RetroZilla/js/src/jsscope.c
2015-10-20 23:03:22 -04:00

1779 lines
61 KiB
C

/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sw=4 et tw=78:
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Communicator client code, released
* March 31, 1998.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
* JS symbol tables.
*/
#include "jsstddef.h"
#include <stdlib.h>
#include <string.h>
#include "jstypes.h"
#include "jsarena.h"
#include "jsbit.h"
#include "jsclist.h"
#include "jsdhash.h"
#include "jsutil.h" /* Added by JSIFY */
#include "jsapi.h"
#include "jsatom.h"
#include "jscntxt.h"
#include "jsdbgapi.h"
#include "jslock.h"
#include "jsnum.h"
#include "jsscope.h"
#include "jsstr.h"
JSScope *
js_GetMutableScope(JSContext *cx, JSObject *obj)
{
JSScope *scope, *newscope;
scope = OBJ_SCOPE(obj);
JS_ASSERT(JS_IS_SCOPE_LOCKED(cx, scope));
if (scope->object == obj)
return scope;
newscope = js_NewScope(cx, 0, scope->map.ops, LOCKED_OBJ_GET_CLASS(obj),
obj);
if (!newscope)
return NULL;
JS_LOCK_SCOPE(cx, newscope);
obj->map = js_HoldObjectMap(cx, &newscope->map);
scope = (JSScope *) js_DropObjectMap(cx, &scope->map, obj);
JS_TRANSFER_SCOPE_LOCK(cx, scope, newscope);
return newscope;
}
/*
* JSScope uses multiplicative hashing, _a la_ jsdhash.[ch], but specialized
* to minimize footprint. But if a scope has fewer than SCOPE_HASH_THRESHOLD
* entries, we use linear search and avoid allocating scope->table.
*/
#define SCOPE_HASH_THRESHOLD 6
#define MIN_SCOPE_SIZE_LOG2 4
#define MIN_SCOPE_SIZE JS_BIT(MIN_SCOPE_SIZE_LOG2)
#define SCOPE_TABLE_NBYTES(n) ((n) * sizeof(JSScopeProperty *))
static void
InitMinimalScope(JSScope *scope)
{
scope->hashShift = JS_DHASH_BITS - MIN_SCOPE_SIZE_LOG2;
scope->entryCount = scope->removedCount = 0;
scope->table = NULL;
scope->lastProp = NULL;
}
static JSBool
CreateScopeTable(JSContext *cx, JSScope *scope, JSBool report)
{
int sizeLog2;
JSScopeProperty *sprop, **spp;
JS_ASSERT(!scope->table);
JS_ASSERT(scope->lastProp);
if (scope->entryCount > SCOPE_HASH_THRESHOLD) {
/*
* Ouch: calloc failed at least once already -- let's try again,
* overallocating to hold at least twice the current population.
*/
sizeLog2 = JS_CeilingLog2(2 * scope->entryCount);
scope->hashShift = JS_DHASH_BITS - sizeLog2;
} else {
JS_ASSERT(scope->hashShift == JS_DHASH_BITS - MIN_SCOPE_SIZE_LOG2);
sizeLog2 = MIN_SCOPE_SIZE_LOG2;
}
scope->table = (JSScopeProperty **)
calloc(JS_BIT(sizeLog2), sizeof(JSScopeProperty *));
if (!scope->table) {
if (report)
JS_ReportOutOfMemory(cx);
return JS_FALSE;
}
js_UpdateMallocCounter(cx, JS_BIT(sizeLog2) * sizeof(JSScopeProperty *));
scope->hashShift = JS_DHASH_BITS - sizeLog2;
for (sprop = scope->lastProp; sprop; sprop = sprop->parent) {
spp = js_SearchScope(scope, sprop->id, JS_TRUE);
SPROP_STORE_PRESERVING_COLLISION(spp, sprop);
}
return JS_TRUE;
}
JSScope *
js_NewScope(JSContext *cx, jsrefcount nrefs, JSObjectOps *ops, JSClass *clasp,
JSObject *obj)
{
JSScope *scope;
scope = (JSScope *) JS_malloc(cx, sizeof(JSScope));
if (!scope)
return NULL;
js_InitObjectMap(&scope->map, nrefs, ops, clasp);
scope->object = obj;
scope->flags = 0;
InitMinimalScope(scope);
#ifdef JS_THREADSAFE
scope->ownercx = cx;
memset(&scope->lock, 0, sizeof scope->lock);
/*
* Set u.link = NULL, not u.count = 0, in case the target architecture's
* null pointer has a non-zero integer representation.
*/
scope->u.link = NULL;
#ifdef DEBUG
scope->file[0] = scope->file[1] = scope->file[2] = scope->file[3] = NULL;
scope->line[0] = scope->line[1] = scope->line[2] = scope->line[3] = 0;
#endif
#endif
JS_RUNTIME_METER(cx->runtime, liveScopes);
JS_RUNTIME_METER(cx->runtime, totalScopes);
return scope;
}
#ifdef DEBUG_SCOPE_COUNT
extern void
js_unlog_scope(JSScope *scope);
#endif
void
js_DestroyScope(JSContext *cx, JSScope *scope)
{
#ifdef DEBUG_SCOPE_COUNT
js_unlog_scope(scope);
#endif
#ifdef JS_THREADSAFE
/* Scope must be single-threaded at this point, so set scope->ownercx. */
JS_ASSERT(scope->u.count == 0);
scope->ownercx = cx;
js_FinishLock(&scope->lock);
#endif
if (scope->table)
JS_free(cx, scope->table);
#ifdef DEBUG
JS_LOCK_RUNTIME_VOID(cx->runtime,
cx->runtime->liveScopeProps -= scope->entryCount);
#endif
JS_RUNTIME_UNMETER(cx->runtime, liveScopes);
JS_free(cx, scope);
}
#ifdef DUMP_SCOPE_STATS
typedef struct JSScopeStats {
jsrefcount searches;
jsrefcount steps;
jsrefcount hits;
jsrefcount misses;
jsrefcount stepHits;
jsrefcount stepMisses;
jsrefcount adds;
jsrefcount redundantAdds;
jsrefcount addFailures;
jsrefcount changeFailures;
jsrefcount compresses;
jsrefcount grows;
jsrefcount removes;
jsrefcount removeFrees;
jsrefcount uselessRemoves;
jsrefcount shrinks;
} JSScopeStats;
JS_FRIEND_DATA(JSScopeStats) js_scope_stats;
# define METER(x) JS_ATOMIC_INCREMENT(&js_scope_stats.x)
#else
# define METER(x) /* nothing */
#endif
/*
* Double hashing needs the second hash code to be relatively prime to table
* size, so we simply make hash2 odd. The inputs to multiplicative hash are
* the golden ratio, expressed as a fixed-point 32 bit fraction, and the int
* property index or named property's atom number (observe that most objects
* have either no indexed properties, or almost all indexed and a few names,
* so collisions between index and atom number are unlikely).
*/
#define SCOPE_HASH0(id) (HASH_ID(id) * JS_GOLDEN_RATIO)
#define SCOPE_HASH1(hash0,shift) ((hash0) >> (shift))
#define SCOPE_HASH2(hash0,log2,shift) ((((hash0) << (log2)) >> (shift)) | 1)
JS_FRIEND_API(JSScopeProperty **)
js_SearchScope(JSScope *scope, jsid id, JSBool adding)
{
JSHashNumber hash0, hash1, hash2;
int hashShift, sizeLog2;
JSScopeProperty *stored, *sprop, **spp, **firstRemoved;
uint32 sizeMask;
METER(searches);
if (!scope->table) {
/* Not enough properties to justify hashing: search from lastProp. */
JS_ASSERT(!SCOPE_HAD_MIDDLE_DELETE(scope));
for (spp = &scope->lastProp; (sprop = *spp); spp = &sprop->parent) {
if (sprop->id == id) {
METER(hits);
return spp;
}
}
METER(misses);
return spp;
}
/* Compute the primary hash address. */
hash0 = SCOPE_HASH0(id);
hashShift = scope->hashShift;
hash1 = SCOPE_HASH1(hash0, hashShift);
spp = scope->table + hash1;
/* Miss: return space for a new entry. */
stored = *spp;
if (SPROP_IS_FREE(stored)) {
METER(misses);
return spp;
}
/* Hit: return entry. */
sprop = SPROP_CLEAR_COLLISION(stored);
if (sprop && sprop->id == id) {
METER(hits);
return spp;
}
/* Collision: double hash. */
sizeLog2 = JS_DHASH_BITS - hashShift;
hash2 = SCOPE_HASH2(hash0, sizeLog2, hashShift);
sizeMask = JS_BITMASK(sizeLog2);
/* Save the first removed entry pointer so we can recycle it if adding. */
if (SPROP_IS_REMOVED(stored)) {
firstRemoved = spp;
} else {
firstRemoved = NULL;
if (adding && !SPROP_HAD_COLLISION(stored))
SPROP_FLAG_COLLISION(spp, sprop);
}
for (;;) {
METER(steps);
hash1 -= hash2;
hash1 &= sizeMask;
spp = scope->table + hash1;
stored = *spp;
if (SPROP_IS_FREE(stored)) {
METER(stepMisses);
return (adding && firstRemoved) ? firstRemoved : spp;
}
sprop = SPROP_CLEAR_COLLISION(stored);
if (sprop && sprop->id == id) {
METER(stepHits);
return spp;
}
if (SPROP_IS_REMOVED(stored)) {
if (!firstRemoved)
firstRemoved = spp;
} else {
if (adding && !SPROP_HAD_COLLISION(stored))
SPROP_FLAG_COLLISION(spp, sprop);
}
}
/* NOTREACHED */
return NULL;
}
static JSBool
ChangeScope(JSContext *cx, JSScope *scope, int change)
{
int oldlog2, newlog2;
uint32 oldsize, newsize, nbytes;
JSScopeProperty **table, **oldtable, **spp, **oldspp, *sprop;
/* Grow, shrink, or compress by changing scope->table. */
oldlog2 = JS_DHASH_BITS - scope->hashShift;
newlog2 = oldlog2 + change;
oldsize = JS_BIT(oldlog2);
newsize = JS_BIT(newlog2);
nbytes = SCOPE_TABLE_NBYTES(newsize);
table = (JSScopeProperty **) calloc(nbytes, 1);
if (!table) {
JS_ReportOutOfMemory(cx);
return JS_FALSE;
}
/* Now that we have a new table allocated, update scope members. */
scope->hashShift = JS_DHASH_BITS - newlog2;
scope->removedCount = 0;
oldtable = scope->table;
scope->table = table;
/* Treat the above calloc as a JS_malloc, to match CreateScopeTable. */
cx->runtime->gcMallocBytes += nbytes;
/* Copy only live entries, leaving removed and free ones behind. */
for (oldspp = oldtable; oldsize != 0; oldspp++) {
sprop = SPROP_FETCH(oldspp);
if (sprop) {
spp = js_SearchScope(scope, sprop->id, JS_TRUE);
JS_ASSERT(SPROP_IS_FREE(*spp));
*spp = sprop;
}
oldsize--;
}
/* Finally, free the old table storage. */
JS_free(cx, oldtable);
return JS_TRUE;
}
/*
* Take care to exclude the mark and duplicate bits, in case we're called from
* the GC, or we are searching for a property that has not yet been flagged as
* a duplicate when making a duplicate formal parameter.
*/
#define SPROP_FLAGS_NOT_MATCHED (SPROP_MARK | SPROP_IS_DUPLICATE)
JS_STATIC_DLL_CALLBACK(JSDHashNumber)
js_HashScopeProperty(JSDHashTable *table, const void *key)
{
const JSScopeProperty *sprop = (const JSScopeProperty *)key;
JSDHashNumber hash;
JSPropertyOp gsop;
/* Accumulate from least to most random so the low bits are most random. */
hash = 0;
gsop = sprop->getter;
if (gsop)
hash = (hash >> (JS_DHASH_BITS - 4)) ^ (hash << 4) ^ (jsword)gsop;
gsop = sprop->setter;
if (gsop)
hash = (hash >> (JS_DHASH_BITS - 4)) ^ (hash << 4) ^ (jsword)gsop;
hash = (hash >> (JS_DHASH_BITS - 4)) ^ (hash << 4)
^ (sprop->flags & ~SPROP_FLAGS_NOT_MATCHED);
hash = (hash >> (JS_DHASH_BITS - 4)) ^ (hash << 4) ^ sprop->attrs;
hash = (hash >> (JS_DHASH_BITS - 4)) ^ (hash << 4) ^ sprop->shortid;
hash = (hash >> (JS_DHASH_BITS - 4)) ^ (hash << 4) ^ sprop->slot;
hash = (hash >> (JS_DHASH_BITS - 4)) ^ (hash << 4) ^ sprop->id;
return hash;
}
#define SPROP_MATCH(sprop, child) \
SPROP_MATCH_PARAMS(sprop, (child)->id, (child)->getter, (child)->setter, \
(child)->slot, (child)->attrs, (child)->flags, \
(child)->shortid)
#define SPROP_MATCH_PARAMS(sprop, aid, agetter, asetter, aslot, aattrs, \
aflags, ashortid) \
((sprop)->id == (aid) && \
SPROP_MATCH_PARAMS_AFTER_ID(sprop, agetter, asetter, aslot, aattrs, \
aflags, ashortid))
#define SPROP_MATCH_PARAMS_AFTER_ID(sprop, agetter, asetter, aslot, aattrs, \
aflags, ashortid) \
((sprop)->getter == (agetter) && \
(sprop)->setter == (asetter) && \
(sprop)->slot == (aslot) && \
(sprop)->attrs == (aattrs) && \
(((sprop)->flags ^ (aflags)) & ~SPROP_FLAGS_NOT_MATCHED) == 0 && \
(sprop)->shortid == (ashortid))
JS_STATIC_DLL_CALLBACK(JSBool)
js_MatchScopeProperty(JSDHashTable *table,
const JSDHashEntryHdr *hdr,
const void *key)
{
const JSPropertyTreeEntry *entry = (const JSPropertyTreeEntry *)hdr;
const JSScopeProperty *sprop = entry->child;
const JSScopeProperty *kprop = (const JSScopeProperty *)key;
return SPROP_MATCH(sprop, kprop);
}
static const JSDHashTableOps PropertyTreeHashOps = {
JS_DHashAllocTable,
JS_DHashFreeTable,
JS_DHashGetKeyStub,
js_HashScopeProperty,
js_MatchScopeProperty,
JS_DHashMoveEntryStub,
JS_DHashClearEntryStub,
JS_DHashFinalizeStub,
NULL
};
/*
* A property tree node on rt->propertyFreeList overlays the following prefix
* struct on JSScopeProperty.
*/
typedef struct FreeNode {
jsid id;
JSScopeProperty *next;
JSScopeProperty **prevp;
} FreeNode;
#define FREENODE(sprop) ((FreeNode *) (sprop))
#define FREENODE_INSERT(list, sprop) \
JS_BEGIN_MACRO \
FREENODE(sprop)->next = (list); \
FREENODE(sprop)->prevp = &(list); \
if (list) \
FREENODE(list)->prevp = &FREENODE(sprop)->next; \
(list) = (sprop); \
JS_END_MACRO
#define FREENODE_REMOVE(sprop) \
JS_BEGIN_MACRO \
*FREENODE(sprop)->prevp = FREENODE(sprop)->next; \
if (FREENODE(sprop)->next) \
FREENODE(FREENODE(sprop)->next)->prevp = FREENODE(sprop)->prevp; \
JS_END_MACRO
/* NB: Called with the runtime lock held. */
static JSScopeProperty *
NewScopeProperty(JSRuntime *rt)
{
JSScopeProperty *sprop;
sprop = rt->propertyFreeList;
if (sprop) {
FREENODE_REMOVE(sprop);
} else {
JS_ARENA_ALLOCATE_CAST(sprop, JSScopeProperty *,
&rt->propertyArenaPool,
sizeof(JSScopeProperty));
if (!sprop)
return NULL;
}
JS_RUNTIME_METER(rt, livePropTreeNodes);
JS_RUNTIME_METER(rt, totalPropTreeNodes);
return sprop;
}
#define CHUNKY_KIDS_TAG ((jsuword)1)
#define KIDS_IS_CHUNKY(kids) ((jsuword)(kids) & CHUNKY_KIDS_TAG)
#define KIDS_TO_CHUNK(kids) ((PropTreeKidsChunk *) \
((jsuword)(kids) & ~CHUNKY_KIDS_TAG))
#define CHUNK_TO_KIDS(chunk) ((JSScopeProperty *) \
((jsuword)(chunk) | CHUNKY_KIDS_TAG))
#define MAX_KIDS_PER_CHUNK 10
typedef struct PropTreeKidsChunk PropTreeKidsChunk;
struct PropTreeKidsChunk {
JSScopeProperty *kids[MAX_KIDS_PER_CHUNK];
PropTreeKidsChunk *next;
};
static PropTreeKidsChunk *
NewPropTreeKidsChunk(JSRuntime *rt)
{
PropTreeKidsChunk *chunk;
chunk = calloc(1, sizeof *chunk);
if (!chunk)
return NULL;
JS_ASSERT(((jsuword)chunk & CHUNKY_KIDS_TAG) == 0);
JS_RUNTIME_METER(rt, propTreeKidsChunks);
return chunk;
}
static void
DestroyPropTreeKidsChunk(JSRuntime *rt, PropTreeKidsChunk *chunk)
{
JS_RUNTIME_UNMETER(rt, propTreeKidsChunks);
free(chunk);
}
/* NB: Called with the runtime lock held. */
static JSBool
InsertPropertyTreeChild(JSRuntime *rt, JSScopeProperty *parent,
JSScopeProperty *child, PropTreeKidsChunk *sweptChunk)
{
JSPropertyTreeEntry *entry;
JSScopeProperty **childp, *kids, *sprop;
PropTreeKidsChunk *chunk, **chunkp;
uintN i;
JS_ASSERT(!parent || child->parent != parent);
if (!parent) {
entry = (JSPropertyTreeEntry *)
JS_DHashTableOperate(&rt->propertyTreeHash, child, JS_DHASH_ADD);
if (!entry)
return JS_FALSE;
childp = &entry->child;
sprop = *childp;
if (!sprop) {
*childp = child;
} else {
/*
* A "Duplicate child" case.
*
* We can't do away with child, as at least one live scope entry
* still points at it. What's more, that scope's lastProp chains
* through an ancestor line to reach child, and js_Enumerate and
* others count on this linkage. We must leave child out of the
* hash table, and not require it to be there when we eventually
* GC it (see RemovePropertyTreeChild, below).
*
* It is necessary to leave the duplicate child out of the hash
* table to preserve entry uniqueness. It is safe to leave the
* child out of the hash table (unlike the duplicate child cases
* below), because the child's parent link will be null, which
* can't dangle.
*/
JS_ASSERT(sprop != child && SPROP_MATCH(sprop, child));
JS_RUNTIME_METER(rt, duplicatePropTreeNodes);
}
} else {
childp = &parent->kids;
kids = *childp;
if (kids) {
if (KIDS_IS_CHUNKY(kids)) {
chunk = KIDS_TO_CHUNK(kids);
do {
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
childp = &chunk->kids[i];
sprop = *childp;
if (!sprop)
goto insert;
JS_ASSERT(sprop != child);
if (SPROP_MATCH(sprop, child)) {
/*
* Duplicate child, see comment above. In this
* case, we must let the duplicate be inserted at
* this level in the tree, so we keep iterating,
* looking for an empty slot in which to insert.
*/
JS_ASSERT(sprop != child);
JS_RUNTIME_METER(rt, duplicatePropTreeNodes);
}
}
chunkp = &chunk->next;
} while ((chunk = *chunkp) != NULL);
if (sweptChunk) {
chunk = sweptChunk;
} else {
chunk = NewPropTreeKidsChunk(rt);
if (!chunk)
return JS_FALSE;
}
*chunkp = chunk;
childp = &chunk->kids[0];
} else {
sprop = kids;
JS_ASSERT(sprop != child);
if (SPROP_MATCH(sprop, child)) {
/*
* Duplicate child, see comment above. Once again, we
* must let duplicates created by deletion pile up in a
* kids-chunk-list, in order to find them when sweeping
* and thereby avoid dangling parent pointers.
*/
JS_RUNTIME_METER(rt, duplicatePropTreeNodes);
}
if (sweptChunk) {
chunk = sweptChunk;
} else {
chunk = NewPropTreeKidsChunk(rt);
if (!chunk)
return JS_FALSE;
}
parent->kids = CHUNK_TO_KIDS(chunk);
chunk->kids[0] = sprop;
childp = &chunk->kids[1];
}
}
insert:
*childp = child;
}
child->parent = parent;
return JS_TRUE;
}
/* NB: Called with the runtime lock held. */
static PropTreeKidsChunk *
RemovePropertyTreeChild(JSRuntime *rt, JSScopeProperty *child)
{
JSPropertyTreeEntry *entry;
JSScopeProperty *parent, *kids, *kid;
PropTreeKidsChunk *list, *chunk, **chunkp, *lastChunk;
uintN i, j;
parent = child->parent;
if (!parent) {
/*
* Don't remove child if it is not in rt->propertyTreeHash, but only
* matches a root child in the table that has compatible members. See
* the "Duplicate child" comments in InsertPropertyTreeChild, above.
*/
entry = (JSPropertyTreeEntry *)
JS_DHashTableOperate(&rt->propertyTreeHash, child, JS_DHASH_LOOKUP);
if (entry->child == child)
JS_DHashTableRawRemove(&rt->propertyTreeHash, &entry->hdr);
} else {
kids = parent->kids;
if (KIDS_IS_CHUNKY(kids)) {
list = chunk = KIDS_TO_CHUNK(kids);
chunkp = &list;
do {
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
if (chunk->kids[i] == child) {
lastChunk = chunk;
if (!lastChunk->next) {
j = i + 1;
} else {
j = 0;
do {
chunkp = &lastChunk->next;
lastChunk = *chunkp;
} while (lastChunk->next);
}
for (; j < MAX_KIDS_PER_CHUNK; j++) {
if (!lastChunk->kids[j])
break;
}
--j;
if (chunk != lastChunk || j > i)
chunk->kids[i] = lastChunk->kids[j];
lastChunk->kids[j] = NULL;
if (j == 0) {
*chunkp = NULL;
if (!list)
parent->kids = NULL;
return lastChunk;
}
return NULL;
}
}
chunkp = &chunk->next;
} while ((chunk = *chunkp) != NULL);
} else {
kid = kids;
if (kid == child)
parent->kids = NULL;
}
}
return NULL;
}
/*
* Called *without* the runtime lock held, this function acquires that lock
* only when inserting a new child. Thus there may be races to find or add
* a node that result in duplicates. We expect such races to be rare!
*/
static JSScopeProperty *
GetPropertyTreeChild(JSContext *cx, JSScopeProperty *parent,
JSScopeProperty *child)
{
JSRuntime *rt;
JSPropertyTreeEntry *entry;
JSScopeProperty *sprop;
PropTreeKidsChunk *chunk;
uintN i;
rt = cx->runtime;
if (!parent) {
JS_LOCK_RUNTIME(rt);
entry = (JSPropertyTreeEntry *)
JS_DHashTableOperate(&rt->propertyTreeHash, child, JS_DHASH_ADD);
if (!entry)
goto out_of_memory;
sprop = entry->child;
if (sprop)
goto out;
} else {
/*
* Because chunks are appended at the end and never deleted except by
* the GC, we can search without taking the runtime lock. We may miss
* a matching sprop added by another thread, and make a duplicate one,
* but that is an unlikely, therefore small, cost. The property tree
* has extremely low fan-out below its root in popular embeddings with
* real-world workloads.
*
* If workload changes so as to increase fan-out significantly below
* the property tree root, we'll want to add another tag bit stored in
* parent->kids that indicates a JSDHashTable pointer.
*/
entry = NULL;
sprop = parent->kids;
if (sprop) {
if (KIDS_IS_CHUNKY(sprop)) {
chunk = KIDS_TO_CHUNK(sprop);
do {
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
sprop = chunk->kids[i];
if (!sprop)
goto not_found;
if (SPROP_MATCH(sprop, child))
return sprop;
}
} while ((chunk = chunk->next) != NULL);
} else {
if (SPROP_MATCH(sprop, child))
return sprop;
}
}
not_found:
JS_LOCK_RUNTIME(rt);
}
sprop = NewScopeProperty(rt);
if (!sprop)
goto out_of_memory;
sprop->id = child->id;
sprop->getter = child->getter;
sprop->setter = child->setter;
sprop->slot = child->slot;
sprop->attrs = child->attrs;
sprop->flags = child->flags;
sprop->shortid = child->shortid;
sprop->parent = sprop->kids = NULL;
if (!parent) {
entry->child = sprop;
} else {
if (!InsertPropertyTreeChild(rt, parent, sprop, NULL))
goto out_of_memory;
}
out:
JS_UNLOCK_RUNTIME(rt);
return sprop;
out_of_memory:
JS_UNLOCK_RUNTIME(rt);
JS_ReportOutOfMemory(cx);
return NULL;
}
#ifdef DEBUG_notbrendan
#define CHECK_ANCESTOR_LINE(scope, sparse) \
JS_BEGIN_MACRO \
if ((scope)->table) CheckAncestorLine(scope, sparse); \
JS_END_MACRO
static void
CheckAncestorLine(JSScope *scope, JSBool sparse)
{
uint32 size;
JSScopeProperty **spp, **start, **end, *ancestorLine, *sprop, *aprop;
uint32 entryCount, ancestorCount;
ancestorLine = SCOPE_LAST_PROP(scope);
if (ancestorLine)
JS_ASSERT(SCOPE_HAS_PROPERTY(scope, ancestorLine));
entryCount = 0;
size = SCOPE_CAPACITY(scope);
start = scope->table;
for (spp = start, end = start + size; spp < end; spp++) {
sprop = SPROP_FETCH(spp);
if (sprop) {
entryCount++;
for (aprop = ancestorLine; aprop; aprop = aprop->parent) {
if (aprop == sprop)
break;
}
JS_ASSERT(aprop);
}
}
JS_ASSERT(entryCount == scope->entryCount);
ancestorCount = 0;
for (sprop = ancestorLine; sprop; sprop = sprop->parent) {
if (SCOPE_HAD_MIDDLE_DELETE(scope) &&
!SCOPE_HAS_PROPERTY(scope, sprop)) {
JS_ASSERT(sparse || (sprop->flags & SPROP_IS_DUPLICATE));
continue;
}
ancestorCount++;
}
JS_ASSERT(ancestorCount == scope->entryCount);
}
#else
#define CHECK_ANCESTOR_LINE(scope, sparse) /* nothing */
#endif
static void
ReportReadOnlyScope(JSContext *cx, JSScope *scope)
{
JSString *str;
str = js_ValueToString(cx, OBJECT_TO_JSVAL(scope->object));
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_READ_ONLY,
str
? JS_GetStringBytes(str)
: LOCKED_OBJ_GET_CLASS(scope->object)->name);
}
JSScopeProperty *
js_AddScopeProperty(JSContext *cx, JSScope *scope, jsid id,
JSPropertyOp getter, JSPropertyOp setter, uint32 slot,
uintN attrs, uintN flags, intN shortid)
{
JSScopeProperty **spp, *sprop, *overwriting, **spvec, **spp2, child;
uint32 size, splen, i;
int change;
JSTempValueRooter tvr;
JS_ASSERT(JS_IS_SCOPE_LOCKED(cx, scope));
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
/*
* You can't add properties to a sealed scope. But note well that you can
* change property attributes in a sealed scope, even though that replaces
* a JSScopeProperty * in the scope's hash table -- but no id is added, so
* the scope remains sealed.
*/
if (SCOPE_IS_SEALED(scope)) {
ReportReadOnlyScope(cx, scope);
return NULL;
}
/*
* Normalize stub getter and setter values for faster is-stub testing in
* the SPROP_CALL_[GS]ETTER macros.
*/
if (getter == JS_PropertyStub)
getter = NULL;
if (setter == JS_PropertyStub)
setter = NULL;
/*
* Search for id in order to claim its entry, allocating a property tree
* node if one doesn't already exist for our parameters.
*/
spp = js_SearchScope(scope, id, JS_TRUE);
sprop = overwriting = SPROP_FETCH(spp);
if (!sprop) {
/* Check whether we need to grow, if the load factor is >= .75. */
size = SCOPE_CAPACITY(scope);
if (scope->entryCount + scope->removedCount >= size - (size >> 2)) {
if (scope->removedCount >= size >> 2) {
METER(compresses);
change = 0;
} else {
METER(grows);
change = 1;
}
if (!ChangeScope(cx, scope, change) &&
scope->entryCount + scope->removedCount == size - 1) {
METER(addFailures);
return NULL;
}
spp = js_SearchScope(scope, id, JS_TRUE);
JS_ASSERT(!SPROP_FETCH(spp));
}
} else {
/* Property exists: js_SearchScope must have returned a valid entry. */
JS_ASSERT(!SPROP_IS_REMOVED(*spp));
/*
* If all property members match, this is a redundant add and we can
* return early. If the caller wants to allocate a slot, but doesn't
* care which slot, copy sprop->slot into slot so we can match sprop,
* if all other members match.
*/
if (!(attrs & JSPROP_SHARED) &&
slot == SPROP_INVALID_SLOT &&
SPROP_HAS_VALID_SLOT(sprop, scope)) {
slot = sprop->slot;
}
if (SPROP_MATCH_PARAMS_AFTER_ID(sprop, getter, setter, slot, attrs,
flags, shortid)) {
METER(redundantAdds);
return sprop;
}
/*
* Duplicate formal parameters require us to leave the old property
* on the ancestor line, so the decompiler can find it, even though
* its entry in scope->table is overwritten to point at a new property
* descending from the old one. The SPROP_IS_DUPLICATE flag helps us
* cope with the consequent disparity between ancestor line height and
* scope->entryCount.
*/
if (flags & SPROP_IS_DUPLICATE) {
sprop->flags |= SPROP_IS_DUPLICATE;
} else {
/*
* If we are clearing sprop to force an existing property to be
* overwritten (apart from a duplicate formal parameter), we must
* unlink it from the ancestor line at scope->lastProp, lazily if
* sprop is not lastProp. And we must remove the entry at *spp,
* precisely so the lazy "middle delete" fixup code further below
* won't find sprop in scope->table, in spite of sprop being on
* the ancestor line.
*
* When we finally succeed in finding or creating a new sprop
* and storing its pointer at *spp, we'll use the |overwriting|
* local saved when we first looked up id to decide whether we're
* indeed creating a new entry, or merely overwriting an existing
* property.
*/
if (sprop == SCOPE_LAST_PROP(scope)) {
do {
SCOPE_REMOVE_LAST_PROP(scope);
if (!SCOPE_HAD_MIDDLE_DELETE(scope))
break;
sprop = SCOPE_LAST_PROP(scope);
} while (sprop && !SCOPE_HAS_PROPERTY(scope, sprop));
} else if (!SCOPE_HAD_MIDDLE_DELETE(scope)) {
/*
* If we have no hash table yet, we need one now. The middle
* delete code is simple-minded that way!
*/
if (!scope->table) {
if (!CreateScopeTable(cx, scope, JS_TRUE))
return NULL;
spp = js_SearchScope(scope, id, JS_TRUE);
sprop = overwriting = SPROP_FETCH(spp);
}
SCOPE_SET_MIDDLE_DELETE(scope);
}
}
/*
* If we fail later on trying to find or create a new sprop, we will
* goto fail_overwrite and restore *spp from |overwriting|. Note that
* we don't bother to keep scope->removedCount in sync, because we'll
* fix up *spp and scope->entryCount shortly, no matter how control
* flow returns from this function.
*/
if (scope->table)
SPROP_STORE_PRESERVING_COLLISION(spp, NULL);
scope->entryCount--;
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
sprop = NULL;
}
if (!sprop) {
/*
* If properties were deleted from the middle of the list starting at
* scope->lastProp, we may need to fork the property tree and squeeze
* all deleted properties out of scope's ancestor line. Otherwise we
* risk adding a node with the same id as a "middle" node, violating
* the rule that properties along an ancestor line have distinct ids
* (unless flagged SPROP_IS_DUPLICATE).
*/
if (SCOPE_HAD_MIDDLE_DELETE(scope)) {
JS_ASSERT(scope->table);
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
splen = scope->entryCount;
if (splen == 0) {
JS_ASSERT(scope->lastProp == NULL);
} else {
/*
* Enumerate live entries in scope->table using a temporary
* vector, by walking the (possibly sparse, due to deletions)
* ancestor line from scope->lastProp.
*/
spvec = (JSScopeProperty **)
JS_malloc(cx, SCOPE_TABLE_NBYTES(splen));
if (!spvec)
goto fail_overwrite;
i = splen;
sprop = SCOPE_LAST_PROP(scope);
JS_ASSERT(sprop);
do {
/*
* NB: test SCOPE_GET_PROPERTY, not SCOPE_HAS_PROPERTY --
* the latter insists that sprop->id maps to sprop, while
* the former simply tests whether sprop->id is bound in
* scope. We must allow for duplicate formal parameters
* along the ancestor line, and fork them as needed.
*/
if (!SCOPE_GET_PROPERTY(scope, sprop->id))
continue;
JS_ASSERT(sprop != overwriting);
if (i == 0) {
/*
* If our original splen estimate, scope->entryCount,
* is less than the ancestor line height, there must
* be duplicate formal parameters in this (function
* object) scope. Count remaining ancestors in order
* to realloc spvec.
*/
JSScopeProperty *tmp = sprop;
do {
if (SCOPE_GET_PROPERTY(scope, tmp->id))
i++;
} while ((tmp = tmp->parent) != NULL);
spp2 = (JSScopeProperty **)
JS_realloc(cx, spvec, SCOPE_TABLE_NBYTES(splen+i));
if (!spp2) {
JS_free(cx, spvec);
goto fail_overwrite;
}
spvec = spp2;
memmove(spvec + i, spvec, SCOPE_TABLE_NBYTES(splen));
splen += i;
}
spvec[--i] = sprop;
} while ((sprop = sprop->parent) != NULL);
JS_ASSERT(i == 0);
/*
* Now loop forward through spvec, forking the property tree
* whenever we see a "parent gap" due to deletions from scope.
* NB: sprop is null on first entry to the loop body.
*/
do {
if (spvec[i]->parent == sprop) {
sprop = spvec[i];
} else {
sprop = GetPropertyTreeChild(cx, sprop, spvec[i]);
if (!sprop) {
JS_free(cx, spvec);
goto fail_overwrite;
}
spp2 = js_SearchScope(scope, sprop->id, JS_FALSE);
JS_ASSERT(SPROP_FETCH(spp2) == spvec[i]);
SPROP_STORE_PRESERVING_COLLISION(spp2, sprop);
}
} while (++i < splen);
JS_free(cx, spvec);
/*
* Now sprop points to the last property in scope, where the
* ancestor line from sprop to the root is dense w.r.t. scope:
* it contains no nodes not mapped by scope->table, apart from
* any stinking ECMA-mandated duplicate formal parameters.
*/
scope->lastProp = sprop;
CHECK_ANCESTOR_LINE(scope, JS_FALSE);
JS_RUNTIME_METER(cx->runtime, middleDeleteFixups);
}
SCOPE_CLR_MIDDLE_DELETE(scope);
}
/*
* Aliases share another property's slot, passed in the |slot| param.
* Shared properties have no slot. Unshared properties that do not
* alias another property's slot get one here, but may lose it due to
* a JS_ClearScope call.
*/
if (!(flags & SPROP_IS_ALIAS)) {
if (attrs & JSPROP_SHARED) {
slot = SPROP_INVALID_SLOT;
} else {
/*
* We may have set slot from a nearly-matching sprop, above.
* If so, we're overwriting that nearly-matching sprop, so we
* can reuse its slot -- we don't need to allocate a new one.
* Callers should therefore pass SPROP_INVALID_SLOT for all
* non-alias, unshared property adds.
*/
if (slot != SPROP_INVALID_SLOT)
JS_ASSERT(overwriting);
else if (!js_AllocSlot(cx, scope->object, &slot))
goto fail_overwrite;
}
}
/*
* Check for a watchpoint on a deleted property; if one exists, change
* setter to js_watch_set.
* XXXbe this could get expensive with lots of watchpoints...
*/
if (!JS_CLIST_IS_EMPTY(&cx->runtime->watchPointList) &&
js_FindWatchPoint(cx->runtime, scope, id)) {
if (overwriting)
JS_PUSH_TEMP_ROOT_SPROP(cx, overwriting, &tvr);
setter = js_WrapWatchedSetter(cx, id, attrs, setter);
if (overwriting)
JS_POP_TEMP_ROOT(cx, &tvr);
if (!setter)
goto fail_overwrite;
}
/* Find or create a property tree node labeled by our arguments. */
child.id = id;
child.getter = getter;
child.setter = setter;
child.slot = slot;
child.attrs = attrs;
child.flags = flags;
child.shortid = shortid;
sprop = GetPropertyTreeChild(cx, scope->lastProp, &child);
if (!sprop)
goto fail_overwrite;
/* Store the tree node pointer in the table entry for id. */
if (scope->table)
SPROP_STORE_PRESERVING_COLLISION(spp, sprop);
scope->entryCount++;
scope->lastProp = sprop;
CHECK_ANCESTOR_LINE(scope, JS_FALSE);
if (!overwriting) {
JS_RUNTIME_METER(cx->runtime, liveScopeProps);
JS_RUNTIME_METER(cx->runtime, totalScopeProps);
}
/*
* If we reach the hashing threshold, try to allocate scope->table.
* If we can't (a rare event, preceded by swapping to death on most
* modern OSes), stick with linear search rather than whining about
* this little set-back. Therefore we must test !scope->table and
* scope->entryCount >= SCOPE_HASH_THRESHOLD, not merely whether the
* entry count just reached the threshold.
*/
if (!scope->table && scope->entryCount >= SCOPE_HASH_THRESHOLD)
(void) CreateScopeTable(cx, scope, JS_FALSE);
}
METER(adds);
return sprop;
fail_overwrite:
if (overwriting) {
/*
* We may or may not have forked overwriting out of scope's ancestor
* line, so we must check (the alternative is to set a flag above, but
* that hurts the common, non-error case). If we did fork overwriting
* out, we'll add it back at scope->lastProp. This means enumeration
* order can change due to a failure to overwrite an id.
* XXXbe very minor incompatibility
*/
for (sprop = SCOPE_LAST_PROP(scope); ; sprop = sprop->parent) {
if (!sprop) {
sprop = SCOPE_LAST_PROP(scope);
if (overwriting->parent == sprop) {
scope->lastProp = overwriting;
} else {
sprop = GetPropertyTreeChild(cx, sprop, overwriting);
if (sprop) {
JS_ASSERT(sprop != overwriting);
scope->lastProp = sprop;
}
overwriting = sprop;
}
break;
}
if (sprop == overwriting)
break;
}
if (overwriting) {
if (scope->table)
SPROP_STORE_PRESERVING_COLLISION(spp, overwriting);
scope->entryCount++;
}
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
}
METER(addFailures);
return NULL;
}
JSScopeProperty *
js_ChangeScopePropertyAttrs(JSContext *cx, JSScope *scope,
JSScopeProperty *sprop, uintN attrs, uintN mask,
JSPropertyOp getter, JSPropertyOp setter)
{
JSScopeProperty child, *newsprop, **spp;
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
/* Allow only shared (slot-less) => unshared (slot-full) transition. */
attrs |= sprop->attrs & mask;
JS_ASSERT(!((attrs ^ sprop->attrs) & JSPROP_SHARED) ||
!(attrs & JSPROP_SHARED));
if (getter == JS_PropertyStub)
getter = NULL;
if (setter == JS_PropertyStub)
setter = NULL;
if (sprop->attrs == attrs &&
sprop->getter == getter &&
sprop->setter == setter) {
return sprop;
}
child.id = sprop->id;
child.getter = getter;
child.setter = setter;
child.slot = sprop->slot;
child.attrs = attrs;
child.flags = sprop->flags;
child.shortid = sprop->shortid;
if (SCOPE_LAST_PROP(scope) == sprop) {
/*
* Optimize the case where the last property added to scope is changed
* to have a different attrs, getter, or setter. In the last property
* case, we need not fork the property tree. But since we do not call
* js_AddScopeProperty, we may need to allocate a new slot directly.
*/
if ((sprop->attrs & JSPROP_SHARED) && !(attrs & JSPROP_SHARED)) {
JS_ASSERT(child.slot == SPROP_INVALID_SLOT);
if (!js_AllocSlot(cx, scope->object, &child.slot))
return NULL;
}
newsprop = GetPropertyTreeChild(cx, sprop->parent, &child);
if (newsprop) {
spp = js_SearchScope(scope, sprop->id, JS_FALSE);
JS_ASSERT(SPROP_FETCH(spp) == sprop);
if (scope->table)
SPROP_STORE_PRESERVING_COLLISION(spp, newsprop);
scope->lastProp = newsprop;
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
}
} else {
/*
* Let js_AddScopeProperty handle this |overwriting| case, including
* the conservation of sprop->slot (if it's valid). We must not call
* js_RemoveScopeProperty here, it will free a valid sprop->slot and
* js_AddScopeProperty won't re-allocate it.
*/
newsprop = js_AddScopeProperty(cx, scope, child.id,
child.getter, child.setter, child.slot,
child.attrs, child.flags, child.shortid);
}
#ifdef DUMP_SCOPE_STATS
if (!newsprop)
METER(changeFailures);
#endif
return newsprop;
}
JSBool
js_RemoveScopeProperty(JSContext *cx, JSScope *scope, jsid id)
{
JSScopeProperty **spp, *stored, *sprop;
uint32 size;
JS_ASSERT(JS_IS_SCOPE_LOCKED(cx, scope));
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
if (SCOPE_IS_SEALED(scope)) {
ReportReadOnlyScope(cx, scope);
return JS_FALSE;
}
METER(removes);
spp = js_SearchScope(scope, id, JS_FALSE);
stored = *spp;
sprop = SPROP_CLEAR_COLLISION(stored);
if (!sprop) {
METER(uselessRemoves);
return JS_TRUE;
}
/* Convert from a list to a hash so we can handle "middle deletes". */
if (!scope->table && sprop != scope->lastProp) {
if (!CreateScopeTable(cx, scope, JS_TRUE))
return JS_FALSE;
spp = js_SearchScope(scope, id, JS_FALSE);
stored = *spp;
sprop = SPROP_CLEAR_COLLISION(stored);
}
/* First, if sprop is unshared and not cleared, free its slot number. */
if (SPROP_HAS_VALID_SLOT(sprop, scope)) {
js_FreeSlot(cx, scope->object, sprop->slot);
JS_ATOMIC_INCREMENT(&cx->runtime->propertyRemovals);
}
/* Next, remove id by setting its entry to a removed or free sentinel. */
if (SPROP_HAD_COLLISION(stored)) {
JS_ASSERT(scope->table);
*spp = SPROP_REMOVED;
scope->removedCount++;
} else {
METER(removeFrees);
if (scope->table)
*spp = NULL;
}
scope->entryCount--;
JS_RUNTIME_UNMETER(cx->runtime, liveScopeProps);
/* Update scope->lastProp directly, or set its deferred update flag. */
if (sprop == SCOPE_LAST_PROP(scope)) {
do {
SCOPE_REMOVE_LAST_PROP(scope);
if (!SCOPE_HAD_MIDDLE_DELETE(scope))
break;
sprop = SCOPE_LAST_PROP(scope);
} while (sprop && !SCOPE_HAS_PROPERTY(scope, sprop));
} else if (!SCOPE_HAD_MIDDLE_DELETE(scope)) {
SCOPE_SET_MIDDLE_DELETE(scope);
}
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
/* Last, consider shrinking scope's table if its load factor is <= .25. */
size = SCOPE_CAPACITY(scope);
if (size > MIN_SCOPE_SIZE && scope->entryCount <= size >> 2) {
METER(shrinks);
(void) ChangeScope(cx, scope, -1);
}
return JS_TRUE;
}
void
js_ClearScope(JSContext *cx, JSScope *scope)
{
CHECK_ANCESTOR_LINE(scope, JS_TRUE);
#ifdef DEBUG
JS_LOCK_RUNTIME_VOID(cx->runtime,
cx->runtime->liveScopeProps -= scope->entryCount);
#endif
if (scope->table)
free(scope->table);
SCOPE_CLR_MIDDLE_DELETE(scope);
InitMinimalScope(scope);
JS_ATOMIC_INCREMENT(&cx->runtime->propertyRemovals);
}
void
js_MarkId(JSContext *cx, jsid id)
{
if (JSID_IS_ATOM(id))
GC_MARK_ATOM(cx, JSID_TO_ATOM(id));
else if (JSID_IS_OBJECT(id))
GC_MARK(cx, JSID_TO_OBJECT(id), "id");
else
JS_ASSERT(JSID_IS_INT(id));
}
#if defined GC_MARK_DEBUG || defined DUMP_SCOPE_STATS
# include "jsprf.h"
#endif
void
js_MarkScopeProperty(JSContext *cx, JSScopeProperty *sprop)
{
sprop->flags |= SPROP_MARK;
MARK_ID(cx, sprop->id);
#if JS_HAS_GETTER_SETTER
if (sprop->attrs & (JSPROP_GETTER | JSPROP_SETTER)) {
#ifdef GC_MARK_DEBUG
char buf[64];
char buf2[11];
const char *id;
if (JSID_IS_ATOM(sprop->id)) {
JSAtom *atom = JSID_TO_ATOM(sprop->id);
id = (atom && ATOM_IS_STRING(atom))
? JS_GetStringBytes(ATOM_TO_STRING(atom))
: "unknown";
} else if (JSID_IS_INT(sprop->id)) {
JS_snprintf(buf2, sizeof buf2, "%d", JSID_TO_INT(sprop->id));
id = buf2;
} else {
id = "<object>";
}
#endif
if (sprop->attrs & JSPROP_GETTER) {
#ifdef GC_MARK_DEBUG
JS_snprintf(buf, sizeof buf, "%s %s",
id, js_getter_str);
#endif
GC_MARK(cx, JSVAL_TO_GCTHING((jsval) sprop->getter), buf);
}
if (sprop->attrs & JSPROP_SETTER) {
#ifdef GC_MARK_DEBUG
JS_snprintf(buf, sizeof buf, "%s %s",
id, js_setter_str);
#endif
GC_MARK(cx, JSVAL_TO_GCTHING((jsval) sprop->setter), buf);
}
}
#endif /* JS_HAS_GETTER_SETTER */
}
#ifdef DUMP_SCOPE_STATS
#include <stdio.h>
#include <math.h>
uint32 js_nkids_max;
uint32 js_nkids_sum;
double js_nkids_sqsum;
uint32 js_nkids_hist[11];
static void
MeterKidCount(uintN nkids)
{
if (nkids) {
js_nkids_sum += nkids;
js_nkids_sqsum += (double)nkids * nkids;
if (nkids > js_nkids_max)
js_nkids_max = nkids;
}
js_nkids_hist[JS_MIN(nkids, 10)]++;
}
static void
MeterPropertyTree(JSScopeProperty *node)
{
uintN i, nkids;
JSScopeProperty *kids, *kid;
PropTreeKidsChunk *chunk;
nkids = 0;
kids = node->kids;
if (kids) {
if (KIDS_IS_CHUNKY(kids)) {
for (chunk = KIDS_TO_CHUNK(kids); chunk; chunk = chunk->next) {
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
kid = chunk->kids[i];
if (!kid)
break;
MeterPropertyTree(kid);
nkids++;
}
}
} else {
MeterPropertyTree(kids);
nkids = 1;
}
}
MeterKidCount(nkids);
}
JS_STATIC_DLL_CALLBACK(JSDHashOperator)
js_MeterPropertyTree(JSDHashTable *table, JSDHashEntryHdr *hdr, uint32 number,
void *arg)
{
JSPropertyTreeEntry *entry = (JSPropertyTreeEntry *)hdr;
MeterPropertyTree(entry->child);
return JS_DHASH_NEXT;
}
static void
DumpSubtree(JSScopeProperty *sprop, int level, FILE *fp)
{
char buf[10];
JSScopeProperty *kids, *kid;
PropTreeKidsChunk *chunk;
uintN i;
fprintf(fp, "%*sid %s g/s %p/%p slot %lu attrs %x flags %x shortid %d\n",
level, "",
JSID_IS_ATOM(sprop->id)
? JS_GetStringBytes(ATOM_TO_STRING(JSID_TO_ATOM(sprop->id)))
: JSID_IS_OBJECT(sprop->id)
? js_ValueToPrintableString(cx, OBJECT_JSID_TO_JSVAL(sprop->id))
: (JS_snprintf(buf, sizeof buf, "%ld", JSVAL_TO_INT(sprop->id)),
buf)
(void *) sprop->getter, (void *) sprop->setter,
(unsigned long) sprop->slot, sprop->attrs, sprop->flags,
sprop->shortid);
kids = sprop->kids;
if (kids) {
++level;
if (KIDS_IS_CHUNKY(kids)) {
chunk = KIDS_TO_CHUNK(kids);
do {
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
kid = chunk->kids[i];
if (!kid)
break;
JS_ASSERT(kid->parent == sprop);
DumpSubtree(kid, level, fp);
}
} while ((chunk = chunk->next) != NULL);
} else {
kid = kids;
DumpSubtree(kid, level, fp);
}
}
}
#endif /* DUMP_SCOPE_STATS */
void
js_SweepScopeProperties(JSRuntime *rt)
{
JSArena **ap, *a;
JSScopeProperty *limit, *sprop, *parent, *kids, *kid;
uintN liveCount;
PropTreeKidsChunk *chunk, *nextChunk, *freeChunk;
uintN i;
#ifdef DUMP_SCOPE_STATS
uint32 livePropCapacity = 0, totalLiveCount = 0;
static FILE *logfp;
if (!logfp)
logfp = fopen("/tmp/proptree.stats", "a");
MeterKidCount(rt->propertyTreeHash.entryCount);
JS_DHashTableEnumerate(&rt->propertyTreeHash, js_MeterPropertyTree, NULL);
{
double mean = 0.0, var = 0.0, sigma = 0.0;
double nodesum = rt->livePropTreeNodes;
double kidsum = js_nkids_sum;
if (nodesum > 0 && kidsum >= 0) {
mean = kidsum / nodesum;
var = nodesum * js_nkids_sqsum - kidsum * kidsum;
if (var < 0.0 || nodesum <= 1)
var = 0.0;
else
var /= nodesum * (nodesum - 1);
/* Windows says sqrt(0.0) is "-1.#J" (?!) so we must test. */
sigma = (var != 0.0) ? sqrt(var) : 0.0;
}
fprintf(logfp,
"props %u nodes %g beta %g meankids %g sigma %g max %u",
rt->liveScopeProps, nodesum, nodesum / rt->liveScopeProps,
mean, sigma, js_nkids_max);
}
fprintf(logfp, " histogram %u %u %u %u %u %u %u %u %u %u %u",
js_nkids_hist[0], js_nkids_hist[1],
js_nkids_hist[2], js_nkids_hist[3],
js_nkids_hist[4], js_nkids_hist[5],
js_nkids_hist[6], js_nkids_hist[7],
js_nkids_hist[8], js_nkids_hist[9],
js_nkids_hist[10]);
js_nkids_sum = js_nkids_max = 0;
js_nkids_sqsum = 0;
memset(js_nkids_hist, 0, sizeof js_nkids_hist);
#endif
ap = &rt->propertyArenaPool.first.next;
while ((a = *ap) != NULL) {
limit = (JSScopeProperty *) a->avail;
liveCount = 0;
for (sprop = (JSScopeProperty *) a->base; sprop < limit; sprop++) {
/* If the id is null, sprop is already on the freelist. */
if (sprop->id == JSVAL_NULL)
continue;
/* If the mark bit is set, sprop is alive, so we skip it. */
if (sprop->flags & SPROP_MARK) {
sprop->flags &= ~SPROP_MARK;
liveCount++;
continue;
}
/* Ok, sprop is garbage to collect: unlink it from its parent. */
freeChunk = RemovePropertyTreeChild(rt, sprop);
/*
* Take care to reparent all sprop's kids to their grandparent.
* InsertPropertyTreeChild can potentially fail for two reasons:
*
* 1. If parent is null, insertion into the root property hash
* table may fail. We are forced to leave the kid out of the
* table (as can already happen with duplicates) but ensure
* that the kid's parent pointer is set to null.
*
* 2. If parent is non-null, allocation of a new KidsChunk can
* fail. To prevent this from happening, we allow sprops's own
* chunks to be reused by the grandparent, which removes the
* need for InsertPropertyTreeChild to malloc a new KidsChunk.
*
* If sprop does not have chunky kids, then we rely on the
* RemovePropertyTreeChild call above (which removed sprop from
* its parent) either leaving one free entry, or else returning
* the now-unused chunk to us so we can reuse it.
*
* We also require the grandparent to have either no kids or else
* chunky kids. A single non-chunky kid would force a new chunk to
* be malloced in some cases (if sprop had a single non-chunky
* kid, or a multiple of MAX_KIDS_PER_CHUNK kids). Note that
* RemovePropertyTreeChild never converts a single-entry chunky
* kid back to a non-chunky kid, so we are assured of correct
* behaviour.
*/
kids = sprop->kids;
if (kids) {
sprop->kids = NULL;
parent = sprop->parent;
/* Validate that grandparent has no kids or chunky kids. */
JS_ASSERT(!parent || !parent->kids ||
KIDS_IS_CHUNKY(parent->kids));
if (KIDS_IS_CHUNKY(kids)) {
chunk = KIDS_TO_CHUNK(kids);
do {
nextChunk = chunk->next;
chunk->next = NULL;
for (i = 0; i < MAX_KIDS_PER_CHUNK; i++) {
kid = chunk->kids[i];
if (!kid)
break;
JS_ASSERT(kid->parent == sprop);
/*
* Clear a space in the kids array for possible
* re-use by InsertPropertyTreeChild.
*/
chunk->kids[i] = NULL;
if (!InsertPropertyTreeChild(rt, parent, kid,
chunk)) {
/*
* This can happen only if we failed to add an
* entry to the root property hash table.
*/
JS_ASSERT(!parent);
kid->parent = NULL;
}
}
if (!chunk->kids[0]) {
/* The chunk wasn't reused, so we must free it. */
DestroyPropTreeKidsChunk(rt, chunk);
}
} while ((chunk = nextChunk) != NULL);
} else {
kid = kids;
if (!InsertPropertyTreeChild(rt, parent, kid, freeChunk)) {
/*
* This can happen only if we failed to add an entry
* to the root property hash table.
*/
JS_ASSERT(!parent);
kid->parent = NULL;
}
}
}
if (freeChunk && !freeChunk->kids[0]) {
/* The chunk wasn't reused, so we must free it. */
DestroyPropTreeKidsChunk(rt, freeChunk);
}
/* Clear id so we know (above) that sprop is on the freelist. */
sprop->id = JSVAL_NULL;
FREENODE_INSERT(rt->propertyFreeList, sprop);
JS_RUNTIME_UNMETER(rt, livePropTreeNodes);
}
/* If a contains no live properties, return it to the malloc heap. */
if (liveCount == 0) {
for (sprop = (JSScopeProperty *) a->base; sprop < limit; sprop++)
FREENODE_REMOVE(sprop);
JS_ARENA_DESTROY(&rt->propertyArenaPool, a, ap);
} else {
#ifdef DUMP_SCOPE_STATS
livePropCapacity += limit - (JSScopeProperty *) a->base;
totalLiveCount += liveCount;
#endif
ap = &a->next;
}
}
#ifdef DUMP_SCOPE_STATS
fprintf(logfp, " arenautil %g%%\n",
(totalLiveCount * 100.0) / livePropCapacity);
fflush(logfp);
#endif
#ifdef DUMP_PROPERTY_TREE
{
FILE *dumpfp = fopen("/tmp/proptree.dump", "w");
if (dumpfp) {
JSPropertyTreeEntry *pte, *end;
pte = (JSPropertyTreeEntry *) rt->propertyTreeHash.entryStore;
end = pte + JS_DHASH_TABLE_SIZE(&rt->propertyTreeHash);
while (pte < end) {
if (pte->child)
DumpSubtree(pte->child, 0, dumpfp);
pte++;
}
fclose(dumpfp);
}
}
#endif
}
JSBool
js_InitPropertyTree(JSRuntime *rt)
{
if (!JS_DHashTableInit(&rt->propertyTreeHash, &PropertyTreeHashOps, NULL,
sizeof(JSPropertyTreeEntry), JS_DHASH_MIN_SIZE)) {
rt->propertyTreeHash.ops = NULL;
return JS_FALSE;
}
JS_InitArenaPool(&rt->propertyArenaPool, "properties",
256 * sizeof(JSScopeProperty), sizeof(void *));
return JS_TRUE;
}
void
js_FinishPropertyTree(JSRuntime *rt)
{
if (rt->propertyTreeHash.ops) {
JS_DHashTableFinish(&rt->propertyTreeHash);
rt->propertyTreeHash.ops = NULL;
}
JS_FinishArenaPool(&rt->propertyArenaPool);
}