS(ss)) {
|
|
flags |= ssl_SEND_FLAG_NO_RETRANSMIT;
|
|
}
|
|
|
|
rv = ssl3_SendFinished(ss, flags);
|
|
if (rv != SECSuccess) {
|
|
goto xmit_loser; /* err is set. */
|
|
}
|
|
}
|
|
|
|
xmit_loser:
|
|
ssl_ReleaseXmitBufLock(ss); /*************************************/
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
|
|
if (ss->ssl3.hs.kea_def->kea == kea_ecdhe_rsa ||
|
|
ss->ssl3.hs.kea_def->kea == kea_dhe_rsa) {
|
|
effectiveExchKeyType = kt_rsa;
|
|
} else {
|
|
effectiveExchKeyType = ss->ssl3.hs.kea_def->exchKeyType;
|
|
}
|
|
|
|
if (sid->cached == never_cached && !ss->opt.noCache && ss->sec.cache) {
|
|
/* fill in the sid */
|
|
sid->u.ssl3.cipherSuite = ss->ssl3.hs.cipher_suite;
|
|
sid->u.ssl3.compression = ss->ssl3.hs.compression;
|
|
sid->u.ssl3.policy = ss->ssl3.policy;
|
|
#ifndef NSS_DISABLE_ECC
|
|
sid->u.ssl3.negotiatedECCurves = ss->ssl3.hs.negotiatedECCurves;
|
|
#endif
|
|
sid->u.ssl3.exchKeyType = effectiveExchKeyType;
|
|
sid->version = ss->version;
|
|
sid->authAlgorithm = ss->sec.authAlgorithm;
|
|
sid->authKeyBits = ss->sec.authKeyBits;
|
|
sid->keaType = ss->sec.keaType;
|
|
sid->keaKeyBits = ss->sec.keaKeyBits;
|
|
sid->lastAccessTime = sid->creationTime = ssl_Time();
|
|
sid->expirationTime = sid->creationTime + ssl3_sid_timeout;
|
|
sid->localCert = CERT_DupCertificate(ss->sec.localCert);
|
|
|
|
ssl_GetSpecReadLock(ss); /*************************************/
|
|
|
|
/* Copy the master secret (wrapped or unwrapped) into the sid */
|
|
if (ss->ssl3.crSpec->msItem.len && ss->ssl3.crSpec->msItem.data) {
|
|
sid->u.ssl3.keys.wrapped_master_secret_len =
|
|
ss->ssl3.crSpec->msItem.len;
|
|
memcpy(sid->u.ssl3.keys.wrapped_master_secret,
|
|
ss->ssl3.crSpec->msItem.data, ss->ssl3.crSpec->msItem.len);
|
|
sid->u.ssl3.masterValid = PR_TRUE;
|
|
sid->u.ssl3.keys.msIsWrapped = PR_FALSE;
|
|
rv = SECSuccess;
|
|
} else {
|
|
rv = ssl3_CacheWrappedMasterSecret(ss, ss->sec.ci.sid,
|
|
ss->ssl3.crSpec,
|
|
effectiveExchKeyType);
|
|
sid->u.ssl3.keys.msIsWrapped = PR_TRUE;
|
|
}
|
|
ssl_ReleaseSpecReadLock(ss); /*************************************/
|
|
|
|
/* If the wrap failed, we don't cache the sid.
|
|
* The connection continues normally however.
|
|
*/
|
|
ss->ssl3.hs.cacheSID = rv == SECSuccess;
|
|
}
|
|
|
|
if (ss->ssl3.hs.authCertificatePending) {
|
|
if (ss->ssl3.hs.restartTarget) {
|
|
PR_NOT_REACHED("ssl3_HandleFinished: unexpected restartTarget");
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
ss->ssl3.hs.restartTarget = ssl3_FinishHandshake;
|
|
return SECWouldBlock;
|
|
}
|
|
|
|
rv = ssl3_FinishHandshake(ss);
|
|
return rv;
|
|
}
|
|
|
|
/* The return type is SECStatus instead of void because this function needs
|
|
* to have type sslRestartTarget.
|
|
*/
|
|
SECStatus
|
|
ssl3_FinishHandshake(sslSocket * ss)
|
|
{
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
PORT_Assert( ss->ssl3.hs.restartTarget == NULL );
|
|
|
|
/* The first handshake is now completed. */
|
|
ss->handshake = NULL;
|
|
|
|
/* RFC 5077 Section 3.3: "The client MUST NOT treat the ticket as valid
|
|
* until it has verified the server's Finished message." When the server
|
|
* sends a NewSessionTicket in a resumption handshake, we must wait until
|
|
* the handshake is finished (we have verified the server's Finished
|
|
* AND the server's certificate) before we update the ticket in the sid.
|
|
*
|
|
* This must be done before we call (*ss->sec.cache)(ss->sec.ci.sid)
|
|
* because CacheSID requires the session ticket to already be set, and also
|
|
* because of the lazy lock creation scheme used by CacheSID and
|
|
* ssl3_SetSIDSessionTicket.
|
|
*/
|
|
if (ss->ssl3.hs.receivedNewSessionTicket) {
|
|
PORT_Assert(!ss->sec.isServer);
|
|
ssl3_SetSIDSessionTicket(ss->sec.ci.sid, &ss->ssl3.hs.newSessionTicket);
|
|
/* The sid took over the ticket data */
|
|
PORT_Assert(!ss->ssl3.hs.newSessionTicket.ticket.data);
|
|
ss->ssl3.hs.receivedNewSessionTicket = PR_FALSE;
|
|
}
|
|
|
|
if (ss->ssl3.hs.cacheSID) {
|
|
PORT_Assert(ss->sec.ci.sid->cached == never_cached);
|
|
(*ss->sec.cache)(ss->sec.ci.sid);
|
|
ss->ssl3.hs.cacheSID = PR_FALSE;
|
|
}
|
|
|
|
ss->ssl3.hs.canFalseStart = PR_FALSE; /* False Start phase is complete */
|
|
ss->ssl3.hs.ws = idle_handshake;
|
|
|
|
ssl_FinishHandshake(ss);
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* Called from ssl3_HandleHandshake() when it has gathered a complete ssl3
|
|
* hanshake message.
|
|
* Caller must hold Handshake and RecvBuf locks.
|
|
*/
|
|
SECStatus
|
|
ssl3_HandleHandshakeMessage(sslSocket *ss, SSL3Opaque *b, PRUint32 length)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
SSL3HandshakeType type = ss->ssl3.hs.msg_type;
|
|
SSL3Hashes hashes; /* computed hashes are put here. */
|
|
SSL3Hashes *hashesPtr = NULL; /* Set when hashes are computed */
|
|
PRUint8 hdr[4];
|
|
PRUint8 dtlsData[8];
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
/*
|
|
* We have to compute the hashes before we update them with the
|
|
* current message.
|
|
*/
|
|
ssl_GetSpecReadLock(ss); /************************************/
|
|
if(((type == finished) && (ss->ssl3.hs.ws == wait_finished)) ||
|
|
((type == certificate_verify) && (ss->ssl3.hs.ws == wait_cert_verify))) {
|
|
SSL3Sender sender = (SSL3Sender)0;
|
|
ssl3CipherSpec *rSpec = ss->ssl3.prSpec;
|
|
|
|
if (type == finished) {
|
|
sender = ss->sec.isServer ? sender_client : sender_server;
|
|
rSpec = ss->ssl3.crSpec;
|
|
}
|
|
rv = ssl3_ComputeHandshakeHashes(ss, rSpec, &hashes, sender);
|
|
if (rv == SECSuccess) {
|
|
hashesPtr = &hashes;
|
|
}
|
|
}
|
|
ssl_ReleaseSpecReadLock(ss); /************************************/
|
|
if (rv != SECSuccess) {
|
|
return rv; /* error code was set by ssl3_ComputeHandshakeHashes*/
|
|
}
|
|
SSL_TRC(30,("%d: SSL3[%d]: handle handshake message: %s", SSL_GETPID(),
|
|
ss->fd, ssl3_DecodeHandshakeType(ss->ssl3.hs.msg_type)));
|
|
|
|
hdr[0] = (PRUint8)ss->ssl3.hs.msg_type;
|
|
hdr[1] = (PRUint8)(length >> 16);
|
|
hdr[2] = (PRUint8)(length >> 8);
|
|
hdr[3] = (PRUint8)(length );
|
|
|
|
/* Start new handshake hashes when we start a new handshake */
|
|
if (ss->ssl3.hs.msg_type == client_hello) {
|
|
rv = ssl3_RestartHandshakeHashes(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
}
|
|
/* We should not include hello_request and hello_verify_request messages
|
|
* in the handshake hashes */
|
|
if ((ss->ssl3.hs.msg_type != hello_request) &&
|
|
(ss->ssl3.hs.msg_type != hello_verify_request)) {
|
|
rv = ssl3_UpdateHandshakeHashes(ss, (unsigned char*) hdr, 4);
|
|
if (rv != SECSuccess) return rv; /* err code already set. */
|
|
|
|
/* Extra data to simulate a complete DTLS handshake fragment */
|
|
if (IS_DTLS(ss)) {
|
|
/* Sequence number */
|
|
dtlsData[0] = MSB(ss->ssl3.hs.recvMessageSeq);
|
|
dtlsData[1] = LSB(ss->ssl3.hs.recvMessageSeq);
|
|
|
|
/* Fragment offset */
|
|
dtlsData[2] = 0;
|
|
dtlsData[3] = 0;
|
|
dtlsData[4] = 0;
|
|
|
|
/* Fragment length */
|
|
dtlsData[5] = (PRUint8)(length >> 16);
|
|
dtlsData[6] = (PRUint8)(length >> 8);
|
|
dtlsData[7] = (PRUint8)(length );
|
|
|
|
rv = ssl3_UpdateHandshakeHashes(ss, (unsigned char*) dtlsData,
|
|
sizeof(dtlsData));
|
|
if (rv != SECSuccess) return rv; /* err code already set. */
|
|
}
|
|
|
|
/* The message body */
|
|
rv = ssl3_UpdateHandshakeHashes(ss, b, length);
|
|
if (rv != SECSuccess) return rv; /* err code already set. */
|
|
}
|
|
|
|
PORT_SetError(0); /* each message starts with no error. */
|
|
|
|
if (ss->ssl3.hs.ws == wait_certificate_status &&
|
|
ss->ssl3.hs.msg_type != certificate_status) {
|
|
/* If we negotiated the certificate_status extension then we deferred
|
|
* certificate validation until we get the CertificateStatus messsage.
|
|
* But the CertificateStatus message is optional. If the server did
|
|
* not send it then we need to validate the certificate now. If the
|
|
* server does send the CertificateStatus message then we will
|
|
* authenticate the certificate in ssl3_HandleCertificateStatus.
|
|
*/
|
|
rv = ssl3_AuthCertificate(ss); /* sets ss->ssl3.hs.ws */
|
|
PORT_Assert(rv != SECWouldBlock);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
}
|
|
|
|
switch (ss->ssl3.hs.msg_type) {
|
|
case hello_request:
|
|
if (length != 0) {
|
|
(void)ssl3_DecodeError(ss);
|
|
PORT_SetError(SSL_ERROR_RX_MALFORMED_HELLO_REQUEST);
|
|
return SECFailure;
|
|
}
|
|
if (ss->sec.isServer) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_REQUEST);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_HandleHelloRequest(ss);
|
|
break;
|
|
case client_hello:
|
|
if (!ss->sec.isServer) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CLIENT_HELLO);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_HandleClientHello(ss, b, length);
|
|
break;
|
|
case server_hello:
|
|
if (ss->sec.isServer) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_SERVER_HELLO);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_HandleServerHello(ss, b, length);
|
|
break;
|
|
case hello_verify_request:
|
|
if (!IS_DTLS(ss) || ss->sec.isServer) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_VERIFY_REQUEST);
|
|
return SECFailure;
|
|
}
|
|
rv = dtls_HandleHelloVerifyRequest(ss, b, length);
|
|
break;
|
|
case certificate:
|
|
rv = ssl3_HandleCertificate(ss, b, length);
|
|
break;
|
|
case certificate_status:
|
|
rv = ssl3_HandleCertificateStatus(ss, b, length);
|
|
break;
|
|
case server_key_exchange:
|
|
if (ss->sec.isServer) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_SERVER_KEY_EXCH);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_HandleServerKeyExchange(ss, b, length);
|
|
break;
|
|
case certificate_request:
|
|
if (ss->sec.isServer) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CERT_REQUEST);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_HandleCertificateRequest(ss, b, length);
|
|
break;
|
|
case server_hello_done:
|
|
if (length != 0) {
|
|
(void)ssl3_DecodeError(ss);
|
|
PORT_SetError(SSL_ERROR_RX_MALFORMED_HELLO_DONE);
|
|
return SECFailure;
|
|
}
|
|
if (ss->sec.isServer) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_DONE);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_HandleServerHelloDone(ss);
|
|
break;
|
|
case certificate_verify:
|
|
if (!ss->sec.isServer) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CERT_VERIFY);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_HandleCertificateVerify(ss, b, length, hashesPtr);
|
|
break;
|
|
case client_key_exchange:
|
|
if (!ss->sec.isServer) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CLIENT_KEY_EXCH);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_HandleClientKeyExchange(ss, b, length);
|
|
break;
|
|
case new_session_ticket:
|
|
if (ss->sec.isServer) {
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_NEW_SESSION_TICKET);
|
|
return SECFailure;
|
|
}
|
|
rv = ssl3_HandleNewSessionTicket(ss, b, length);
|
|
break;
|
|
case finished:
|
|
rv = ssl3_HandleFinished(ss, b, length, hashesPtr);
|
|
break;
|
|
default:
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNKNOWN_HANDSHAKE);
|
|
rv = SECFailure;
|
|
}
|
|
|
|
if (IS_DTLS(ss) && (rv != SECFailure)) {
|
|
/* Increment the expected sequence number */
|
|
ss->ssl3.hs.recvMessageSeq++;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/* Called only from ssl3_HandleRecord, for each (deciphered) ssl3 record.
|
|
* origBuf is the decrypted ssl record content.
|
|
* Caller must hold the handshake and RecvBuf locks.
|
|
*/
|
|
static SECStatus
|
|
ssl3_HandleHandshake(sslSocket *ss, sslBuffer *origBuf)
|
|
{
|
|
/*
|
|
* There may be a partial handshake message already in the handshake
|
|
* state. The incoming buffer may contain another portion, or a
|
|
* complete message or several messages followed by another portion.
|
|
*
|
|
* Each message is made contiguous before being passed to the actual
|
|
* message parser.
|
|
*/
|
|
sslBuffer *buf = &ss->ssl3.hs.msgState; /* do not lose the original buffer pointer */
|
|
SECStatus rv;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
if (buf->buf == NULL) {
|
|
*buf = *origBuf;
|
|
}
|
|
while (buf->len > 0) {
|
|
if (ss->ssl3.hs.header_bytes < 4) {
|
|
PRUint8 t;
|
|
t = *(buf->buf++);
|
|
buf->len--;
|
|
if (ss->ssl3.hs.header_bytes++ == 0)
|
|
ss->ssl3.hs.msg_type = (SSL3HandshakeType)t;
|
|
else
|
|
ss->ssl3.hs.msg_len = (ss->ssl3.hs.msg_len << 8) + t;
|
|
if (ss->ssl3.hs.header_bytes < 4)
|
|
continue;
|
|
|
|
#define MAX_HANDSHAKE_MSG_LEN 0x1ffff /* 128k - 1 */
|
|
if (ss->ssl3.hs.msg_len > MAX_HANDSHAKE_MSG_LEN) {
|
|
(void)ssl3_DecodeError(ss);
|
|
PORT_SetError(SSL_ERROR_RX_MALFORMED_HANDSHAKE);
|
|
return SECFailure;
|
|
}
|
|
#undef MAX_HANDSHAKE_MSG_LEN
|
|
|
|
/* If msg_len is zero, be sure we fall through,
|
|
** even if buf->len is zero.
|
|
*/
|
|
if (ss->ssl3.hs.msg_len > 0)
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Header has been gathered and there is at least one byte of new
|
|
* data available for this message. If it can be done right out
|
|
* of the original buffer, then use it from there.
|
|
*/
|
|
if (ss->ssl3.hs.msg_body.len == 0 && buf->len >= ss->ssl3.hs.msg_len) {
|
|
/* handle it from input buffer */
|
|
rv = ssl3_HandleHandshakeMessage(ss, buf->buf, ss->ssl3.hs.msg_len);
|
|
if (rv == SECFailure) {
|
|
/* This test wants to fall through on either
|
|
* SECSuccess or SECWouldBlock.
|
|
* ssl3_HandleHandshakeMessage MUST set the error code.
|
|
*/
|
|
return rv;
|
|
}
|
|
buf->buf += ss->ssl3.hs.msg_len;
|
|
buf->len -= ss->ssl3.hs.msg_len;
|
|
ss->ssl3.hs.msg_len = 0;
|
|
ss->ssl3.hs.header_bytes = 0;
|
|
if (rv != SECSuccess) { /* return if SECWouldBlock. */
|
|
return rv;
|
|
}
|
|
} else {
|
|
/* must be copied to msg_body and dealt with from there */
|
|
unsigned int bytes;
|
|
|
|
PORT_Assert(ss->ssl3.hs.msg_body.len < ss->ssl3.hs.msg_len);
|
|
bytes = PR_MIN(buf->len, ss->ssl3.hs.msg_len - ss->ssl3.hs.msg_body.len);
|
|
|
|
/* Grow the buffer if needed */
|
|
rv = sslBuffer_Grow(&ss->ssl3.hs.msg_body, ss->ssl3.hs.msg_len);
|
|
if (rv != SECSuccess) {
|
|
/* sslBuffer_Grow has set a memory error code. */
|
|
return SECFailure;
|
|
}
|
|
|
|
PORT_Memcpy(ss->ssl3.hs.msg_body.buf + ss->ssl3.hs.msg_body.len,
|
|
buf->buf, bytes);
|
|
ss->ssl3.hs.msg_body.len += bytes;
|
|
buf->buf += bytes;
|
|
buf->len -= bytes;
|
|
|
|
PORT_Assert(ss->ssl3.hs.msg_body.len <= ss->ssl3.hs.msg_len);
|
|
|
|
/* if we have a whole message, do it */
|
|
if (ss->ssl3.hs.msg_body.len == ss->ssl3.hs.msg_len) {
|
|
rv = ssl3_HandleHandshakeMessage(
|
|
ss, ss->ssl3.hs.msg_body.buf, ss->ssl3.hs.msg_len);
|
|
if (rv == SECFailure) {
|
|
/* This test wants to fall through on either
|
|
* SECSuccess or SECWouldBlock.
|
|
* ssl3_HandleHandshakeMessage MUST set error code.
|
|
*/
|
|
return rv;
|
|
}
|
|
ss->ssl3.hs.msg_body.len = 0;
|
|
ss->ssl3.hs.msg_len = 0;
|
|
ss->ssl3.hs.header_bytes = 0;
|
|
if (rv != SECSuccess) { /* return if SECWouldBlock. */
|
|
return rv;
|
|
}
|
|
} else {
|
|
PORT_Assert(buf->len == 0);
|
|
break;
|
|
}
|
|
}
|
|
} /* end loop */
|
|
|
|
origBuf->len = 0; /* So ssl3_GatherAppDataRecord will keep looping. */
|
|
buf->buf = NULL; /* not a leak. */
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* These macros return the given value with the MSB copied to all the other
|
|
* bits. They use the fact that arithmetic shift shifts-in the sign bit.
|
|
* However, this is not ensured by the C standard so you may need to replace
|
|
* them with something else for odd compilers. */
|
|
#define DUPLICATE_MSB_TO_ALL(x) ( (unsigned)( (int)(x) >> (sizeof(int)*8-1) ) )
|
|
#define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
|
|
|
|
/* SECStatusToMask returns, in constant time, a mask value of all ones if
|
|
* rv == SECSuccess. Otherwise it returns zero. */
|
|
static unsigned int
|
|
SECStatusToMask(SECStatus rv)
|
|
{
|
|
unsigned int good;
|
|
/* rv ^ SECSuccess is zero iff rv == SECSuccess. Subtracting one results
|
|
* in the MSB being set to one iff it was zero before. */
|
|
good = rv ^ SECSuccess;
|
|
good--;
|
|
return DUPLICATE_MSB_TO_ALL(good);
|
|
}
|
|
|
|
/* ssl_ConstantTimeGE returns 0xff if a>=b and 0x00 otherwise. */
|
|
static unsigned char
|
|
ssl_ConstantTimeGE(unsigned int a, unsigned int b)
|
|
{
|
|
a -= b;
|
|
return DUPLICATE_MSB_TO_ALL(~a);
|
|
}
|
|
|
|
/* ssl_ConstantTimeEQ8 returns 0xff if a==b and 0x00 otherwise. */
|
|
static unsigned char
|
|
ssl_ConstantTimeEQ8(unsigned char a, unsigned char b)
|
|
{
|
|
unsigned int c = a ^ b;
|
|
c--;
|
|
return DUPLICATE_MSB_TO_ALL_8(c);
|
|
}
|
|
|
|
/* ssl_constantTimeSelect return a if mask is 0xFF and b if mask is 0x00 */
|
|
static unsigned char
|
|
ssl_constantTimeSelect(unsigned char mask, unsigned char a, unsigned char b)
|
|
{
|
|
return (mask & a) | (~mask & b);
|
|
}
|
|
|
|
static SECStatus
|
|
ssl_RemoveSSLv3CBCPadding(sslBuffer *plaintext,
|
|
unsigned int blockSize,
|
|
unsigned int macSize)
|
|
{
|
|
unsigned int paddingLength, good, t;
|
|
const unsigned int overhead = 1 /* padding length byte */ + macSize;
|
|
|
|
/* These lengths are all public so we can test them in non-constant
|
|
* time. */
|
|
if (overhead > plaintext->len) {
|
|
return SECFailure;
|
|
}
|
|
|
|
paddingLength = plaintext->buf[plaintext->len-1];
|
|
/* SSLv3 padding bytes are random and cannot be checked. */
|
|
t = plaintext->len;
|
|
t -= paddingLength+overhead;
|
|
/* If len >= paddingLength+overhead then the MSB of t is zero. */
|
|
good = DUPLICATE_MSB_TO_ALL(~t);
|
|
/* SSLv3 requires that the padding is minimal. */
|
|
t = blockSize - (paddingLength+1);
|
|
good &= DUPLICATE_MSB_TO_ALL(~t);
|
|
plaintext->len -= good & (paddingLength+1);
|
|
return (good & SECSuccess) | (~good & SECFailure);
|
|
}
|
|
|
|
static SECStatus
|
|
ssl_RemoveTLSCBCPadding(sslBuffer *plaintext, unsigned int macSize)
|
|
{
|
|
unsigned int paddingLength, good, t, toCheck, i;
|
|
const unsigned int overhead = 1 /* padding length byte */ + macSize;
|
|
|
|
/* These lengths are all public so we can test them in non-constant
|
|
* time. */
|
|
if (overhead > plaintext->len) {
|
|
return SECFailure;
|
|
}
|
|
|
|
paddingLength = plaintext->buf[plaintext->len-1];
|
|
t = plaintext->len;
|
|
t -= paddingLength+overhead;
|
|
/* If len >= paddingLength+overhead then the MSB of t is zero. */
|
|
good = DUPLICATE_MSB_TO_ALL(~t);
|
|
|
|
/* The padding consists of a length byte at the end of the record and then
|
|
* that many bytes of padding, all with the same value as the length byte.
|
|
* Thus, with the length byte included, there are paddingLength+1 bytes of
|
|
* padding.
|
|
*
|
|
* We can't check just |paddingLength+1| bytes because that leaks
|
|
* decrypted information. Therefore we always have to check the maximum
|
|
* amount of padding possible. (Again, the length of the record is
|
|
* public information so we can use it.) */
|
|
toCheck = 255; /* maximum amount of padding. */
|
|
if (toCheck > plaintext->len-1) {
|
|
toCheck = plaintext->len-1;
|
|
}
|
|
|
|
for (i = 0; i < toCheck; i++) {
|
|
unsigned int t = paddingLength - i;
|
|
/* If i <= paddingLength then the MSB of t is zero and mask is
|
|
* 0xff. Otherwise, mask is 0. */
|
|
unsigned char mask = DUPLICATE_MSB_TO_ALL(~t);
|
|
unsigned char b = plaintext->buf[plaintext->len-1-i];
|
|
/* The final |paddingLength+1| bytes should all have the value
|
|
* |paddingLength|. Therefore the XOR should be zero. */
|
|
good &= ~(mask&(paddingLength ^ b));
|
|
}
|
|
|
|
/* If any of the final |paddingLength+1| bytes had the wrong value,
|
|
* one or more of the lower eight bits of |good| will be cleared. We
|
|
* AND the bottom 8 bits together and duplicate the result to all the
|
|
* bits. */
|
|
good &= good >> 4;
|
|
good &= good >> 2;
|
|
good &= good >> 1;
|
|
good <<= sizeof(good)*8-1;
|
|
good = DUPLICATE_MSB_TO_ALL(good);
|
|
|
|
plaintext->len -= good & (paddingLength+1);
|
|
return (good & SECSuccess) | (~good & SECFailure);
|
|
}
|
|
|
|
/* On entry:
|
|
* originalLength >= macSize
|
|
* macSize <= MAX_MAC_LENGTH
|
|
* plaintext->len >= macSize
|
|
*/
|
|
static void
|
|
ssl_CBCExtractMAC(sslBuffer *plaintext,
|
|
unsigned int originalLength,
|
|
SSL3Opaque* out,
|
|
unsigned int macSize)
|
|
{
|
|
unsigned char rotatedMac[MAX_MAC_LENGTH];
|
|
/* macEnd is the index of |plaintext->buf| just after the end of the
|
|
* MAC. */
|
|
unsigned macEnd = plaintext->len;
|
|
unsigned macStart = macEnd - macSize;
|
|
/* scanStart contains the number of bytes that we can ignore because
|
|
* the MAC's position can only vary by 255 bytes. */
|
|
unsigned scanStart = 0;
|
|
unsigned i, j;
|
|
unsigned char rotateOffset;
|
|
|
|
if (originalLength > macSize + 255 + 1) {
|
|
scanStart = originalLength - (macSize + 255 + 1);
|
|
}
|
|
|
|
/* We want to compute
|
|
* rotateOffset = (macStart - scanStart) % macSize
|
|
* But the time to compute this varies based on the amount of padding. Thus
|
|
* we explicitely handle all mac sizes with (hopefully) constant time modulo
|
|
* using Barrett reduction:
|
|
* q := (rotateOffset * m) >> k
|
|
* rotateOffset -= q * n
|
|
* if (n <= rotateOffset) rotateOffset -= n
|
|
*/
|
|
rotateOffset = macStart - scanStart;
|
|
/* rotateOffset < 255 + 1 + 48 = 304 */
|
|
if (macSize == 16) {
|
|
rotateOffset &= 15;
|
|
} else if (macSize == 20) {
|
|
/*
|
|
* Correctness: rotateOffset * ( 1/20 - 25/2^9 ) < 1
|
|
* with rotateOffset <= 853
|
|
*/
|
|
unsigned q = (rotateOffset * 25) >> 9; /* m = 25, k = 9 */
|
|
rotateOffset -= q * 20;
|
|
rotateOffset -= ssl_constantTimeSelect(ssl_ConstantTimeGE(rotateOffset, 20),
|
|
20, 0);
|
|
} else if (macSize == 32) {
|
|
rotateOffset &= 31;
|
|
} else if (macSize == 48) {
|
|
/*
|
|
* Correctness: rotateOffset * ( 1/48 - 10/2^9 ) < 1
|
|
* with rotateOffset < 768
|
|
*/
|
|
unsigned q = (rotateOffset * 10) >> 9; /* m = 25, k = 9 */
|
|
rotateOffset -= q * 48;
|
|
rotateOffset -= ssl_constantTimeSelect(ssl_ConstantTimeGE(rotateOffset, 48),
|
|
48, 0);
|
|
} else {
|
|
/*
|
|
* SHA384 (macSize == 48) is the largest we support. We should never
|
|
* get here.
|
|
*/
|
|
PORT_Assert(0);
|
|
rotateOffset = rotateOffset % macSize;
|
|
}
|
|
|
|
memset(rotatedMac, 0, macSize);
|
|
for (i = scanStart; i < originalLength;) {
|
|
for (j = 0; j < macSize && i < originalLength; i++, j++) {
|
|
unsigned char macStarted = ssl_ConstantTimeGE(i, macStart);
|
|
unsigned char macEnded = ssl_ConstantTimeGE(i, macEnd);
|
|
unsigned char b = 0;
|
|
b = plaintext->buf[i];
|
|
rotatedMac[j] |= b & macStarted & ~macEnded;
|
|
}
|
|
}
|
|
|
|
/* Now rotate the MAC. If we knew that the MAC fit into a CPU cache line
|
|
* we could line-align |rotatedMac| and rotate in place. */
|
|
memset(out, 0, macSize);
|
|
rotateOffset = macSize - rotateOffset;
|
|
rotateOffset = ssl_constantTimeSelect(ssl_ConstantTimeGE(rotateOffset, macSize),
|
|
0, rotateOffset);
|
|
for (i = 0; i < macSize; i++) {
|
|
for (j = 0; j < macSize; j++) {
|
|
out[j] |= rotatedMac[i] & ssl_ConstantTimeEQ8(j, rotateOffset);
|
|
}
|
|
rotateOffset++;
|
|
rotateOffset = ssl_constantTimeSelect(ssl_ConstantTimeGE(rotateOffset, macSize),
|
|
0, rotateOffset);
|
|
}
|
|
}
|
|
|
|
/* if cText is non-null, then decipher, check MAC, and decompress the
|
|
* SSL record from cText->buf (typically gs->inbuf)
|
|
* into databuf (typically gs->buf), and any previous contents of databuf
|
|
* is lost. Then handle databuf according to its SSL record type,
|
|
* unless it's an application record.
|
|
*
|
|
* If cText is NULL, then the ciphertext has previously been deciphered and
|
|
* checked, and is already sitting in databuf. It is processed as an SSL
|
|
* Handshake message.
|
|
*
|
|
* DOES NOT process the decrypted/decompressed application data.
|
|
* On return, databuf contains the decrypted/decompressed record.
|
|
*
|
|
* Called from ssl3_GatherCompleteHandshake
|
|
* ssl3_RestartHandshakeAfterCertReq
|
|
*
|
|
* Caller must hold the RecvBufLock.
|
|
*
|
|
* This function aquires and releases the SSL3Handshake Lock, holding the
|
|
* lock around any calls to functions that handle records other than
|
|
* Application Data records.
|
|
*/
|
|
SECStatus
|
|
ssl3_HandleRecord(sslSocket *ss, SSL3Ciphertext *cText, sslBuffer *databuf)
|
|
{
|
|
const ssl3BulkCipherDef *cipher_def;
|
|
ssl3CipherSpec * crSpec;
|
|
SECStatus rv;
|
|
unsigned int hashBytes = MAX_MAC_LENGTH + 1;
|
|
PRBool isTLS;
|
|
SSL3ContentType rType;
|
|
SSL3Opaque hash[MAX_MAC_LENGTH];
|
|
SSL3Opaque givenHashBuf[MAX_MAC_LENGTH];
|
|
SSL3Opaque *givenHash;
|
|
sslBuffer *plaintext;
|
|
sslBuffer temp_buf;
|
|
PRUint64 dtls_seq_num = 0;
|
|
unsigned int ivLen = 0;
|
|
unsigned int originalLen = 0;
|
|
unsigned int good;
|
|
unsigned int minLength;
|
|
unsigned char header[13];
|
|
unsigned int headerLen;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) );
|
|
|
|
if (!ss->ssl3.initialized) {
|
|
ssl_GetSSL3HandshakeLock(ss);
|
|
rv = ssl3_InitState(ss);
|
|
ssl_ReleaseSSL3HandshakeLock(ss);
|
|
if (rv != SECSuccess) {
|
|
return rv; /* ssl3_InitState has set the error code. */
|
|
}
|
|
}
|
|
|
|
/* check for Token Presence */
|
|
if (!ssl3_ClientAuthTokenPresent(ss->sec.ci.sid)) {
|
|
PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* cText is NULL when we're called from ssl3_RestartHandshakeAfterXXX().
|
|
* This implies that databuf holds a previously deciphered SSL Handshake
|
|
* message.
|
|
*/
|
|
if (cText == NULL) {
|
|
SSL_DBG(("%d: SSL3[%d]: HandleRecord, resuming handshake",
|
|
SSL_GETPID(), ss->fd));
|
|
rType = content_handshake;
|
|
goto process_it;
|
|
}
|
|
|
|
ssl_GetSpecReadLock(ss); /******************************************/
|
|
|
|
crSpec = ss->ssl3.crSpec;
|
|
cipher_def = crSpec->cipher_def;
|
|
|
|
/*
|
|
* DTLS relevance checks:
|
|
* Note that this code currently ignores all out-of-epoch packets,
|
|
* which means we lose some in the case of rehandshake +
|
|
* loss/reordering. Since DTLS is explicitly unreliable, this
|
|
* seems like a good tradeoff for implementation effort and is
|
|
* consistent with the guidance of RFC 6347 Sections 4.1 and 4.2.4.1
|
|
*/
|
|
if (IS_DTLS(ss)) {
|
|
DTLSEpoch epoch = (cText->seq_num.high >> 16) & 0xffff;
|
|
|
|
if (crSpec->epoch != epoch) {
|
|
ssl_ReleaseSpecReadLock(ss);
|
|
SSL_DBG(("%d: SSL3[%d]: HandleRecord, received packet "
|
|
"from irrelevant epoch %d", SSL_GETPID(), ss->fd, epoch));
|
|
/* Silently drop the packet */
|
|
databuf->len = 0; /* Needed to ensure data not left around */
|
|
return SECSuccess;
|
|
}
|
|
|
|
dtls_seq_num = (((PRUint64)(cText->seq_num.high & 0xffff)) << 32) |
|
|
((PRUint64)cText->seq_num.low);
|
|
|
|
if (dtls_RecordGetRecvd(&crSpec->recvdRecords, dtls_seq_num) != 0) {
|
|
ssl_ReleaseSpecReadLock(ss);
|
|
SSL_DBG(("%d: SSL3[%d]: HandleRecord, rejecting "
|
|
"potentially replayed packet", SSL_GETPID(), ss->fd));
|
|
/* Silently drop the packet */
|
|
databuf->len = 0; /* Needed to ensure data not left around */
|
|
return SECSuccess;
|
|
}
|
|
}
|
|
|
|
good = ~0U;
|
|
minLength = crSpec->mac_size;
|
|
if (cipher_def->type == type_block) {
|
|
/* CBC records have a padding length byte at the end. */
|
|
minLength++;
|
|
if (crSpec->version >= SSL_LIBRARY_VERSION_TLS_1_1) {
|
|
/* With >= TLS 1.1, CBC records have an explicit IV. */
|
|
minLength += cipher_def->iv_size;
|
|
}
|
|
} else if (cipher_def->type == type_aead) {
|
|
minLength = cipher_def->explicit_nonce_size + cipher_def->tag_size;
|
|
}
|
|
|
|
/* We can perform this test in variable time because the record's total
|
|
* length and the ciphersuite are both public knowledge. */
|
|
if (cText->buf->len < minLength) {
|
|
goto decrypt_loser;
|
|
}
|
|
|
|
if (cipher_def->type == type_block &&
|
|
crSpec->version >= SSL_LIBRARY_VERSION_TLS_1_1) {
|
|
/* Consume the per-record explicit IV. RFC 4346 Section 6.2.3.2 states
|
|
* "The receiver decrypts the entire GenericBlockCipher structure and
|
|
* then discards the first cipher block corresponding to the IV
|
|
* component." Instead, we decrypt the first cipher block and then
|
|
* discard it before decrypting the rest.
|
|
*/
|
|
SSL3Opaque iv[MAX_IV_LENGTH];
|
|
int decoded;
|
|
|
|
ivLen = cipher_def->iv_size;
|
|
if (ivLen < 8 || ivLen > sizeof(iv)) {
|
|
ssl_ReleaseSpecReadLock(ss);
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
PRINT_BUF(80, (ss, "IV (ciphertext):", cText->buf->buf, ivLen));
|
|
|
|
/* The decryption result is garbage, but since we just throw away
|
|
* the block it doesn't matter. The decryption of the next block
|
|
* depends only on the ciphertext of the IV block.
|
|
*/
|
|
rv = crSpec->decode(crSpec->decodeContext, iv, &decoded,
|
|
sizeof(iv), cText->buf->buf, ivLen);
|
|
|
|
good &= SECStatusToMask(rv);
|
|
}
|
|
|
|
/* If we will be decompressing the buffer we need to decrypt somewhere
|
|
* other than into databuf */
|
|
if (crSpec->decompressor) {
|
|
temp_buf.buf = NULL;
|
|
temp_buf.space = 0;
|
|
plaintext = &temp_buf;
|
|
} else {
|
|
plaintext = databuf;
|
|
}
|
|
|
|
plaintext->len = 0; /* filled in by decode call below. */
|
|
if (plaintext->space < MAX_FRAGMENT_LENGTH) {
|
|
rv = sslBuffer_Grow(plaintext, MAX_FRAGMENT_LENGTH + 2048);
|
|
if (rv != SECSuccess) {
|
|
ssl_ReleaseSpecReadLock(ss);
|
|
SSL_DBG(("%d: SSL3[%d]: HandleRecord, tried to get %d bytes",
|
|
SSL_GETPID(), ss->fd, MAX_FRAGMENT_LENGTH + 2048));
|
|
/* sslBuffer_Grow has set a memory error code. */
|
|
/* Perhaps we should send an alert. (but we have no memory!) */
|
|
return SECFailure;
|
|
}
|
|
}
|
|
|
|
PRINT_BUF(80, (ss, "ciphertext:", cText->buf->buf + ivLen,
|
|
cText->buf->len - ivLen));
|
|
|
|
isTLS = (PRBool)(crSpec->version > SSL_LIBRARY_VERSION_3_0);
|
|
|
|
if (isTLS && cText->buf->len - ivLen > (MAX_FRAGMENT_LENGTH + 2048)) {
|
|
ssl_ReleaseSpecReadLock(ss);
|
|
SSL3_SendAlert(ss, alert_fatal, record_overflow);
|
|
PORT_SetError(SSL_ERROR_RX_RECORD_TOO_LONG);
|
|
return SECFailure;
|
|
}
|
|
|
|
rType = cText->type;
|
|
if (cipher_def->type == type_aead) {
|
|
/* XXX For many AEAD ciphers, the plaintext is shorter than the
|
|
* ciphertext by a fixed byte count, but it is not true in general.
|
|
* Each AEAD cipher should provide a function that returns the
|
|
* plaintext length for a given ciphertext. */
|
|
unsigned int decryptedLen =
|
|
cText->buf->len - cipher_def->explicit_nonce_size -
|
|
cipher_def->tag_size;
|
|
headerLen = ssl3_BuildRecordPseudoHeader(
|
|
header, IS_DTLS(ss) ? cText->seq_num : crSpec->read_seq_num,
|
|
rType, isTLS, cText->version, IS_DTLS(ss), decryptedLen);
|
|
PORT_Assert(headerLen <= sizeof(header));
|
|
rv = crSpec->aead(
|
|
ss->sec.isServer ? &crSpec->client : &crSpec->server,
|
|
PR_TRUE, /* do decrypt */
|
|
plaintext->buf, /* out */
|
|
(int*) &plaintext->len, /* outlen */
|
|
plaintext->space, /* maxout */
|
|
cText->buf->buf, /* in */
|
|
cText->buf->len, /* inlen */
|
|
header, headerLen, cipher_def->calg);
|
|
if (rv != SECSuccess) {
|
|
good = 0;
|
|
}
|
|
} else {
|
|
if (cipher_def->type == type_block &&
|
|
((cText->buf->len - ivLen) % cipher_def->block_size) != 0) {
|
|
goto decrypt_loser;
|
|
}
|
|
|
|
/* decrypt from cText buf to plaintext. */
|
|
rv = crSpec->decode(
|
|
crSpec->decodeContext, plaintext->buf, (int *)&plaintext->len,
|
|
plaintext->space, cText->buf->buf + ivLen, cText->buf->len - ivLen);
|
|
if (rv != SECSuccess) {
|
|
goto decrypt_loser;
|
|
}
|
|
|
|
PRINT_BUF(80, (ss, "cleartext:", plaintext->buf, plaintext->len));
|
|
|
|
originalLen = plaintext->len;
|
|
|
|
/* If it's a block cipher, check and strip the padding. */
|
|
if (cipher_def->type == type_block) {
|
|
const unsigned int blockSize = cipher_def->block_size;
|
|
const unsigned int macSize = crSpec->mac_size;
|
|
|
|
if (!isTLS) {
|
|
good &= SECStatusToMask(ssl_RemoveSSLv3CBCPadding(
|
|
plaintext, blockSize, macSize));
|
|
} else {
|
|
good &= SECStatusToMask(ssl_RemoveTLSCBCPadding(
|
|
plaintext, macSize));
|
|
}
|
|
}
|
|
|
|
/* compute the MAC */
|
|
headerLen = ssl3_BuildRecordPseudoHeader(
|
|
header, IS_DTLS(ss) ? cText->seq_num : crSpec->read_seq_num,
|
|
rType, isTLS, cText->version, IS_DTLS(ss),
|
|
plaintext->len - crSpec->mac_size);
|
|
PORT_Assert(headerLen <= sizeof(header));
|
|
if (cipher_def->type == type_block) {
|
|
rv = ssl3_ComputeRecordMACConstantTime(
|
|
crSpec, (PRBool)(!ss->sec.isServer), header, headerLen,
|
|
plaintext->buf, plaintext->len, originalLen,
|
|
hash, &hashBytes);
|
|
|
|
ssl_CBCExtractMAC(plaintext, originalLen, givenHashBuf,
|
|
crSpec->mac_size);
|
|
givenHash = givenHashBuf;
|
|
|
|
/* plaintext->len will always have enough space to remove the MAC
|
|
* because in ssl_Remove{SSLv3|TLS}CBCPadding we only adjust
|
|
* plaintext->len if the result has enough space for the MAC and we
|
|
* tested the unadjusted size against minLength, above. */
|
|
plaintext->len -= crSpec->mac_size;
|
|
} else {
|
|
/* This is safe because we checked the minLength above. */
|
|
plaintext->len -= crSpec->mac_size;
|
|
|
|
rv = ssl3_ComputeRecordMAC(
|
|
crSpec, (PRBool)(!ss->sec.isServer), header, headerLen,
|
|
plaintext->buf, plaintext->len, hash, &hashBytes);
|
|
|
|
/* We can read the MAC directly from the record because its location
|
|
* is public when a stream cipher is used. */
|
|
givenHash = plaintext->buf + plaintext->len;
|
|
}
|
|
|
|
good &= SECStatusToMask(rv);
|
|
|
|
if (hashBytes != (unsigned)crSpec->mac_size ||
|
|
NSS_SecureMemcmp(givenHash, hash, crSpec->mac_size) != 0) {
|
|
/* We're allowed to leak whether or not the MAC check was correct */
|
|
good = 0;
|
|
}
|
|
}
|
|
|
|
if (good == 0) {
|
|
decrypt_loser:
|
|
/* must not hold spec lock when calling SSL3_SendAlert. */
|
|
ssl_ReleaseSpecReadLock(ss);
|
|
|
|
SSL_DBG(("%d: SSL3[%d]: decryption failed", SSL_GETPID(), ss->fd));
|
|
|
|
if (!IS_DTLS(ss)) {
|
|
SSL3_SendAlert(ss, alert_fatal, bad_record_mac);
|
|
/* always log mac error, in case attacker can read server logs. */
|
|
PORT_SetError(SSL_ERROR_BAD_MAC_READ);
|
|
return SECFailure;
|
|
} else {
|
|
/* Silently drop the packet */
|
|
databuf->len = 0; /* Needed to ensure data not left around */
|
|
return SECSuccess;
|
|
}
|
|
}
|
|
|
|
if (!IS_DTLS(ss)) {
|
|
ssl3_BumpSequenceNumber(&crSpec->read_seq_num);
|
|
} else {
|
|
dtls_RecordSetRecvd(&crSpec->recvdRecords, dtls_seq_num);
|
|
}
|
|
|
|
ssl_ReleaseSpecReadLock(ss); /*****************************************/
|
|
|
|
/*
|
|
* The decrypted data is now in plaintext.
|
|
*/
|
|
|
|
/* possibly decompress the record. If we aren't using compression then
|
|
* plaintext == databuf and so the uncompressed data is already in
|
|
* databuf. */
|
|
if (crSpec->decompressor) {
|
|
if (databuf->space < plaintext->len + SSL3_COMPRESSION_MAX_EXPANSION) {
|
|
rv = sslBuffer_Grow(
|
|
databuf, plaintext->len + SSL3_COMPRESSION_MAX_EXPANSION);
|
|
if (rv != SECSuccess) {
|
|
SSL_DBG(("%d: SSL3[%d]: HandleRecord, tried to get %d bytes",
|
|
SSL_GETPID(), ss->fd,
|
|
plaintext->len + SSL3_COMPRESSION_MAX_EXPANSION));
|
|
/* sslBuffer_Grow has set a memory error code. */
|
|
/* Perhaps we should send an alert. (but we have no memory!) */
|
|
PORT_Free(plaintext->buf);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
|
|
rv = crSpec->decompressor(crSpec->decompressContext,
|
|
databuf->buf,
|
|
(int*) &databuf->len,
|
|
databuf->space,
|
|
plaintext->buf,
|
|
plaintext->len);
|
|
|
|
if (rv != SECSuccess) {
|
|
int err = ssl_MapLowLevelError(SSL_ERROR_DECOMPRESSION_FAILURE);
|
|
SSL3_SendAlert(ss, alert_fatal,
|
|
isTLS ? decompression_failure : bad_record_mac);
|
|
|
|
/* There appears to be a bug with (at least) Apache + OpenSSL where
|
|
* resumed SSLv3 connections don't actually use compression. See
|
|
* comments 93-95 of
|
|
* https://bugzilla.mozilla.org/show_bug.cgi?id=275744
|
|
*
|
|
* So, if we get a decompression error, and the record appears to
|
|
* be already uncompressed, then we return a more specific error
|
|
* code to hopefully save somebody some debugging time in the
|
|
* future.
|
|
*/
|
|
if (plaintext->len >= 4) {
|
|
unsigned int len = ((unsigned int) plaintext->buf[1] << 16) |
|
|
((unsigned int) plaintext->buf[2] << 8) |
|
|
(unsigned int) plaintext->buf[3];
|
|
if (len == plaintext->len - 4) {
|
|
/* This appears to be uncompressed already */
|
|
err = SSL_ERROR_RX_UNEXPECTED_UNCOMPRESSED_RECORD;
|
|
}
|
|
}
|
|
|
|
PORT_Free(plaintext->buf);
|
|
PORT_SetError(err);
|
|
return SECFailure;
|
|
}
|
|
|
|
PORT_Free(plaintext->buf);
|
|
}
|
|
|
|
/*
|
|
** Having completed the decompression, check the length again.
|
|
*/
|
|
if (isTLS && databuf->len > (MAX_FRAGMENT_LENGTH + 1024)) {
|
|
SSL3_SendAlert(ss, alert_fatal, record_overflow);
|
|
PORT_SetError(SSL_ERROR_RX_RECORD_TOO_LONG);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* Application data records are processed by the caller of this
|
|
** function, not by this function.
|
|
*/
|
|
if (rType == content_application_data) {
|
|
if (ss->firstHsDone)
|
|
return SECSuccess;
|
|
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
|
|
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_APPLICATION_DATA);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* It's a record that must be handled by ssl itself, not the application.
|
|
*/
|
|
process_it:
|
|
/* XXX Get the xmit lock here. Odds are very high that we'll be xmiting
|
|
* data ang getting the xmit lock here prevents deadlocks.
|
|
*/
|
|
ssl_GetSSL3HandshakeLock(ss);
|
|
|
|
/* All the functions called in this switch MUST set error code if
|
|
** they return SECFailure or SECWouldBlock.
|
|
*/
|
|
switch (rType) {
|
|
case content_change_cipher_spec:
|
|
rv = ssl3_HandleChangeCipherSpecs(ss, databuf);
|
|
break;
|
|
case content_alert:
|
|
rv = ssl3_HandleAlert(ss, databuf);
|
|
break;
|
|
case content_handshake:
|
|
if (!IS_DTLS(ss)) {
|
|
rv = ssl3_HandleHandshake(ss, databuf);
|
|
} else {
|
|
rv = dtls_HandleHandshake(ss, databuf);
|
|
}
|
|
break;
|
|
/*
|
|
case content_application_data is handled before this switch
|
|
*/
|
|
default:
|
|
SSL_DBG(("%d: SSL3[%d]: bogus content type=%d",
|
|
SSL_GETPID(), ss->fd, cText->type));
|
|
/* XXX Send an alert ??? */
|
|
PORT_SetError(SSL_ERROR_RX_UNKNOWN_RECORD_TYPE);
|
|
rv = SECFailure;
|
|
break;
|
|
}
|
|
|
|
ssl_ReleaseSSL3HandshakeLock(ss);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Initialization functions
|
|
*/
|
|
|
|
/* Called from ssl3_InitState, immediately below. */
|
|
/* Caller must hold the SpecWriteLock. */
|
|
static void
|
|
ssl3_InitCipherSpec(sslSocket *ss, ssl3CipherSpec *spec)
|
|
{
|
|
spec->cipher_def = &bulk_cipher_defs[cipher_null];
|
|
PORT_Assert(spec->cipher_def->cipher == cipher_null);
|
|
spec->mac_def = &mac_defs[mac_null];
|
|
PORT_Assert(spec->mac_def->mac == mac_null);
|
|
spec->encode = Null_Cipher;
|
|
spec->decode = Null_Cipher;
|
|
spec->destroy = NULL;
|
|
spec->compressor = NULL;
|
|
spec->decompressor = NULL;
|
|
spec->destroyCompressContext = NULL;
|
|
spec->destroyDecompressContext = NULL;
|
|
spec->mac_size = 0;
|
|
spec->master_secret = NULL;
|
|
spec->bypassCiphers = PR_FALSE;
|
|
|
|
spec->msItem.data = NULL;
|
|
spec->msItem.len = 0;
|
|
|
|
spec->client.write_key = NULL;
|
|
spec->client.write_mac_key = NULL;
|
|
spec->client.write_mac_context = NULL;
|
|
|
|
spec->server.write_key = NULL;
|
|
spec->server.write_mac_key = NULL;
|
|
spec->server.write_mac_context = NULL;
|
|
|
|
spec->write_seq_num.high = 0;
|
|
spec->write_seq_num.low = 0;
|
|
|
|
spec->read_seq_num.high = 0;
|
|
spec->read_seq_num.low = 0;
|
|
|
|
spec->epoch = 0;
|
|
dtls_InitRecvdRecords(&spec->recvdRecords);
|
|
|
|
spec->version = ss->vrange.max;
|
|
}
|
|
|
|
/* Called from: ssl3_SendRecord
|
|
** ssl3_StartHandshakeHash() <- ssl2_BeginClientHandshake()
|
|
** ssl3_SendClientHello()
|
|
** ssl3_HandleV2ClientHello()
|
|
** ssl3_HandleRecord()
|
|
**
|
|
** This function should perhaps acquire and release the SpecWriteLock.
|
|
**
|
|
**
|
|
*/
|
|
static SECStatus
|
|
ssl3_InitState(sslSocket *ss)
|
|
{
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
|
|
|
|
if (ss->ssl3.initialized)
|
|
return SECSuccess; /* Function should be idempotent */
|
|
|
|
ss->ssl3.policy = SSL_ALLOWED;
|
|
|
|
ssl_GetSpecWriteLock(ss);
|
|
ss->ssl3.crSpec = ss->ssl3.cwSpec = &ss->ssl3.specs[0];
|
|
ss->ssl3.prSpec = ss->ssl3.pwSpec = &ss->ssl3.specs[1];
|
|
ss->ssl3.hs.sendingSCSV = PR_FALSE;
|
|
ssl3_InitCipherSpec(ss, ss->ssl3.crSpec);
|
|
ssl3_InitCipherSpec(ss, ss->ssl3.prSpec);
|
|
ss->ssl3.hs.preliminaryInfo = 0;
|
|
|
|
ss->ssl3.hs.ws = (ss->sec.isServer) ? wait_client_hello : wait_server_hello;
|
|
#ifndef NSS_DISABLE_ECC
|
|
ss->ssl3.hs.negotiatedECCurves = ssl3_GetSupportedECCurveMask(ss);
|
|
#endif
|
|
ssl_ReleaseSpecWriteLock(ss);
|
|
|
|
PORT_Memset(&ss->xtnData, 0, sizeof(TLSExtensionData));
|
|
|
|
if (IS_DTLS(ss)) {
|
|
ss->ssl3.hs.sendMessageSeq = 0;
|
|
ss->ssl3.hs.recvMessageSeq = 0;
|
|
ss->ssl3.hs.rtTimeoutMs = INITIAL_DTLS_TIMEOUT_MS;
|
|
ss->ssl3.hs.rtRetries = 0;
|
|
ss->ssl3.hs.recvdHighWater = -1;
|
|
PR_INIT_CLIST(&ss->ssl3.hs.lastMessageFlight);
|
|
dtls_SetMTU(ss, 0); /* Set the MTU to the highest plateau */
|
|
}
|
|
|
|
PORT_Assert(!ss->ssl3.hs.messages.buf && !ss->ssl3.hs.messages.space);
|
|
ss->ssl3.hs.messages.buf = NULL;
|
|
ss->ssl3.hs.messages.space = 0;
|
|
|
|
ss->ssl3.hs.receivedNewSessionTicket = PR_FALSE;
|
|
PORT_Memset(&ss->ssl3.hs.newSessionTicket, 0,
|
|
sizeof(ss->ssl3.hs.newSessionTicket));
|
|
|
|
ss->ssl3.initialized = PR_TRUE;
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* Returns a reference counted object that contains a key pair.
|
|
* Or NULL on failure. Initial ref count is 1.
|
|
* Uses the keys in the pair as input.
|
|
*/
|
|
ssl3KeyPair *
|
|
ssl3_NewKeyPair( SECKEYPrivateKey * privKey, SECKEYPublicKey * pubKey)
|
|
{
|
|
ssl3KeyPair * pair;
|
|
|
|
if (!privKey || !pubKey) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return NULL;
|
|
}
|
|
pair = PORT_ZNew(ssl3KeyPair);
|
|
if (!pair)
|
|
return NULL; /* error code is set. */
|
|
pair->refCount = 1;
|
|
pair->privKey = privKey;
|
|
pair->pubKey = pubKey;
|
|
return pair; /* success */
|
|
}
|
|
|
|
ssl3KeyPair *
|
|
ssl3_GetKeyPairRef(ssl3KeyPair * keyPair)
|
|
{
|
|
PR_ATOMIC_INCREMENT(&keyPair->refCount);
|
|
return keyPair;
|
|
}
|
|
|
|
void
|
|
ssl3_FreeKeyPair(ssl3KeyPair * keyPair)
|
|
{
|
|
PRInt32 newCount = PR_ATOMIC_DECREMENT(&keyPair->refCount);
|
|
if (!newCount) {
|
|
if (keyPair->privKey)
|
|
SECKEY_DestroyPrivateKey(keyPair->privKey);
|
|
if (keyPair->pubKey)
|
|
SECKEY_DestroyPublicKey( keyPair->pubKey);
|
|
PORT_Free(keyPair);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Creates the public and private RSA keys for SSL Step down.
|
|
* Called from SSL_ConfigSecureServer in sslsecur.c
|
|
*/
|
|
SECStatus
|
|
ssl3_CreateRSAStepDownKeys(sslSocket *ss)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
SECKEYPrivateKey * privKey; /* RSA step down key */
|
|
SECKEYPublicKey * pubKey; /* RSA step down key */
|
|
|
|
if (ss->stepDownKeyPair)
|
|
ssl3_FreeKeyPair(ss->stepDownKeyPair);
|
|
ss->stepDownKeyPair = NULL;
|
|
#ifndef HACKED_EXPORT_SERVER
|
|
/* Sigh, should have a get key strength call for private keys */
|
|
if (PK11_GetPrivateModulusLen(ss->serverCerts[kt_rsa].SERVERKEY) >
|
|
EXPORT_RSA_KEY_LENGTH) {
|
|
/* need to ask for the key size in bits */
|
|
privKey = SECKEY_CreateRSAPrivateKey(EXPORT_RSA_KEY_LENGTH * BPB,
|
|
&pubKey, NULL);
|
|
if (!privKey || !pubKey ||
|
|
!(ss->stepDownKeyPair = ssl3_NewKeyPair(privKey, pubKey))) {
|
|
ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL);
|
|
rv = SECFailure;
|
|
}
|
|
}
|
|
#endif
|
|
return rv;
|
|
}
|
|
|
|
/* record the export policy for this cipher suite */
|
|
SECStatus
|
|
ssl3_SetPolicy(ssl3CipherSuite which, int policy)
|
|
{
|
|
ssl3CipherSuiteCfg *suite;
|
|
|
|
suite = ssl_LookupCipherSuiteCfg(which, cipherSuites);
|
|
if (suite == NULL) {
|
|
return SECFailure; /* err code was set by ssl_LookupCipherSuiteCfg */
|
|
}
|
|
suite->policy = policy;
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
ssl3_GetPolicy(ssl3CipherSuite which, PRInt32 *oPolicy)
|
|
{
|
|
ssl3CipherSuiteCfg *suite;
|
|
PRInt32 policy;
|
|
SECStatus rv;
|
|
|
|
suite = ssl_LookupCipherSuiteCfg(which, cipherSuites);
|
|
if (suite) {
|
|
policy = suite->policy;
|
|
rv = SECSuccess;
|
|
} else {
|
|
policy = SSL_NOT_ALLOWED;
|
|
rv = SECFailure; /* err code was set by Lookup. */
|
|
}
|
|
*oPolicy = policy;
|
|
return rv;
|
|
}
|
|
|
|
/* record the user preference for this suite */
|
|
SECStatus
|
|
ssl3_CipherPrefSetDefault(ssl3CipherSuite which, PRBool enabled)
|
|
{
|
|
ssl3CipherSuiteCfg *suite;
|
|
|
|
suite = ssl_LookupCipherSuiteCfg(which, cipherSuites);
|
|
if (suite == NULL) {
|
|
return SECFailure; /* err code was set by ssl_LookupCipherSuiteCfg */
|
|
}
|
|
suite->enabled = enabled;
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* return the user preference for this suite */
|
|
SECStatus
|
|
ssl3_CipherPrefGetDefault(ssl3CipherSuite which, PRBool *enabled)
|
|
{
|
|
ssl3CipherSuiteCfg *suite;
|
|
PRBool pref;
|
|
SECStatus rv;
|
|
|
|
suite = ssl_LookupCipherSuiteCfg(which, cipherSuites);
|
|
if (suite) {
|
|
pref = suite->enabled;
|
|
rv = SECSuccess;
|
|
} else {
|
|
pref = SSL_NOT_ALLOWED;
|
|
rv = SECFailure; /* err code was set by Lookup. */
|
|
}
|
|
*enabled = pref;
|
|
return rv;
|
|
}
|
|
|
|
SECStatus
|
|
ssl3_CipherPrefSet(sslSocket *ss, ssl3CipherSuite which, PRBool enabled)
|
|
{
|
|
ssl3CipherSuiteCfg *suite;
|
|
|
|
suite = ssl_LookupCipherSuiteCfg(which, ss->cipherSuites);
|
|
if (suite == NULL) {
|
|
return SECFailure; /* err code was set by ssl_LookupCipherSuiteCfg */
|
|
}
|
|
suite->enabled = enabled;
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
ssl3_CipherPrefGet(sslSocket *ss, ssl3CipherSuite which, PRBool *enabled)
|
|
{
|
|
ssl3CipherSuiteCfg *suite;
|
|
PRBool pref;
|
|
SECStatus rv;
|
|
|
|
suite = ssl_LookupCipherSuiteCfg(which, ss->cipherSuites);
|
|
if (suite) {
|
|
pref = suite->enabled;
|
|
rv = SECSuccess;
|
|
} else {
|
|
pref = SSL_NOT_ALLOWED;
|
|
rv = SECFailure; /* err code was set by Lookup. */
|
|
}
|
|
*enabled = pref;
|
|
return rv;
|
|
}
|
|
|
|
SECStatus
|
|
SSL_SignaturePrefSet(PRFileDesc *fd, const SSLSignatureAndHashAlg *algorithms,
|
|
unsigned int count)
|
|
{
|
|
sslSocket *ss;
|
|
unsigned int i;
|
|
|
|
ss = ssl_FindSocket(fd);
|
|
if (!ss) {
|
|
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SignaturePrefSet",
|
|
SSL_GETPID(), fd));
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (!count || count > MAX_SIGNATURE_ALGORITHMS) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
|
|
ss->ssl3.signatureAlgorithmCount = 0;
|
|
for (i = 0; i < count; ++i) {
|
|
if (!ssl3_IsSupportedSignatureAlgorithm(&algorithms[i])) {
|
|
SSL_DBG(("%d: SSL[%d]: invalid signature algorithm set %d/%d",
|
|
SSL_GETPID(), fd, algorithms[i].sigAlg,
|
|
algorithms[i].hashAlg));
|
|
continue;
|
|
}
|
|
|
|
ss->ssl3.signatureAlgorithms[ss->ssl3.signatureAlgorithmCount++] =
|
|
algorithms[i];
|
|
}
|
|
|
|
if (ss->ssl3.signatureAlgorithmCount == 0) {
|
|
PORT_SetError(SSL_ERROR_NO_SUPPORTED_SIGNATURE_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
SSL_SignaturePrefGet(PRFileDesc *fd, SSLSignatureAndHashAlg *algorithms,
|
|
unsigned int *count, unsigned int maxCount)
|
|
{
|
|
sslSocket *ss;
|
|
unsigned int requiredSpace;
|
|
|
|
ss = ssl_FindSocket(fd);
|
|
if (!ss) {
|
|
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SignaturePrefGet",
|
|
SSL_GETPID(), fd));
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (!algorithms || !count ||
|
|
maxCount < ss->ssl3.signatureAlgorithmCount) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
|
|
requiredSpace =
|
|
ss->ssl3.signatureAlgorithmCount * sizeof(SSLSignatureAndHashAlg);
|
|
PORT_Memcpy(algorithms, ss->ssl3.signatureAlgorithms, requiredSpace);
|
|
*count = ss->ssl3.signatureAlgorithmCount;
|
|
return SECSuccess;
|
|
}
|
|
|
|
unsigned int
|
|
SSL_SignatureMaxCount() {
|
|
return MAX_SIGNATURE_ALGORITHMS;
|
|
}
|
|
|
|
/* copy global default policy into socket. */
|
|
void
|
|
ssl3_InitSocketPolicy(sslSocket *ss)
|
|
{
|
|
PORT_Memcpy(ss->cipherSuites, cipherSuites, sizeof cipherSuites);
|
|
PORT_Memcpy(ss->ssl3.signatureAlgorithms, defaultSignatureAlgorithms,
|
|
sizeof(defaultSignatureAlgorithms));
|
|
ss->ssl3.signatureAlgorithmCount = PR_ARRAY_SIZE(defaultSignatureAlgorithms);
|
|
}
|
|
|
|
/* ssl3_config_match_init must have already been called by
|
|
* the caller of this function.
|
|
*/
|
|
SECStatus
|
|
ssl3_ConstructV2CipherSpecsHack(sslSocket *ss, unsigned char *cs, int *size)
|
|
{
|
|
int i, count = 0;
|
|
|
|
PORT_Assert(ss != 0);
|
|
if (!ss) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
if (SSL3_ALL_VERSIONS_DISABLED(&ss->vrange)) {
|
|
*size = 0;
|
|
return SECSuccess;
|
|
}
|
|
if (cs == NULL) {
|
|
*size = count_cipher_suites(ss, SSL_ALLOWED, PR_TRUE);
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* ssl3_config_match_init was called by the caller of this function. */
|
|
for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) {
|
|
ssl3CipherSuiteCfg *suite = &ss->cipherSuites[i];
|
|
if (config_match(suite, SSL_ALLOWED, PR_TRUE, &ss->vrange, ss)) {
|
|
if (cs != NULL) {
|
|
*cs++ = 0x00;
|
|
*cs++ = (suite->cipher_suite >> 8) & 0xFF;
|
|
*cs++ = suite->cipher_suite & 0xFF;
|
|
}
|
|
count++;
|
|
}
|
|
}
|
|
*size = count;
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
** If ssl3 socket has completed the first handshake, and is in idle state,
|
|
** then start a new handshake.
|
|
** If flushCache is true, the SID cache will be flushed first, forcing a
|
|
** "Full" handshake (not a session restart handshake), to be done.
|
|
**
|
|
** called from SSL_RedoHandshake(), which already holds the handshake locks.
|
|
*/
|
|
SECStatus
|
|
ssl3_RedoHandshake(sslSocket *ss, PRBool flushCache)
|
|
{
|
|
sslSessionID * sid = ss->sec.ci.sid;
|
|
SECStatus rv;
|
|
|
|
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) );
|
|
|
|
if (!ss->firstHsDone ||
|
|
((ss->version >= SSL_LIBRARY_VERSION_3_0) &&
|
|
ss->ssl3.initialized &&
|
|
(ss->ssl3.hs.ws != idle_handshake))) {
|
|
PORT_SetError(SSL_ERROR_HANDSHAKE_NOT_COMPLETED);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (IS_DTLS(ss)) {
|
|
dtls_RehandshakeCleanup(ss);
|
|
}
|
|
|
|
if (ss->opt.enableRenegotiation == SSL_RENEGOTIATE_NEVER) {
|
|
PORT_SetError(SSL_ERROR_RENEGOTIATION_NOT_ALLOWED);
|
|
return SECFailure;
|
|
}
|
|
if (sid && flushCache) {
|
|
if (ss->sec.uncache)
|
|
ss->sec.uncache(sid); /* remove it from whichever cache it's in. */
|
|
ssl_FreeSID(sid); /* dec ref count and free if zero. */
|
|
ss->sec.ci.sid = NULL;
|
|
}
|
|
|
|
ssl_GetXmitBufLock(ss); /**************************************/
|
|
|
|
/* start off a new handshake. */
|
|
rv = (ss->sec.isServer) ? ssl3_SendHelloRequest(ss)
|
|
: ssl3_SendClientHello(ss, PR_FALSE);
|
|
|
|
ssl_ReleaseXmitBufLock(ss); /**************************************/
|
|
return rv;
|
|
}
|
|
|
|
/* Called from ssl_DestroySocketContents() in sslsock.c */
|
|
void
|
|
ssl3_DestroySSL3Info(sslSocket *ss)
|
|
{
|
|
|
|
if (ss->ssl3.clientCertificate != NULL)
|
|
CERT_DestroyCertificate(ss->ssl3.clientCertificate);
|
|
|
|
if (ss->ssl3.clientPrivateKey != NULL)
|
|
SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey);
|
|
|
|
if (ss->ssl3.peerCertArena != NULL)
|
|
ssl3_CleanupPeerCerts(ss);
|
|
|
|
if (ss->ssl3.clientCertChain != NULL) {
|
|
CERT_DestroyCertificateList(ss->ssl3.clientCertChain);
|
|
ss->ssl3.clientCertChain = NULL;
|
|
}
|
|
|
|
/* clean up handshake */
|
|
#ifndef NO_PKCS11_BYPASS
|
|
if (ss->opt.bypassPKCS11) {
|
|
if (ss->ssl3.hs.hashType == handshake_hash_combo) {
|
|
SHA1_DestroyContext((SHA1Context *)ss->ssl3.hs.sha_cx, PR_FALSE);
|
|
MD5_DestroyContext((MD5Context *)ss->ssl3.hs.md5_cx, PR_FALSE);
|
|
} else if (ss->ssl3.hs.hashType == handshake_hash_single) {
|
|
ss->ssl3.hs.sha_obj->destroy(ss->ssl3.hs.sha_cx, PR_FALSE);
|
|
}
|
|
}
|
|
#endif
|
|
if (ss->ssl3.hs.md5) {
|
|
PK11_DestroyContext(ss->ssl3.hs.md5,PR_TRUE);
|
|
}
|
|
if (ss->ssl3.hs.sha) {
|
|
PK11_DestroyContext(ss->ssl3.hs.sha,PR_TRUE);
|
|
}
|
|
if (ss->ssl3.hs.clientSigAndHash) {
|
|
PORT_Free(ss->ssl3.hs.clientSigAndHash);
|
|
}
|
|
if (ss->ssl3.hs.messages.buf) {
|
|
PORT_Free(ss->ssl3.hs.messages.buf);
|
|
ss->ssl3.hs.messages.buf = NULL;
|
|
ss->ssl3.hs.messages.len = 0;
|
|
ss->ssl3.hs.messages.space = 0;
|
|
}
|
|
|
|
/* free the SSL3Buffer (msg_body) */
|
|
PORT_Free(ss->ssl3.hs.msg_body.buf);
|
|
|
|
SECITEM_FreeItem(&ss->ssl3.hs.newSessionTicket.ticket, PR_FALSE);
|
|
|
|
/* free up the CipherSpecs */
|
|
ssl3_DestroyCipherSpec(&ss->ssl3.specs[0], PR_TRUE/*freeSrvName*/);
|
|
ssl3_DestroyCipherSpec(&ss->ssl3.specs[1], PR_TRUE/*freeSrvName*/);
|
|
|
|
/* Destroy the DTLS data */
|
|
if (IS_DTLS(ss)) {
|
|
dtls_FreeHandshakeMessages(&ss->ssl3.hs.lastMessageFlight);
|
|
if (ss->ssl3.hs.recvdFragments.buf) {
|
|
PORT_Free(ss->ssl3.hs.recvdFragments.buf);
|
|
}
|
|
}
|
|
|
|
if (ss->ssl3.dheGroups) {
|
|
PORT_Free(ss->ssl3.dheGroups);
|
|
}
|
|
|
|
ss->ssl3.initialized = PR_FALSE;
|
|
|
|
SECITEM_FreeItem(&ss->ssl3.nextProto, PR_FALSE);
|
|
}
|
|
|
|
/* End of ssl3con.c */
|