RetroZilla/layout/mathml/tests/various.xml
2015-10-20 23:03:22 -04:00

1068 lines
21 KiB
XML

<?xml version="1.0"?>
<!-- ***** BEGIN LICENSE BLOCK *****
- Version: MPL 1.1/GPL 2.0/LGPL 2.1
-
- The contents of this file are subject to the Mozilla Public License Version
- 1.1 (the "License"); you may not use this file except in compliance with
- the License. You may obtain a copy of the License at
- http://www.mozilla.org/MPL/
-
- Software distributed under the License is distributed on an "AS IS" basis,
- WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- for the specific language governing rights and limitations under the
- License.
-
- The Original Code is Mozilla MathML Project.
-
- The Initial Developer of the Original Code is
- The University of Queensland.
- Portions created by the Initial Developer are Copyright (C) 1999
- the Initial Developer. All Rights Reserved.
-
- Contributor(s):
- Roger B. Sidje <rbs@maths.uq.edu.au>
-
- Alternatively, the contents of this file may be used under the terms of
- either the GNU General Public License Version 2 or later (the "GPL"), or
- the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- in which case the provisions of the GPL or the LGPL are applicable instead
- of those above. If you wish to allow use of your version of this file only
- under the terms of either the GPL or the LGPL, and not to allow others to
- use your version of this file under the terms of the MPL, indicate your
- decision by deleting the provisions above and replace them with the notice
- and other provisions required by the LGPL or the GPL. If you do not delete
- the provisions above, a recipient may use your version of this file under
- the terms of any one of the MPL, the GPL or the LGPL.
-
- ***** END LICENSE BLOCK ***** -->
<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN"
"http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd"
[
<!ENTITY mathml "http://www.w3.org/1998/Math/MathML">
]>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Various examples of MathML</title>
<style>
maction {
background-color: yellow;
}
maction:hover {
outline: 1px dotted black;
/* border: 1px solid black; */
}
maction[actiontype="restyle#background"] {
background-color: #3C6;
border: 1px dotted red;
}
maction[actiontype="restyle#zoom"] {
font-size: 40pt;
}
</style>
</head>
<body>
Click to toggle between expressions, and watch the satus line onmouseover/onmouseout:
<br />
<math mode="display" xmlns="&mathml;">
<maction actiontype="toggle">
<maction actiontype="statusline#First Expression">
<mi>statusline#First Expression</mi>
</maction>
<maction actiontype="statusline#Second Expression">
<mi>statusline#Second Expression</mi>
</maction>
<maction actiontype="statusline#And so on..">
<maction actiontype="restyle#background">
<mi>statusline#And so on...</mi>
</maction>
</maction>
</maction>
</math>
<br />
Click the expression below to zoom-in/zoom-out using RESTYLE:
<br />
<math mode="display" xmlns="&mathml;">
<maction actiontype="restyle#zoom">
<mrow>
<mi>&pi;</mi>
<mo>=</mo>
<mn>2</mn><mi>i</mi>
<mo>&InvisibleTimes;</mo>
<mo>Log</mo>
<mfrac>
<mrow><mn>1</mn><mo>-</mo><mi>i</mi></mrow>
<mrow><mn>1</mn><mo>+</mo><mi>i</mi></mrow>
</mfrac>
</mrow>
</maction>
</math>
<br />
Click the expression below to see several definitions of pi:
<br />
<math mode="display" xmlns="&mathml;">
<mrow>
<maction actiontype="toggle">
<mrow>
<mi>&pi;</mi>
<mo>=</mo>
<mn>3.14159265358</mn><mo fontweight="bold">...</mo>
</mrow>
<mrow>
<mi>&pi;</mi>
<mo>=</mo>
<mn>2</mn><mi>i</mi>
<mo>&InvisibleTimes;</mo>
<mo>Log</mo>
<mfrac>
<mrow><mn>1</mn><mo>-</mo><mi>i</mi></mrow>
<mrow><mn>1</mn><mo>+</mo><mi>i</mi></mrow>
</mfrac>
</mrow>
<mrow>
<mi>&pi;</mi>
<mo>=</mo>
<mn>2</mn>
<mphantom><mo>.</mo></mphantom>
<mfrac>
<mn>2</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</mfrac>
<mphantom><mo>.</mo></mphantom>
<mfrac>
<mn>2</mn>
<msqrt>
<mn>2</mn>
<mo>+</mo>
<msqrt>
<mn>2</mn>
</msqrt>
</msqrt>
</mfrac>
<mphantom><mo>.</mo></mphantom>
<mfrac>
<mn>2</mn>
<msqrt>
<mn>2</mn>
<mo>+</mo>
<msqrt>
<mn>2</mn>
<mo>+</mo>
<msqrt>
<mn>2</mn>
</msqrt>
</msqrt>
</msqrt>
</mfrac>
<mo fontweight="bold">...</mo>
</mrow>
<mrow>
<mfrac>
<mi>&pi;</mi>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mstyle scriptlevel="0">
<mn>1</mn>
</mstyle>
<mstyle scriptlevel="0">
<mrow>
<mn>2</mn>
<mo>+</mo>
<mfrac>
<mstyle scriptlevel="0">
<msup><mn>1</mn><mn>2</mn></msup>
</mstyle>
<mstyle scriptlevel="0">
<mrow>
<mn>2</mn>
<mo>+</mo>
<mfrac>
<mstyle scriptlevel="0">
<msup><mn>3</mn><mn>2</mn></msup>
</mstyle>
<mstyle scriptlevel="0">
<mrow>
<mn>2</mn>
<mo>+</mo>
<mfrac>
<mstyle scriptlevel="0">
<msup><mn>5</mn><mn>2</mn></msup>
</mstyle>
<mstyle scriptlevel="0">
<mrow>
<mn>2</mn>
<mo>+</mo>
<mfrac>
<mstyle scriptlevel="0">
<msup><mn>7</mn><mn>2</mn></msup>
</mstyle>
<mstyle scriptlevel="0">
<mn>2</mn><mo>+</mo><mo fontweight="bold">...</mo>
</mstyle>
</mfrac>
</mrow>
</mstyle>
</mfrac>
</mrow>
</mstyle>
</mfrac>
</mrow>
</mstyle>
</mfrac>
</mrow>
</mstyle>
</mfrac>
</mrow>
</maction>
</mrow>
</math>
<br />
<math xmlns="&mathml;">
<!-- {{} \atop i} A {p \atop q} -->
<mmultiscripts>
<mi fontweight="bold" fontsize="large">A</mi>
<mi>q</mi><mi>p</mi>
<mprescripts/>
<mi>i</mi><none/>
</mmultiscripts>
<br />
<!-- {3 \atop k} R {1 \atop i} {2 \atop j} -->
<mmultiscripts>
<mi fontweight="bold">R</mi>
<mi>i</mi><mi>1</mi>
<mi>j</mi><mn>230</mn>
<mi>j</mi><msup><mn>230</mn><mi>y</mi></msup>
<mi>j</mi><mn>230</mn>
<mprescripts/>
<mi>k</mi><mi>3</mi>
<mi>k</mi><mi>3</mi>
</mmultiscripts>
<!-- \int_a^b f(x)dx -->
<msubsup>
<mo>&Integral;</mo>
<mi>a</mi>
<mi>b</mi>
</msubsup>
<mrow>
<mi>f</mi>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
<mo>d</mo>
<mi>x</mi>
</mrow>
<!-- \frac{\partial}{\partial x}F(x,y) + \frac{\partial}{\partial y}F(x,y) -->
<mrow>
<mfrac>
<mo>&PartialD;</mo>
<mrow>
<mo>&PartialD;</mo>
<mi>x</mi>
</mrow>
</mfrac>
<mrow>
<mi>F</mi>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mo>&PartialD;</mo>
<mrow>
<mo>&PartialD;</mo>
<mi>y</mi>
</mrow>
</mfrac>
<mrow>
<mi>F</mi>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
</mrow>
<mo>&Exists;</mo>
<mi>a</mi>
<!-- a_b -->
<msub>
<mi>a</mi>
<mi>b</mi>
</msub>
<!-- a_i -->
<msub>
<mi>a</mi>
<mi>i</mi>
</msub>
<!-- A_{I_{k}} -->
<mrow>
<mi>A</mi>
<mi>A</mi>
</mrow>
<msub>
<mi>A</mi>
<msub>
<mi>A</mi>
<msub>
<mi>A</mi>
<mi>A</mi>
</msub>
</msub>
</msub>
<!-- d^b -->
<msup>
<mi>d</mi>
<mi>b</mi>
</msup>
<!-- 2^{a_x} -->
<msup>
<mn>2</mn>
<msub>
<mi>a</mi>
<mi>x</mi>
</msub>
</msup>
<!-- 2^{2^x} -->
<msup>
<msup>
<mn>2</mn>
<mn>2</mn>
</msup>
<mi>x</mi>
</msup>
<!-- {\left( \frac{1}{2} \right) }^{y^{a_x}} -->
<msup>
<mrow>
<mo>(</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
<msup>
<mi>y</mi>
<msub>
<mi>a</mi>
<mi>x</mi>
</msub>
</msup>
</msup>
<munder>
<mi>abcd</mi>
<mi>un</mi>
</munder>
<mover>
<mi>abcd</mi>
<mi>ov</mi>
</mover>
<munderover>
<mi>abcd</mi>
<mi>under</mi>
<mi>over</mi>
</munderover>
<!-- a_b^c -->
<msubsup>
<mi>a</mi>
<mi>p</mi>
<mi>q</mi>
</msubsup>
<!-- a_{b+c}^x -->
<msubsup>
<mi>a</mi>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
<mi>x</mi>
</msubsup>
<!-- d^{ \left( \frac{a}{b} \right) } -->
<msup>
<mi>d</mi>
<mrow>
<mo>(</mo>
<mfrac>
<mi>a</mi>
<mi>b</mi>
</mfrac>
<mo>)</mo>
</mrow>
</msup>
<!-- \frac{d*b^{ \left( \frac{i+j}{n!} \right) } + p_y*q}
{p^x*b_x + \frac{a+c}{d}} -->
<mfrac>
<mrow>
<mi>d</mi>
<mo>*</mo>
<msup>
<mi>T</mi>
<mrow>
<mo>(</mo>
<mfrac>
<mrow>
<mi>i</mi>
<mo>+</mo>
<mi>j</mi>
</mrow>
<mi>n</mi>
</mfrac>
<mo>)</mo>
</mrow>
</msup>
<mo>+</mo>
<msub>
<mi>p</mi>
<mi>y</mi>
</msub>
<mo>*</mo>
<mi>q</mi>
</mrow>
<mrow>
<msup>
<mi>p</mi>
<mi>x</mi>
</msup>
<mo>*</mo>
<msub>
<mi>b</mi>
<mi>x</mi>
</msub>
<mo>+</mo>
<mfrac>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>c</mi>
</mrow>
<mi>d</mi>
</mfrac>
</mrow>
</mfrac>
<ms>This is a text in ms</ms>
<!-- x^2 + 4*x + \frac{p}{q} = 0 -->
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mrow>
<mn>4</mn>
<mo>*</mo>
<mi>x</mi>
</mrow>
<mo>+</mo>
<mfrac>
<mi>p</mi>
<mi>q</mi>
</mfrac>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mtext>This is a text in mtext</mtext>
<merror>This is a text in merror</merror>
<mrow>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<mo>+</mo>
<mfrac>
<mstyle scriptlevel="0">
<mn>1</mn>
</mstyle>
<mstyle scriptlevel="0">
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
<mo>+</mo>
<mfrac>
<mstyle scriptlevel="0">
<mn>1</mn>
</mstyle>
<mstyle scriptlevel="0">
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
<mo>+</mo>
<mfrac>
<mstyle scriptlevel="0">
<mn>1</mn>
</mstyle>
<mstyle scriptlevel="0">
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mstyle>
</mfrac>
</mrow>
</mstyle>
</mfrac>
</mrow>
</mstyle>
</mfrac>
</mrow>
<mo>;</mo>
<mrow>
<msub>
<mi>c</mi>
<mrow>
<mi>i</mi><mo>+</mo><mi>j</mi>
</mrow>
</msub>
<mo>&LeftArrow;</mo>
<mrow>
<msub><mi>a</mi><mi>i</mi></msub>
<mo>*</mo>
<msub><mi>b</mi><mi>j</mi></msub>
</mrow>
</mrow>
<br />
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mi>i</mi>
<mo>&pi;</mo>
</mrow>
</msup>
<mo>+</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
<mo>;</mo>
</mrow>
<mrow>
<mi>G</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>F</mi>
<msup><mi>d</mi><mn>2</mn></msup>
</mrow>
<mrow>
<msub><mi>m</mi><mn>1</mn></msub>
<msub><mi>m</mi><mn>2</mn></msub>
</mrow>
</mfrac>
</mrow>
<mo>;</mo>
<mrow>
<mi>t</mi><mo>+=</mo><mi>dt</mi>
</mrow>
<br />
<mrow>
<mi>x</mi>
<mo>=</mo>
<mi>a</mi>
<mo>*</mo>
<mi>b</mi>
<mo>+</mo>
<mrow>
<mo stretchy="false">(</mo>
<mfrac linethickness="2">
<mrow>
<mi>aa</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
<mfrac>
<mi>xy</mi>
<mi>z</mi>
</mfrac>
</mfrac>
<mo>)</mo>
</mrow>
</mrow>
<mfrac>
<mfrac>
<mi>x</mi>
<mi>z</mi>
</mfrac>
<mstyle scriptlevel="-3">
<mfrac>
<mi>dy</mi>
<mstyle scriptlevel="1">
<mi>z</mi>
</mstyle>
</mfrac>
</mstyle>
</mfrac>
<mfrac>
<mstyle scriptlevel="0">
<mi>x</mi>
</mstyle>
<mi>z</mi>
</mfrac>
<mstyle scriptlevel="-4">
<mi>x</mi>
</mstyle>
</math>
<math xmlns="&mathml;" mode="display">
<mrow>
<msub>
<mi>Z</mi>
<mi>&alpha;</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>f</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>2</mn>
<mi>i</mi>
<mo>&ThinSpace;</mo>
<mi>cos</mi>
<mo>(</mo>
<mfrac>
<mrow>
<mi>&alpha;</mi>
<mi>&pi;</mi>
</mrow>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
</mfrac>
<mrow>
<msub>
<mo>&int;</mo>
<mi>C</mi>
</msub>
<mfrac>
<mrow>
<mi>f</mi>
<mo stretchy='false'>(</mo>
<mi>i</mi>
<mi>z</mi>
<mo stretchy='false'>)</mo>
<msup>
<mrow>
<mo>(</mo>
<mo>-</mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
<mi>&alpha;</mi>
</msup>
</mrow>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mn>2</mn>
<mi>&pi;</mi>
<mi>z</mi>
</mrow>
</msup>
<mo>-</mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mi>dz</mi>
</mrow>
</math>
<br />
<br />
And this is from the "Thomson scattering theory"
<math xmlns="&mathml;" mode="display">
<mrow>
<mtable align='left'>
<mtr>
<mtd columnalign='left'>
<mrow>
<mfrac>
<mrow>
<msup>
<mi>d</mi>
<mn>2</mn>
</msup>
<mi>P</mi>
</mrow>
<mrow>
<mi>d</mi>
<msub>
<mi>&Omega;</mi>
<mi>s</mi>
</msub>
<mo>&ThinSpace;</mo>
<mi>d</mi>
<msub>
<mi>&omega;</mi>
<mi>s</mi>
</msub>
</mrow>
</mfrac>
</mrow>
</mtd>
<mtd columnalign='left'>
<mrow>
<mo>=</mo>
</mrow>
</mtd>
<mtd columnalign='left'>
<mrow>
<msubsup>
<mi>r</mi>
<mi>e</mi>
<mn>2</mn>
</msubsup>
<msub>
<mo>&int;</mo>
<mi>V</mi>
</msub>
<mo lspace='0'>&lt;</mo>
<msub>
<mi>S</mi>
<mi>i</mi>
</msub>
<mo>&gt;</mo>
<msup>
<mi>d</mi>
<mn>3</mn>
</msup>
<mi fontweight='bold'>r</mi>
<mo>&int;</mo>
<msup>
<mrow>
<mo lspace='0' rspace='0' symmetric='false'>|</mo>
<mover accent='true'>
<mi fontweight='bold'>e</mi>
<mo>&Hat;</mo>
</mover>
<mo>.</mo>
<mover accent='true'>
<mo>&Pi;</mo>
<mo>&#x2194;</mo>
</mover>
<mo>.</mo>
<mover accent='true'>
<mi fontweight='bold'>e</mi>
<mo>&Hat;</mo>
</mover>
<mo lspace='0' rspace='0' symmetric='false'>|</mo>
</mrow>
<mn>2</mn>
</msup>
<msup>
<mi>&kappa;</mi>
<mn>2</mn>
</msup>
<mi>f</mi>
<mo>&ThinSpace;</mo>
<mi>&delta;</mi>
<mrow>
<mo stretchy='false'>(</mo>
<mi fontweight='bold'>k</mi>
<mo>.</mo>
<mi fontweight='bold'>v</mi>
<mo>-</mo>
<mi>&omega;</mi>
<mo stretchy='false'>)</mo>
</mrow>
<msup>
<mi>d</mi>
<mn>3</mn>
</msup>
<mi fontweight='bold'>v</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd columnalign='left'>
<mrow>
<mo>=</mo>
</mrow>
</mtd>
<mtd columnalign='left'>
<mrow>
<msubsup>
<mi>r</mi>
<mi>e</mi>
<mn>2</mn>
</msubsup>
<msub>
<mo>&int;</mo>
<mi>V</mi>
</msub>
<mo lspace='0'>&lt;</mo>
<msub>
<mi>S</mi>
<mi>i</mi>
</msub>
<mo>&gt;</mo>
<msup>
<mi>d</mi>
<mn>3</mn>
</msup>
<mi fontweight='bold'>r</mi>
<mo>&int;</mo>
<msup>
<mrow>
<mo symmetric='false' lspace='0' rspace='0'>|</mo>
<mn>1</mn>
<mo>-</mo>
<mfrac>
<mrow>
<mo stretchy='false'>(</mo>
<mn>1</mn>
<mo>-</mo>
<mover accent='true'>
<mi fontweight='bold'>s</mi>
<mo>&Hat;</mo>
</mover>
<mo>.</mo>
<mover accent='true'>
<mi fontweight='bold'>&imath;</mi>
<mo>&Hat;</mo>
</mover>
<mo stretchy='false'>)</mo>
</mrow>
<mrow>
<mo stretchy='false'>(</mo>
<mn>1</mn>
<mo>-</mo>
<msub>
<mi>&beta;</mi>
<mi>i</mi>
</msub>
<mo stretchy='false'>)</mo>
<mo stretchy='false'>(</mo>
<mn>1</mn>
<mo>-</mo>
<msub>
<mi>&beta;</mi>
<mi>s</mi>
</msub>
<mo stretchy='false'>)</mo>
</mrow>
</mfrac>
<msubsup>
<mi>&beta;</mi>
<mi>e</mi>
<mn>2</mn>
</msubsup>
<mo symmetric='false' lspace='0' rspace='0'>|</mo>
</mrow>
<mn>2</mn>
</msup>
<mspace width="thinmathspace"/>
<msup>
<mrow>
<mo symmetric='false' rspace='0'>|</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>-</mo>
<msub>
<mi>&beta;</mi>
<mi>i</mi>
</msub>
</mrow>
<mrow>
<mn>1</mn>
<mo>-</mo>
<msub>
<mi>&beta;</mi>
<mi>s</mi>
</msub>
</mrow>
</mfrac>
<mo symmetric='false' lspace='0' rspace='0'>|</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd></mtd>
<mtd columnalign='left'>
<mrow>
<mo>&times;</mo>
<mrow>
<mo stretchy='false'>(</mo>
<mn>1</mn>
<mo>-</mo>
<msup>
<mi>&beta;</mi>
<mn>2</mn>
</msup>
<mo stretchy='false'>)</mo>
</mrow>
<mo>&ThinSpace;</mo>
<mi>f</mi>
<mo>&ThinSpace;</mo>
<mi>&delta;</mi>
<mrow>
<mo stretchy='false'>(</mo>
<mi fontweight='bold'>k</mi>
<mo>.</mo>
<mi fontweight='bold'>v</mi>
<mo>-</mo>
<mi>&omega;</mi>
<mo stretchy='false'>)</mo>
</mrow>
<msup>
<mi>d</mi>
<mn>3</mn>
</msup>
<mi fontweight='bold'>v</mi>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</math>
</body>
</html>