mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-10 18:00:15 +01:00
30d33aa8e8
9934c8faef29, 3c3b381c4865, 5a67f6beee9a, 1b1eb6d77728, a8b668fd72f7, bug962760, bug743700, bug857304, bug972653, bug972450, bug971358, bug903885, bug977073, bug976111, bug949939, bug947653, bug947572, bug903885, bug979106, bug966596, bug979004, bug979752, bug980848, bug938369, bug981170, bug668130, bug974693, bug975056, bug979132, bug370717, bug979070, bug985070, bug900067, bug977673, bug519255, bug989558, bug557299, bug987263, bug369802, a751a5146718, bug992343, bug952572, bug979703, bug994883, bug994869, bug993489, bug984608, bug977869, bug667371, bug672828, bug793347, bug977869
1324 lines
38 KiB
C
1324 lines
38 KiB
C
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifdef FREEBL_NO_DEPEND
|
|
#include "stubs.h"
|
|
#endif
|
|
|
|
#include "prinit.h"
|
|
#include "prerr.h"
|
|
#include "secerr.h"
|
|
|
|
#include "prtypes.h"
|
|
#include "blapi.h"
|
|
#include "rijndael.h"
|
|
|
|
#include "cts.h"
|
|
#include "ctr.h"
|
|
#include "gcm.h"
|
|
|
|
#ifdef USE_HW_AES
|
|
#include "intel-aes.h"
|
|
#include "mpi.h"
|
|
|
|
static int has_intel_aes = 0;
|
|
static PRBool use_hw_aes = PR_FALSE;
|
|
|
|
#ifdef INTEL_GCM
|
|
#include "intel-gcm.h"
|
|
static int has_intel_avx = 0;
|
|
static int has_intel_clmul = 0;
|
|
static PRBool use_hw_gcm = PR_FALSE;
|
|
#endif
|
|
#endif /* USE_HW_AES */
|
|
|
|
/*
|
|
* There are currently five ways to build this code, varying in performance
|
|
* and code size.
|
|
*
|
|
* RIJNDAEL_INCLUDE_TABLES Include all tables from rijndael32.tab
|
|
* RIJNDAEL_GENERATE_TABLES Generate tables on first
|
|
* encryption/decryption, then store them;
|
|
* use the function gfm
|
|
* RIJNDAEL_GENERATE_TABLES_MACRO Same as above, but use macros to do
|
|
* the generation
|
|
* RIJNDAEL_GENERATE_VALUES Do not store tables, generate the table
|
|
* values "on-the-fly", using gfm
|
|
* RIJNDAEL_GENERATE_VALUES_MACRO Same as above, but use macros
|
|
*
|
|
* The default is RIJNDAEL_INCLUDE_TABLES.
|
|
*/
|
|
|
|
/*
|
|
* When building RIJNDAEL_INCLUDE_TABLES, includes S**-1, Rcon, T[0..4],
|
|
* T**-1[0..4], IMXC[0..4]
|
|
* When building anything else, includes S, S**-1, Rcon
|
|
*/
|
|
#include "rijndael32.tab"
|
|
|
|
#if defined(RIJNDAEL_INCLUDE_TABLES)
|
|
/*
|
|
* RIJNDAEL_INCLUDE_TABLES
|
|
*/
|
|
#define T0(i) _T0[i]
|
|
#define T1(i) _T1[i]
|
|
#define T2(i) _T2[i]
|
|
#define T3(i) _T3[i]
|
|
#define TInv0(i) _TInv0[i]
|
|
#define TInv1(i) _TInv1[i]
|
|
#define TInv2(i) _TInv2[i]
|
|
#define TInv3(i) _TInv3[i]
|
|
#define IMXC0(b) _IMXC0[b]
|
|
#define IMXC1(b) _IMXC1[b]
|
|
#define IMXC2(b) _IMXC2[b]
|
|
#define IMXC3(b) _IMXC3[b]
|
|
/* The S-box can be recovered from the T-tables */
|
|
#ifdef IS_LITTLE_ENDIAN
|
|
#define SBOX(b) ((PRUint8)_T3[b])
|
|
#else
|
|
#define SBOX(b) ((PRUint8)_T1[b])
|
|
#endif
|
|
#define SINV(b) (_SInv[b])
|
|
|
|
#else /* not RIJNDAEL_INCLUDE_TABLES */
|
|
|
|
/*
|
|
* Code for generating T-table values.
|
|
*/
|
|
|
|
#ifdef IS_LITTLE_ENDIAN
|
|
#define WORD4(b0, b1, b2, b3) \
|
|
(((b3) << 24) | ((b2) << 16) | ((b1) << 8) | (b0))
|
|
#else
|
|
#define WORD4(b0, b1, b2, b3) \
|
|
(((b0) << 24) | ((b1) << 16) | ((b2) << 8) | (b3))
|
|
#endif
|
|
|
|
/*
|
|
* Define the S and S**-1 tables (both have been stored)
|
|
*/
|
|
#define SBOX(b) (_S[b])
|
|
#define SINV(b) (_SInv[b])
|
|
|
|
/*
|
|
* The function xtime, used for Galois field multiplication
|
|
*/
|
|
#define XTIME(a) \
|
|
((a & 0x80) ? ((a << 1) ^ 0x1b) : (a << 1))
|
|
|
|
/* Choose GFM method (macros or function) */
|
|
#if defined(RIJNDAEL_GENERATE_TABLES_MACRO) || \
|
|
defined(RIJNDAEL_GENERATE_VALUES_MACRO)
|
|
|
|
/*
|
|
* Galois field GF(2**8) multipliers, in macro form
|
|
*/
|
|
#define GFM01(a) \
|
|
(a) /* a * 01 = a, the identity */
|
|
#define GFM02(a) \
|
|
(XTIME(a) & 0xff) /* a * 02 = xtime(a) */
|
|
#define GFM04(a) \
|
|
(GFM02(GFM02(a))) /* a * 04 = xtime**2(a) */
|
|
#define GFM08(a) \
|
|
(GFM02(GFM04(a))) /* a * 08 = xtime**3(a) */
|
|
#define GFM03(a) \
|
|
(GFM01(a) ^ GFM02(a)) /* a * 03 = a * (01 + 02) */
|
|
#define GFM09(a) \
|
|
(GFM01(a) ^ GFM08(a)) /* a * 09 = a * (01 + 08) */
|
|
#define GFM0B(a) \
|
|
(GFM01(a) ^ GFM02(a) ^ GFM08(a)) /* a * 0B = a * (01 + 02 + 08) */
|
|
#define GFM0D(a) \
|
|
(GFM01(a) ^ GFM04(a) ^ GFM08(a)) /* a * 0D = a * (01 + 04 + 08) */
|
|
#define GFM0E(a) \
|
|
(GFM02(a) ^ GFM04(a) ^ GFM08(a)) /* a * 0E = a * (02 + 04 + 08) */
|
|
|
|
#else /* RIJNDAEL_GENERATE_TABLES or RIJNDAEL_GENERATE_VALUES */
|
|
|
|
/* GF_MULTIPLY
|
|
*
|
|
* multiply two bytes represented in GF(2**8), mod (x**4 + 1)
|
|
*/
|
|
PRUint8 gfm(PRUint8 a, PRUint8 b)
|
|
{
|
|
PRUint8 res = 0;
|
|
while (b > 0) {
|
|
res = (b & 0x01) ? res ^ a : res;
|
|
a = XTIME(a);
|
|
b >>= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#define GFM01(a) \
|
|
(a) /* a * 01 = a, the identity */
|
|
#define GFM02(a) \
|
|
(XTIME(a) & 0xff) /* a * 02 = xtime(a) */
|
|
#define GFM03(a) \
|
|
(gfm(a, 0x03)) /* a * 03 */
|
|
#define GFM09(a) \
|
|
(gfm(a, 0x09)) /* a * 09 */
|
|
#define GFM0B(a) \
|
|
(gfm(a, 0x0B)) /* a * 0B */
|
|
#define GFM0D(a) \
|
|
(gfm(a, 0x0D)) /* a * 0D */
|
|
#define GFM0E(a) \
|
|
(gfm(a, 0x0E)) /* a * 0E */
|
|
|
|
#endif /* choosing GFM function */
|
|
|
|
/*
|
|
* The T-tables
|
|
*/
|
|
#define G_T0(i) \
|
|
( WORD4( GFM02(SBOX(i)), GFM01(SBOX(i)), GFM01(SBOX(i)), GFM03(SBOX(i)) ) )
|
|
#define G_T1(i) \
|
|
( WORD4( GFM03(SBOX(i)), GFM02(SBOX(i)), GFM01(SBOX(i)), GFM01(SBOX(i)) ) )
|
|
#define G_T2(i) \
|
|
( WORD4( GFM01(SBOX(i)), GFM03(SBOX(i)), GFM02(SBOX(i)), GFM01(SBOX(i)) ) )
|
|
#define G_T3(i) \
|
|
( WORD4( GFM01(SBOX(i)), GFM01(SBOX(i)), GFM03(SBOX(i)), GFM02(SBOX(i)) ) )
|
|
|
|
/*
|
|
* The inverse T-tables
|
|
*/
|
|
#define G_TInv0(i) \
|
|
( WORD4( GFM0E(SINV(i)), GFM09(SINV(i)), GFM0D(SINV(i)), GFM0B(SINV(i)) ) )
|
|
#define G_TInv1(i) \
|
|
( WORD4( GFM0B(SINV(i)), GFM0E(SINV(i)), GFM09(SINV(i)), GFM0D(SINV(i)) ) )
|
|
#define G_TInv2(i) \
|
|
( WORD4( GFM0D(SINV(i)), GFM0B(SINV(i)), GFM0E(SINV(i)), GFM09(SINV(i)) ) )
|
|
#define G_TInv3(i) \
|
|
( WORD4( GFM09(SINV(i)), GFM0D(SINV(i)), GFM0B(SINV(i)), GFM0E(SINV(i)) ) )
|
|
|
|
/*
|
|
* The inverse mix column tables
|
|
*/
|
|
#define G_IMXC0(i) \
|
|
( WORD4( GFM0E(i), GFM09(i), GFM0D(i), GFM0B(i) ) )
|
|
#define G_IMXC1(i) \
|
|
( WORD4( GFM0B(i), GFM0E(i), GFM09(i), GFM0D(i) ) )
|
|
#define G_IMXC2(i) \
|
|
( WORD4( GFM0D(i), GFM0B(i), GFM0E(i), GFM09(i) ) )
|
|
#define G_IMXC3(i) \
|
|
( WORD4( GFM09(i), GFM0D(i), GFM0B(i), GFM0E(i) ) )
|
|
|
|
/* Now choose the T-table indexing method */
|
|
#if defined(RIJNDAEL_GENERATE_VALUES)
|
|
/* generate values for the tables with a function*/
|
|
static PRUint32 gen_TInvXi(PRUint8 tx, PRUint8 i)
|
|
{
|
|
PRUint8 si01, si02, si03, si04, si08, si09, si0B, si0D, si0E;
|
|
si01 = SINV(i);
|
|
si02 = XTIME(si01);
|
|
si04 = XTIME(si02);
|
|
si08 = XTIME(si04);
|
|
si03 = si02 ^ si01;
|
|
si09 = si08 ^ si01;
|
|
si0B = si08 ^ si03;
|
|
si0D = si09 ^ si04;
|
|
si0E = si08 ^ si04 ^ si02;
|
|
switch (tx) {
|
|
case 0:
|
|
return WORD4(si0E, si09, si0D, si0B);
|
|
case 1:
|
|
return WORD4(si0B, si0E, si09, si0D);
|
|
case 2:
|
|
return WORD4(si0D, si0B, si0E, si09);
|
|
case 3:
|
|
return WORD4(si09, si0D, si0B, si0E);
|
|
}
|
|
return -1;
|
|
}
|
|
#define T0(i) G_T0(i)
|
|
#define T1(i) G_T1(i)
|
|
#define T2(i) G_T2(i)
|
|
#define T3(i) G_T3(i)
|
|
#define TInv0(i) gen_TInvXi(0, i)
|
|
#define TInv1(i) gen_TInvXi(1, i)
|
|
#define TInv2(i) gen_TInvXi(2, i)
|
|
#define TInv3(i) gen_TInvXi(3, i)
|
|
#define IMXC0(b) G_IMXC0(b)
|
|
#define IMXC1(b) G_IMXC1(b)
|
|
#define IMXC2(b) G_IMXC2(b)
|
|
#define IMXC3(b) G_IMXC3(b)
|
|
#elif defined(RIJNDAEL_GENERATE_VALUES_MACRO)
|
|
/* generate values for the tables with macros */
|
|
#define T0(i) G_T0(i)
|
|
#define T1(i) G_T1(i)
|
|
#define T2(i) G_T2(i)
|
|
#define T3(i) G_T3(i)
|
|
#define TInv0(i) G_TInv0(i)
|
|
#define TInv1(i) G_TInv1(i)
|
|
#define TInv2(i) G_TInv2(i)
|
|
#define TInv3(i) G_TInv3(i)
|
|
#define IMXC0(b) G_IMXC0(b)
|
|
#define IMXC1(b) G_IMXC1(b)
|
|
#define IMXC2(b) G_IMXC2(b)
|
|
#define IMXC3(b) G_IMXC3(b)
|
|
#else /* RIJNDAEL_GENERATE_TABLES or RIJNDAEL_GENERATE_TABLES_MACRO */
|
|
/* Generate T and T**-1 table values and store, then index */
|
|
/* The inverse mix column tables are still generated */
|
|
#define T0(i) rijndaelTables->T0[i]
|
|
#define T1(i) rijndaelTables->T1[i]
|
|
#define T2(i) rijndaelTables->T2[i]
|
|
#define T3(i) rijndaelTables->T3[i]
|
|
#define TInv0(i) rijndaelTables->TInv0[i]
|
|
#define TInv1(i) rijndaelTables->TInv1[i]
|
|
#define TInv2(i) rijndaelTables->TInv2[i]
|
|
#define TInv3(i) rijndaelTables->TInv3[i]
|
|
#define IMXC0(b) G_IMXC0(b)
|
|
#define IMXC1(b) G_IMXC1(b)
|
|
#define IMXC2(b) G_IMXC2(b)
|
|
#define IMXC3(b) G_IMXC3(b)
|
|
#endif /* choose T-table indexing method */
|
|
|
|
#endif /* not RIJNDAEL_INCLUDE_TABLES */
|
|
|
|
#if defined(RIJNDAEL_GENERATE_TABLES) || \
|
|
defined(RIJNDAEL_GENERATE_TABLES_MACRO)
|
|
|
|
/* Code to generate and store the tables */
|
|
|
|
struct rijndael_tables_str {
|
|
PRUint32 T0[256];
|
|
PRUint32 T1[256];
|
|
PRUint32 T2[256];
|
|
PRUint32 T3[256];
|
|
PRUint32 TInv0[256];
|
|
PRUint32 TInv1[256];
|
|
PRUint32 TInv2[256];
|
|
PRUint32 TInv3[256];
|
|
};
|
|
|
|
static struct rijndael_tables_str *rijndaelTables = NULL;
|
|
static PRCallOnceType coRTInit = { 0, 0, 0 };
|
|
static PRStatus
|
|
init_rijndael_tables(void)
|
|
{
|
|
PRUint32 i;
|
|
PRUint8 si01, si02, si03, si04, si08, si09, si0B, si0D, si0E;
|
|
struct rijndael_tables_str *rts;
|
|
rts = (struct rijndael_tables_str *)
|
|
PORT_Alloc(sizeof(struct rijndael_tables_str));
|
|
if (!rts) return PR_FAILURE;
|
|
for (i=0; i<256; i++) {
|
|
/* The forward values */
|
|
si01 = SBOX(i);
|
|
si02 = XTIME(si01);
|
|
si03 = si02 ^ si01;
|
|
rts->T0[i] = WORD4(si02, si01, si01, si03);
|
|
rts->T1[i] = WORD4(si03, si02, si01, si01);
|
|
rts->T2[i] = WORD4(si01, si03, si02, si01);
|
|
rts->T3[i] = WORD4(si01, si01, si03, si02);
|
|
/* The inverse values */
|
|
si01 = SINV(i);
|
|
si02 = XTIME(si01);
|
|
si04 = XTIME(si02);
|
|
si08 = XTIME(si04);
|
|
si03 = si02 ^ si01;
|
|
si09 = si08 ^ si01;
|
|
si0B = si08 ^ si03;
|
|
si0D = si09 ^ si04;
|
|
si0E = si08 ^ si04 ^ si02;
|
|
rts->TInv0[i] = WORD4(si0E, si09, si0D, si0B);
|
|
rts->TInv1[i] = WORD4(si0B, si0E, si09, si0D);
|
|
rts->TInv2[i] = WORD4(si0D, si0B, si0E, si09);
|
|
rts->TInv3[i] = WORD4(si09, si0D, si0B, si0E);
|
|
}
|
|
/* wait until all the values are in to set */
|
|
rijndaelTables = rts;
|
|
return PR_SUCCESS;
|
|
}
|
|
|
|
#endif /* code to generate tables */
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Stuff related to the Rijndael key schedule
|
|
*
|
|
*************************************************************************/
|
|
|
|
#define SUBBYTE(w) \
|
|
((SBOX((w >> 24) & 0xff) << 24) | \
|
|
(SBOX((w >> 16) & 0xff) << 16) | \
|
|
(SBOX((w >> 8) & 0xff) << 8) | \
|
|
(SBOX((w ) & 0xff) ))
|
|
|
|
#ifdef IS_LITTLE_ENDIAN
|
|
#define ROTBYTE(b) \
|
|
((b >> 8) | (b << 24))
|
|
#else
|
|
#define ROTBYTE(b) \
|
|
((b << 8) | (b >> 24))
|
|
#endif
|
|
|
|
/* rijndael_key_expansion7
|
|
*
|
|
* Generate the expanded key from the key input by the user.
|
|
* XXX
|
|
* Nk == 7 (224 key bits) is a weird case. Since Nk > 6, an added SubByte
|
|
* transformation is done periodically. The period is every 4 bytes, and
|
|
* since 7%4 != 0 this happens at different times for each key word (unlike
|
|
* Nk == 8 where it happens twice in every key word, in the same positions).
|
|
* For now, I'm implementing this case "dumbly", w/o any unrolling.
|
|
*/
|
|
static SECStatus
|
|
rijndael_key_expansion7(AESContext *cx, const unsigned char *key, unsigned int Nk)
|
|
{
|
|
unsigned int i;
|
|
PRUint32 *W;
|
|
PRUint32 *pW;
|
|
PRUint32 tmp;
|
|
W = cx->expandedKey;
|
|
/* 1. the first Nk words contain the cipher key */
|
|
memcpy(W, key, Nk * 4);
|
|
i = Nk;
|
|
/* 2. loop until full expanded key is obtained */
|
|
pW = W + i - 1;
|
|
for (; i < cx->Nb * (cx->Nr + 1); ++i) {
|
|
tmp = *pW++;
|
|
if (i % Nk == 0)
|
|
tmp = SUBBYTE(ROTBYTE(tmp)) ^ Rcon[i / Nk - 1];
|
|
else if (i % Nk == 4)
|
|
tmp = SUBBYTE(tmp);
|
|
*pW = W[i - Nk] ^ tmp;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* rijndael_key_expansion
|
|
*
|
|
* Generate the expanded key from the key input by the user.
|
|
*/
|
|
static SECStatus
|
|
rijndael_key_expansion(AESContext *cx, const unsigned char *key, unsigned int Nk)
|
|
{
|
|
unsigned int i;
|
|
PRUint32 *W;
|
|
PRUint32 *pW;
|
|
PRUint32 tmp;
|
|
unsigned int round_key_words = cx->Nb * (cx->Nr + 1);
|
|
if (Nk == 7)
|
|
return rijndael_key_expansion7(cx, key, Nk);
|
|
W = cx->expandedKey;
|
|
/* The first Nk words contain the input cipher key */
|
|
memcpy(W, key, Nk * 4);
|
|
i = Nk;
|
|
pW = W + i - 1;
|
|
/* Loop over all sets of Nk words, except the last */
|
|
while (i < round_key_words - Nk) {
|
|
tmp = *pW++;
|
|
tmp = SUBBYTE(ROTBYTE(tmp)) ^ Rcon[i / Nk - 1];
|
|
*pW = W[i++ - Nk] ^ tmp;
|
|
tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
|
|
tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
|
|
tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
|
|
if (Nk == 4)
|
|
continue;
|
|
switch (Nk) {
|
|
case 8: tmp = *pW++; tmp = SUBBYTE(tmp); *pW = W[i++ - Nk] ^ tmp;
|
|
case 7: tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
|
|
case 6: tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
|
|
case 5: tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
|
|
}
|
|
}
|
|
/* Generate the last word */
|
|
tmp = *pW++;
|
|
tmp = SUBBYTE(ROTBYTE(tmp)) ^ Rcon[i / Nk - 1];
|
|
*pW = W[i++ - Nk] ^ tmp;
|
|
/* There may be overflow here, if Nk % (Nb * (Nr + 1)) > 0. However,
|
|
* since the above loop generated all but the last Nk key words, there
|
|
* is no more need for the SubByte transformation.
|
|
*/
|
|
if (Nk < 8) {
|
|
for (; i < round_key_words; ++i) {
|
|
tmp = *pW++;
|
|
*pW = W[i - Nk] ^ tmp;
|
|
}
|
|
} else {
|
|
/* except in the case when Nk == 8. Then one more SubByte may have
|
|
* to be performed, at i % Nk == 4.
|
|
*/
|
|
for (; i < round_key_words; ++i) {
|
|
tmp = *pW++;
|
|
if (i % Nk == 4)
|
|
tmp = SUBBYTE(tmp);
|
|
*pW = W[i - Nk] ^ tmp;
|
|
}
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* rijndael_invkey_expansion
|
|
*
|
|
* Generate the expanded key for the inverse cipher from the key input by
|
|
* the user.
|
|
*/
|
|
static SECStatus
|
|
rijndael_invkey_expansion(AESContext *cx, const unsigned char *key, unsigned int Nk)
|
|
{
|
|
unsigned int r;
|
|
PRUint32 *roundkeyw;
|
|
PRUint8 *b;
|
|
int Nb = cx->Nb;
|
|
/* begins like usual key expansion ... */
|
|
if (rijndael_key_expansion(cx, key, Nk) != SECSuccess)
|
|
return SECFailure;
|
|
/* ... but has the additional step of InvMixColumn,
|
|
* excepting the first and last round keys.
|
|
*/
|
|
roundkeyw = cx->expandedKey + cx->Nb;
|
|
for (r=1; r<cx->Nr; ++r) {
|
|
/* each key word, roundkeyw, represents a column in the key
|
|
* matrix. Each column is multiplied by the InvMixColumn matrix.
|
|
* [ 0E 0B 0D 09 ] [ b0 ]
|
|
* [ 09 0E 0B 0D ] * [ b1 ]
|
|
* [ 0D 09 0E 0B ] [ b2 ]
|
|
* [ 0B 0D 09 0E ] [ b3 ]
|
|
*/
|
|
b = (PRUint8 *)roundkeyw;
|
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
|
|
b = (PRUint8 *)roundkeyw;
|
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
|
|
b = (PRUint8 *)roundkeyw;
|
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
|
|
b = (PRUint8 *)roundkeyw;
|
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
|
|
if (Nb <= 4)
|
|
continue;
|
|
switch (Nb) {
|
|
case 8: b = (PRUint8 *)roundkeyw;
|
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^
|
|
IMXC2(b[2]) ^ IMXC3(b[3]);
|
|
case 7: b = (PRUint8 *)roundkeyw;
|
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^
|
|
IMXC2(b[2]) ^ IMXC3(b[3]);
|
|
case 6: b = (PRUint8 *)roundkeyw;
|
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^
|
|
IMXC2(b[2]) ^ IMXC3(b[3]);
|
|
case 5: b = (PRUint8 *)roundkeyw;
|
|
*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^
|
|
IMXC2(b[2]) ^ IMXC3(b[3]);
|
|
}
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
/**************************************************************************
|
|
*
|
|
* Stuff related to Rijndael encryption/decryption, optimized for
|
|
* a 128-bit blocksize.
|
|
*
|
|
*************************************************************************/
|
|
|
|
#ifdef IS_LITTLE_ENDIAN
|
|
#define BYTE0WORD(w) ((w) & 0x000000ff)
|
|
#define BYTE1WORD(w) ((w) & 0x0000ff00)
|
|
#define BYTE2WORD(w) ((w) & 0x00ff0000)
|
|
#define BYTE3WORD(w) ((w) & 0xff000000)
|
|
#else
|
|
#define BYTE0WORD(w) ((w) & 0xff000000)
|
|
#define BYTE1WORD(w) ((w) & 0x00ff0000)
|
|
#define BYTE2WORD(w) ((w) & 0x0000ff00)
|
|
#define BYTE3WORD(w) ((w) & 0x000000ff)
|
|
#endif
|
|
|
|
typedef union {
|
|
PRUint32 w[4];
|
|
PRUint8 b[16];
|
|
} rijndael_state;
|
|
|
|
#define COLUMN_0(state) state.w[0]
|
|
#define COLUMN_1(state) state.w[1]
|
|
#define COLUMN_2(state) state.w[2]
|
|
#define COLUMN_3(state) state.w[3]
|
|
|
|
#define STATE_BYTE(i) state.b[i]
|
|
|
|
static SECStatus
|
|
rijndael_encryptBlock128(AESContext *cx,
|
|
unsigned char *output,
|
|
const unsigned char *input)
|
|
{
|
|
unsigned int r;
|
|
PRUint32 *roundkeyw;
|
|
rijndael_state state;
|
|
PRUint32 C0, C1, C2, C3;
|
|
#if defined(NSS_X86_OR_X64)
|
|
#define pIn input
|
|
#define pOut output
|
|
#else
|
|
unsigned char *pIn, *pOut;
|
|
PRUint32 inBuf[4], outBuf[4];
|
|
|
|
if ((ptrdiff_t)input & 0x3) {
|
|
memcpy(inBuf, input, sizeof inBuf);
|
|
pIn = (unsigned char *)inBuf;
|
|
} else {
|
|
pIn = (unsigned char *)input;
|
|
}
|
|
if ((ptrdiff_t)output & 0x3) {
|
|
pOut = (unsigned char *)outBuf;
|
|
} else {
|
|
pOut = (unsigned char *)output;
|
|
}
|
|
#endif
|
|
roundkeyw = cx->expandedKey;
|
|
/* Step 1: Add Round Key 0 to initial state */
|
|
COLUMN_0(state) = *((PRUint32 *)(pIn )) ^ *roundkeyw++;
|
|
COLUMN_1(state) = *((PRUint32 *)(pIn + 4 )) ^ *roundkeyw++;
|
|
COLUMN_2(state) = *((PRUint32 *)(pIn + 8 )) ^ *roundkeyw++;
|
|
COLUMN_3(state) = *((PRUint32 *)(pIn + 12)) ^ *roundkeyw++;
|
|
/* Step 2: Loop over rounds [1..NR-1] */
|
|
for (r=1; r<cx->Nr; ++r) {
|
|
/* Do ShiftRow, ByteSub, and MixColumn all at once */
|
|
C0 = T0(STATE_BYTE(0)) ^
|
|
T1(STATE_BYTE(5)) ^
|
|
T2(STATE_BYTE(10)) ^
|
|
T3(STATE_BYTE(15));
|
|
C1 = T0(STATE_BYTE(4)) ^
|
|
T1(STATE_BYTE(9)) ^
|
|
T2(STATE_BYTE(14)) ^
|
|
T3(STATE_BYTE(3));
|
|
C2 = T0(STATE_BYTE(8)) ^
|
|
T1(STATE_BYTE(13)) ^
|
|
T2(STATE_BYTE(2)) ^
|
|
T3(STATE_BYTE(7));
|
|
C3 = T0(STATE_BYTE(12)) ^
|
|
T1(STATE_BYTE(1)) ^
|
|
T2(STATE_BYTE(6)) ^
|
|
T3(STATE_BYTE(11));
|
|
/* Round key addition */
|
|
COLUMN_0(state) = C0 ^ *roundkeyw++;
|
|
COLUMN_1(state) = C1 ^ *roundkeyw++;
|
|
COLUMN_2(state) = C2 ^ *roundkeyw++;
|
|
COLUMN_3(state) = C3 ^ *roundkeyw++;
|
|
}
|
|
/* Step 3: Do the last round */
|
|
/* Final round does not employ MixColumn */
|
|
C0 = ((BYTE0WORD(T2(STATE_BYTE(0)))) |
|
|
(BYTE1WORD(T3(STATE_BYTE(5)))) |
|
|
(BYTE2WORD(T0(STATE_BYTE(10)))) |
|
|
(BYTE3WORD(T1(STATE_BYTE(15))))) ^
|
|
*roundkeyw++;
|
|
C1 = ((BYTE0WORD(T2(STATE_BYTE(4)))) |
|
|
(BYTE1WORD(T3(STATE_BYTE(9)))) |
|
|
(BYTE2WORD(T0(STATE_BYTE(14)))) |
|
|
(BYTE3WORD(T1(STATE_BYTE(3))))) ^
|
|
*roundkeyw++;
|
|
C2 = ((BYTE0WORD(T2(STATE_BYTE(8)))) |
|
|
(BYTE1WORD(T3(STATE_BYTE(13)))) |
|
|
(BYTE2WORD(T0(STATE_BYTE(2)))) |
|
|
(BYTE3WORD(T1(STATE_BYTE(7))))) ^
|
|
*roundkeyw++;
|
|
C3 = ((BYTE0WORD(T2(STATE_BYTE(12)))) |
|
|
(BYTE1WORD(T3(STATE_BYTE(1)))) |
|
|
(BYTE2WORD(T0(STATE_BYTE(6)))) |
|
|
(BYTE3WORD(T1(STATE_BYTE(11))))) ^
|
|
*roundkeyw++;
|
|
*((PRUint32 *) pOut ) = C0;
|
|
*((PRUint32 *)(pOut + 4)) = C1;
|
|
*((PRUint32 *)(pOut + 8)) = C2;
|
|
*((PRUint32 *)(pOut + 12)) = C3;
|
|
#if defined(NSS_X86_OR_X64)
|
|
#undef pIn
|
|
#undef pOut
|
|
#else
|
|
if ((ptrdiff_t)output & 0x3) {
|
|
memcpy(output, outBuf, sizeof outBuf);
|
|
}
|
|
#endif
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
rijndael_decryptBlock128(AESContext *cx,
|
|
unsigned char *output,
|
|
const unsigned char *input)
|
|
{
|
|
int r;
|
|
PRUint32 *roundkeyw;
|
|
rijndael_state state;
|
|
PRUint32 C0, C1, C2, C3;
|
|
#if defined(NSS_X86_OR_X64)
|
|
#define pIn input
|
|
#define pOut output
|
|
#else
|
|
unsigned char *pIn, *pOut;
|
|
PRUint32 inBuf[4], outBuf[4];
|
|
|
|
if ((ptrdiff_t)input & 0x3) {
|
|
memcpy(inBuf, input, sizeof inBuf);
|
|
pIn = (unsigned char *)inBuf;
|
|
} else {
|
|
pIn = (unsigned char *)input;
|
|
}
|
|
if ((ptrdiff_t)output & 0x3) {
|
|
pOut = (unsigned char *)outBuf;
|
|
} else {
|
|
pOut = (unsigned char *)output;
|
|
}
|
|
#endif
|
|
roundkeyw = cx->expandedKey + cx->Nb * cx->Nr + 3;
|
|
/* reverse the final key addition */
|
|
COLUMN_3(state) = *((PRUint32 *)(pIn + 12)) ^ *roundkeyw--;
|
|
COLUMN_2(state) = *((PRUint32 *)(pIn + 8)) ^ *roundkeyw--;
|
|
COLUMN_1(state) = *((PRUint32 *)(pIn + 4)) ^ *roundkeyw--;
|
|
COLUMN_0(state) = *((PRUint32 *)(pIn )) ^ *roundkeyw--;
|
|
/* Loop over rounds in reverse [NR..1] */
|
|
for (r=cx->Nr; r>1; --r) {
|
|
/* Invert the (InvByteSub*InvMixColumn)(InvShiftRow(state)) */
|
|
C0 = TInv0(STATE_BYTE(0)) ^
|
|
TInv1(STATE_BYTE(13)) ^
|
|
TInv2(STATE_BYTE(10)) ^
|
|
TInv3(STATE_BYTE(7));
|
|
C1 = TInv0(STATE_BYTE(4)) ^
|
|
TInv1(STATE_BYTE(1)) ^
|
|
TInv2(STATE_BYTE(14)) ^
|
|
TInv3(STATE_BYTE(11));
|
|
C2 = TInv0(STATE_BYTE(8)) ^
|
|
TInv1(STATE_BYTE(5)) ^
|
|
TInv2(STATE_BYTE(2)) ^
|
|
TInv3(STATE_BYTE(15));
|
|
C3 = TInv0(STATE_BYTE(12)) ^
|
|
TInv1(STATE_BYTE(9)) ^
|
|
TInv2(STATE_BYTE(6)) ^
|
|
TInv3(STATE_BYTE(3));
|
|
/* Invert the key addition step */
|
|
COLUMN_3(state) = C3 ^ *roundkeyw--;
|
|
COLUMN_2(state) = C2 ^ *roundkeyw--;
|
|
COLUMN_1(state) = C1 ^ *roundkeyw--;
|
|
COLUMN_0(state) = C0 ^ *roundkeyw--;
|
|
}
|
|
/* inverse sub */
|
|
pOut[ 0] = SINV(STATE_BYTE( 0));
|
|
pOut[ 1] = SINV(STATE_BYTE(13));
|
|
pOut[ 2] = SINV(STATE_BYTE(10));
|
|
pOut[ 3] = SINV(STATE_BYTE( 7));
|
|
pOut[ 4] = SINV(STATE_BYTE( 4));
|
|
pOut[ 5] = SINV(STATE_BYTE( 1));
|
|
pOut[ 6] = SINV(STATE_BYTE(14));
|
|
pOut[ 7] = SINV(STATE_BYTE(11));
|
|
pOut[ 8] = SINV(STATE_BYTE( 8));
|
|
pOut[ 9] = SINV(STATE_BYTE( 5));
|
|
pOut[10] = SINV(STATE_BYTE( 2));
|
|
pOut[11] = SINV(STATE_BYTE(15));
|
|
pOut[12] = SINV(STATE_BYTE(12));
|
|
pOut[13] = SINV(STATE_BYTE( 9));
|
|
pOut[14] = SINV(STATE_BYTE( 6));
|
|
pOut[15] = SINV(STATE_BYTE( 3));
|
|
/* final key addition */
|
|
*((PRUint32 *)(pOut + 12)) ^= *roundkeyw--;
|
|
*((PRUint32 *)(pOut + 8)) ^= *roundkeyw--;
|
|
*((PRUint32 *)(pOut + 4)) ^= *roundkeyw--;
|
|
*((PRUint32 *) pOut ) ^= *roundkeyw--;
|
|
#if defined(NSS_X86_OR_X64)
|
|
#undef pIn
|
|
#undef pOut
|
|
#else
|
|
if ((ptrdiff_t)output & 0x3) {
|
|
memcpy(output, outBuf, sizeof outBuf);
|
|
}
|
|
#endif
|
|
return SECSuccess;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Stuff related to general Rijndael encryption/decryption, for blocksizes
|
|
* greater than 128 bits.
|
|
*
|
|
* XXX This code is currently untested! So far, AES specs have only been
|
|
* released for 128 bit blocksizes. This will be tested, but for now
|
|
* only the code above has been tested using known values.
|
|
*
|
|
*************************************************************************/
|
|
|
|
#define COLUMN(array, j) *((PRUint32 *)(array + j))
|
|
|
|
SECStatus
|
|
rijndael_encryptBlock(AESContext *cx,
|
|
unsigned char *output,
|
|
const unsigned char *input)
|
|
{
|
|
return SECFailure;
|
|
#ifdef rijndael_large_blocks_fixed
|
|
unsigned int j, r, Nb;
|
|
unsigned int c2=0, c3=0;
|
|
PRUint32 *roundkeyw;
|
|
PRUint8 clone[RIJNDAEL_MAX_STATE_SIZE];
|
|
Nb = cx->Nb;
|
|
roundkeyw = cx->expandedKey;
|
|
/* Step 1: Add Round Key 0 to initial state */
|
|
for (j=0; j<4*Nb; j+=4) {
|
|
COLUMN(clone, j) = COLUMN(input, j) ^ *roundkeyw++;
|
|
}
|
|
/* Step 2: Loop over rounds [1..NR-1] */
|
|
for (r=1; r<cx->Nr; ++r) {
|
|
for (j=0; j<Nb; ++j) {
|
|
COLUMN(output, j) = T0(STATE_BYTE(4* j )) ^
|
|
T1(STATE_BYTE(4*((j+ 1)%Nb)+1)) ^
|
|
T2(STATE_BYTE(4*((j+c2)%Nb)+2)) ^
|
|
T3(STATE_BYTE(4*((j+c3)%Nb)+3));
|
|
}
|
|
for (j=0; j<4*Nb; j+=4) {
|
|
COLUMN(clone, j) = COLUMN(output, j) ^ *roundkeyw++;
|
|
}
|
|
}
|
|
/* Step 3: Do the last round */
|
|
/* Final round does not employ MixColumn */
|
|
for (j=0; j<Nb; ++j) {
|
|
COLUMN(output, j) = ((BYTE0WORD(T2(STATE_BYTE(4* j )))) |
|
|
(BYTE1WORD(T3(STATE_BYTE(4*(j+ 1)%Nb)+1))) |
|
|
(BYTE2WORD(T0(STATE_BYTE(4*(j+c2)%Nb)+2))) |
|
|
(BYTE3WORD(T1(STATE_BYTE(4*(j+c3)%Nb)+3)))) ^
|
|
*roundkeyw++;
|
|
}
|
|
return SECSuccess;
|
|
#endif
|
|
}
|
|
|
|
SECStatus
|
|
rijndael_decryptBlock(AESContext *cx,
|
|
unsigned char *output,
|
|
const unsigned char *input)
|
|
{
|
|
return SECFailure;
|
|
#ifdef rijndael_large_blocks_fixed
|
|
int j, r, Nb;
|
|
int c2=0, c3=0;
|
|
PRUint32 *roundkeyw;
|
|
PRUint8 clone[RIJNDAEL_MAX_STATE_SIZE];
|
|
Nb = cx->Nb;
|
|
roundkeyw = cx->expandedKey + cx->Nb * cx->Nr + 3;
|
|
/* reverse key addition */
|
|
for (j=4*Nb; j>=0; j-=4) {
|
|
COLUMN(clone, j) = COLUMN(input, j) ^ *roundkeyw--;
|
|
}
|
|
/* Loop over rounds in reverse [NR..1] */
|
|
for (r=cx->Nr; r>1; --r) {
|
|
/* Invert the (InvByteSub*InvMixColumn)(InvShiftRow(state)) */
|
|
for (j=0; j<Nb; ++j) {
|
|
COLUMN(output, 4*j) = TInv0(STATE_BYTE(4* j )) ^
|
|
TInv1(STATE_BYTE(4*(j+Nb- 1)%Nb)+1) ^
|
|
TInv2(STATE_BYTE(4*(j+Nb-c2)%Nb)+2) ^
|
|
TInv3(STATE_BYTE(4*(j+Nb-c3)%Nb)+3);
|
|
}
|
|
/* Invert the key addition step */
|
|
for (j=4*Nb; j>=0; j-=4) {
|
|
COLUMN(clone, j) = COLUMN(output, j) ^ *roundkeyw--;
|
|
}
|
|
}
|
|
/* inverse sub */
|
|
for (j=0; j<4*Nb; ++j) {
|
|
output[j] = SINV(clone[j]);
|
|
}
|
|
/* final key addition */
|
|
for (j=4*Nb; j>=0; j-=4) {
|
|
COLUMN(output, j) ^= *roundkeyw--;
|
|
}
|
|
return SECSuccess;
|
|
#endif
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Rijndael modes of operation (ECB and CBC)
|
|
*
|
|
*************************************************************************/
|
|
|
|
static SECStatus
|
|
rijndael_encryptECB(AESContext *cx, unsigned char *output,
|
|
unsigned int *outputLen, unsigned int maxOutputLen,
|
|
const unsigned char *input, unsigned int inputLen,
|
|
unsigned int blocksize)
|
|
{
|
|
SECStatus rv;
|
|
AESBlockFunc *encryptor;
|
|
|
|
encryptor = (blocksize == RIJNDAEL_MIN_BLOCKSIZE)
|
|
? &rijndael_encryptBlock128
|
|
: &rijndael_encryptBlock;
|
|
while (inputLen > 0) {
|
|
rv = (*encryptor)(cx, output, input);
|
|
if (rv != SECSuccess)
|
|
return rv;
|
|
output += blocksize;
|
|
input += blocksize;
|
|
inputLen -= blocksize;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
rijndael_encryptCBC(AESContext *cx, unsigned char *output,
|
|
unsigned int *outputLen, unsigned int maxOutputLen,
|
|
const unsigned char *input, unsigned int inputLen,
|
|
unsigned int blocksize)
|
|
{
|
|
unsigned int j;
|
|
SECStatus rv;
|
|
AESBlockFunc *encryptor;
|
|
unsigned char *lastblock;
|
|
unsigned char inblock[RIJNDAEL_MAX_STATE_SIZE * 8];
|
|
|
|
if (!inputLen)
|
|
return SECSuccess;
|
|
lastblock = cx->iv;
|
|
encryptor = (blocksize == RIJNDAEL_MIN_BLOCKSIZE)
|
|
? &rijndael_encryptBlock128
|
|
: &rijndael_encryptBlock;
|
|
while (inputLen > 0) {
|
|
/* XOR with the last block (IV if first block) */
|
|
for (j=0; j<blocksize; ++j)
|
|
inblock[j] = input[j] ^ lastblock[j];
|
|
/* encrypt */
|
|
rv = (*encryptor)(cx, output, inblock);
|
|
if (rv != SECSuccess)
|
|
return rv;
|
|
/* move to the next block */
|
|
lastblock = output;
|
|
output += blocksize;
|
|
input += blocksize;
|
|
inputLen -= blocksize;
|
|
}
|
|
memcpy(cx->iv, lastblock, blocksize);
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
rijndael_decryptECB(AESContext *cx, unsigned char *output,
|
|
unsigned int *outputLen, unsigned int maxOutputLen,
|
|
const unsigned char *input, unsigned int inputLen,
|
|
unsigned int blocksize)
|
|
{
|
|
SECStatus rv;
|
|
AESBlockFunc *decryptor;
|
|
|
|
decryptor = (blocksize == RIJNDAEL_MIN_BLOCKSIZE)
|
|
? &rijndael_decryptBlock128
|
|
: &rijndael_decryptBlock;
|
|
while (inputLen > 0) {
|
|
rv = (*decryptor)(cx, output, input);
|
|
if (rv != SECSuccess)
|
|
return rv;
|
|
output += blocksize;
|
|
input += blocksize;
|
|
inputLen -= blocksize;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
rijndael_decryptCBC(AESContext *cx, unsigned char *output,
|
|
unsigned int *outputLen, unsigned int maxOutputLen,
|
|
const unsigned char *input, unsigned int inputLen,
|
|
unsigned int blocksize)
|
|
{
|
|
SECStatus rv;
|
|
AESBlockFunc *decryptor;
|
|
const unsigned char *in;
|
|
unsigned char *out;
|
|
unsigned int j;
|
|
unsigned char newIV[RIJNDAEL_MAX_BLOCKSIZE];
|
|
|
|
|
|
if (!inputLen)
|
|
return SECSuccess;
|
|
PORT_Assert(output - input >= 0 || input - output >= (int)inputLen );
|
|
decryptor = (blocksize == RIJNDAEL_MIN_BLOCKSIZE)
|
|
? &rijndael_decryptBlock128
|
|
: &rijndael_decryptBlock;
|
|
in = input + (inputLen - blocksize);
|
|
memcpy(newIV, in, blocksize);
|
|
out = output + (inputLen - blocksize);
|
|
while (inputLen > blocksize) {
|
|
rv = (*decryptor)(cx, out, in);
|
|
if (rv != SECSuccess)
|
|
return rv;
|
|
for (j=0; j<blocksize; ++j)
|
|
out[j] ^= in[(int)(j - blocksize)];
|
|
out -= blocksize;
|
|
in -= blocksize;
|
|
inputLen -= blocksize;
|
|
}
|
|
if (in == input) {
|
|
rv = (*decryptor)(cx, out, in);
|
|
if (rv != SECSuccess)
|
|
return rv;
|
|
for (j=0; j<blocksize; ++j)
|
|
out[j] ^= cx->iv[j];
|
|
}
|
|
memcpy(cx->iv, newIV, blocksize);
|
|
return SECSuccess;
|
|
}
|
|
|
|
/************************************************************************
|
|
*
|
|
* BLAPI Interface functions
|
|
*
|
|
* The following functions implement the encryption routines defined in
|
|
* BLAPI for the AES cipher, Rijndael.
|
|
*
|
|
***********************************************************************/
|
|
|
|
AESContext * AES_AllocateContext(void)
|
|
{
|
|
return PORT_ZNew(AESContext);
|
|
}
|
|
|
|
|
|
#ifdef INTEL_GCM
|
|
/*
|
|
* Adapted from the example code in "How to detect New Instruction support in
|
|
* the 4th generation Intel Core processor family" by Max Locktyukhin.
|
|
*
|
|
* XGETBV:
|
|
* Reads an extended control register (XCR) specified by ECX into EDX:EAX.
|
|
*/
|
|
static PRBool
|
|
check_xcr0_ymm()
|
|
{
|
|
PRUint32 xcr0;
|
|
#if defined(_MSC_VER)
|
|
#if defined(_M_IX86)
|
|
__asm {
|
|
mov ecx, 0
|
|
xgetbv
|
|
mov xcr0, eax
|
|
}
|
|
#else
|
|
xcr0 = (PRUint32)_xgetbv(0); /* Requires VS2010 SP1 or later. */
|
|
#endif
|
|
#else
|
|
__asm__ ("xgetbv" : "=a" (xcr0) : "c" (0) : "%edx");
|
|
#endif
|
|
/* Check if xmm and ymm state are enabled in XCR0. */
|
|
return (xcr0 & 6) == 6;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Initialize a new AES context suitable for AES encryption/decryption in
|
|
** the ECB or CBC mode.
|
|
** "mode" the mode of operation, which must be NSS_AES or NSS_AES_CBC
|
|
*/
|
|
static SECStatus
|
|
aes_InitContext(AESContext *cx, const unsigned char *key, unsigned int keysize,
|
|
const unsigned char *iv, int mode, unsigned int encrypt,
|
|
unsigned int blocksize)
|
|
{
|
|
unsigned int Nk;
|
|
/* According to Rijndael AES Proposal, section 12.1, block and key
|
|
* lengths between 128 and 256 bits are supported, as long as the
|
|
* length in bytes is divisible by 4.
|
|
*/
|
|
if (key == NULL ||
|
|
keysize < RIJNDAEL_MIN_BLOCKSIZE ||
|
|
keysize > RIJNDAEL_MAX_BLOCKSIZE ||
|
|
keysize % 4 != 0 ||
|
|
blocksize < RIJNDAEL_MIN_BLOCKSIZE ||
|
|
blocksize > RIJNDAEL_MAX_BLOCKSIZE ||
|
|
blocksize % 4 != 0) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
if (mode != NSS_AES && mode != NSS_AES_CBC) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
if (mode == NSS_AES_CBC && iv == NULL) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
if (!cx) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
#ifdef USE_HW_AES
|
|
if (has_intel_aes == 0) {
|
|
unsigned long eax, ebx, ecx, edx;
|
|
char *disable_hw_aes = getenv("NSS_DISABLE_HW_AES");
|
|
|
|
if (disable_hw_aes == NULL) {
|
|
freebl_cpuid(1, &eax, &ebx, &ecx, &edx);
|
|
has_intel_aes = (ecx & (1 << 25)) != 0 ? 1 : -1;
|
|
#ifdef INTEL_GCM
|
|
has_intel_clmul = (ecx & (1 << 1)) != 0 ? 1 : -1;
|
|
if ((ecx & (1 << 27)) != 0 && (ecx & (1 << 28)) != 0 &&
|
|
check_xcr0_ymm()) {
|
|
has_intel_avx = 1;
|
|
} else {
|
|
has_intel_avx = -1;
|
|
}
|
|
#endif
|
|
} else {
|
|
has_intel_aes = -1;
|
|
#ifdef INTEL_GCM
|
|
has_intel_avx = -1;
|
|
has_intel_clmul = -1;
|
|
#endif
|
|
}
|
|
}
|
|
use_hw_aes = (PRBool)
|
|
(has_intel_aes > 0 && (keysize % 8) == 0 && blocksize == 16);
|
|
#ifdef INTEL_GCM
|
|
use_hw_gcm = (PRBool)
|
|
(use_hw_aes && has_intel_avx>0 && has_intel_clmul>0);
|
|
#endif
|
|
#endif /* USE_HW_AES */
|
|
/* Nb = (block size in bits) / 32 */
|
|
cx->Nb = blocksize / 4;
|
|
/* Nk = (key size in bits) / 32 */
|
|
Nk = keysize / 4;
|
|
/* Obtain number of rounds from "table" */
|
|
cx->Nr = RIJNDAEL_NUM_ROUNDS(Nk, cx->Nb);
|
|
/* copy in the iv, if neccessary */
|
|
if (mode == NSS_AES_CBC) {
|
|
memcpy(cx->iv, iv, blocksize);
|
|
#ifdef USE_HW_AES
|
|
if (use_hw_aes) {
|
|
cx->worker = (freeblCipherFunc)
|
|
intel_aes_cbc_worker(encrypt, keysize);
|
|
} else
|
|
#endif
|
|
{
|
|
cx->worker = (freeblCipherFunc) (encrypt
|
|
? &rijndael_encryptCBC : &rijndael_decryptCBC);
|
|
}
|
|
} else {
|
|
#ifdef USE_HW_AES
|
|
if (use_hw_aes) {
|
|
cx->worker = (freeblCipherFunc)
|
|
intel_aes_ecb_worker(encrypt, keysize);
|
|
} else
|
|
#endif
|
|
{
|
|
cx->worker = (freeblCipherFunc) (encrypt
|
|
? &rijndael_encryptECB : &rijndael_decryptECB);
|
|
}
|
|
}
|
|
PORT_Assert((cx->Nb * (cx->Nr + 1)) <= RIJNDAEL_MAX_EXP_KEY_SIZE);
|
|
if ((cx->Nb * (cx->Nr + 1)) > RIJNDAEL_MAX_EXP_KEY_SIZE) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
goto cleanup;
|
|
}
|
|
#ifdef USE_HW_AES
|
|
if (use_hw_aes) {
|
|
intel_aes_init(encrypt, keysize);
|
|
} else
|
|
#endif
|
|
{
|
|
|
|
#if defined(RIJNDAEL_GENERATE_TABLES) || \
|
|
defined(RIJNDAEL_GENERATE_TABLES_MACRO)
|
|
if (rijndaelTables == NULL) {
|
|
if (PR_CallOnce(&coRTInit, init_rijndael_tables)
|
|
!= PR_SUCCESS) {
|
|
return SecFailure;
|
|
}
|
|
}
|
|
#endif
|
|
/* Generate expanded key */
|
|
if (encrypt) {
|
|
if (rijndael_key_expansion(cx, key, Nk) != SECSuccess)
|
|
goto cleanup;
|
|
} else {
|
|
if (rijndael_invkey_expansion(cx, key, Nk) != SECSuccess)
|
|
goto cleanup;
|
|
}
|
|
}
|
|
cx->worker_cx = cx;
|
|
cx->destroy = NULL;
|
|
cx->isBlock = PR_TRUE;
|
|
return SECSuccess;
|
|
cleanup:
|
|
return SECFailure;
|
|
}
|
|
|
|
SECStatus
|
|
AES_InitContext(AESContext *cx, const unsigned char *key, unsigned int keysize,
|
|
const unsigned char *iv, int mode, unsigned int encrypt,
|
|
unsigned int blocksize)
|
|
{
|
|
int basemode = mode;
|
|
PRBool baseencrypt = encrypt;
|
|
SECStatus rv;
|
|
|
|
switch (mode) {
|
|
case NSS_AES_CTS:
|
|
basemode = NSS_AES_CBC;
|
|
break;
|
|
case NSS_AES_GCM:
|
|
case NSS_AES_CTR:
|
|
basemode = NSS_AES;
|
|
baseencrypt = PR_TRUE;
|
|
break;
|
|
}
|
|
/* make sure enough is initializes so we can safely call Destroy */
|
|
cx->worker_cx = NULL;
|
|
cx->destroy = NULL;
|
|
rv = aes_InitContext(cx, key, keysize, iv, basemode,
|
|
baseencrypt, blocksize);
|
|
if (rv != SECSuccess) {
|
|
AES_DestroyContext(cx, PR_FALSE);
|
|
return rv;
|
|
}
|
|
|
|
/* finally, set up any mode specific contexts */
|
|
switch (mode) {
|
|
case NSS_AES_CTS:
|
|
cx->worker_cx = CTS_CreateContext(cx, cx->worker, iv, blocksize);
|
|
cx->worker = (freeblCipherFunc)
|
|
(encrypt ? CTS_EncryptUpdate : CTS_DecryptUpdate);
|
|
cx->destroy = (freeblDestroyFunc) CTS_DestroyContext;
|
|
cx->isBlock = PR_FALSE;
|
|
break;
|
|
case NSS_AES_GCM:
|
|
#ifdef INTEL_GCM
|
|
if(use_hw_gcm) {
|
|
cx->worker_cx = intel_AES_GCM_CreateContext(cx, cx->worker, iv, blocksize);
|
|
cx->worker = (freeblCipherFunc)
|
|
(encrypt ? intel_AES_GCM_EncryptUpdate : intel_AES_GCM_DecryptUpdate);
|
|
cx->destroy = (freeblDestroyFunc) intel_AES_GCM_DestroyContext;
|
|
cx->isBlock = PR_FALSE;
|
|
} else
|
|
#endif
|
|
{
|
|
cx->worker_cx = GCM_CreateContext(cx, cx->worker, iv, blocksize);
|
|
cx->worker = (freeblCipherFunc)
|
|
(encrypt ? GCM_EncryptUpdate : GCM_DecryptUpdate);
|
|
cx->destroy = (freeblDestroyFunc) GCM_DestroyContext;
|
|
cx->isBlock = PR_FALSE;
|
|
}
|
|
break;
|
|
case NSS_AES_CTR:
|
|
cx->worker_cx = CTR_CreateContext(cx, cx->worker, iv, blocksize);
|
|
#if defined(USE_HW_AES) && defined(_MSC_VER)
|
|
if (use_hw_aes) {
|
|
cx->worker = (freeblCipherFunc) CTR_Update_HW_AES;
|
|
} else
|
|
#endif
|
|
{
|
|
cx->worker = (freeblCipherFunc) CTR_Update;
|
|
}
|
|
cx->destroy = (freeblDestroyFunc) CTR_DestroyContext;
|
|
cx->isBlock = PR_FALSE;
|
|
break;
|
|
default:
|
|
/* everything has already been set up by aes_InitContext, just
|
|
* return */
|
|
return SECSuccess;
|
|
}
|
|
/* check to see if we succeeded in getting the worker context */
|
|
if (cx->worker_cx == NULL) {
|
|
/* no, just destroy the existing context */
|
|
cx->destroy = NULL; /* paranoia, though you can see a dozen lines */
|
|
/* below that this isn't necessary */
|
|
AES_DestroyContext(cx, PR_FALSE);
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* AES_CreateContext
|
|
*
|
|
* create a new context for Rijndael operations
|
|
*/
|
|
AESContext *
|
|
AES_CreateContext(const unsigned char *key, const unsigned char *iv,
|
|
int mode, int encrypt,
|
|
unsigned int keysize, unsigned int blocksize)
|
|
{
|
|
AESContext *cx = AES_AllocateContext();
|
|
if (cx) {
|
|
SECStatus rv = AES_InitContext(cx, key, keysize, iv, mode, encrypt,
|
|
blocksize);
|
|
if (rv != SECSuccess) {
|
|
AES_DestroyContext(cx, PR_TRUE);
|
|
cx = NULL;
|
|
}
|
|
}
|
|
return cx;
|
|
}
|
|
|
|
/*
|
|
* AES_DestroyContext
|
|
*
|
|
* Zero an AES cipher context. If freeit is true, also free the pointer
|
|
* to the context.
|
|
*/
|
|
void
|
|
AES_DestroyContext(AESContext *cx, PRBool freeit)
|
|
{
|
|
if (cx->worker_cx && cx->destroy) {
|
|
(*cx->destroy)(cx->worker_cx, PR_TRUE);
|
|
cx->worker_cx = NULL;
|
|
cx->destroy = NULL;
|
|
}
|
|
if (freeit)
|
|
PORT_Free(cx);
|
|
}
|
|
|
|
/*
|
|
* AES_Encrypt
|
|
*
|
|
* Encrypt an arbitrary-length buffer. The output buffer must already be
|
|
* allocated to at least inputLen.
|
|
*/
|
|
SECStatus
|
|
AES_Encrypt(AESContext *cx, unsigned char *output,
|
|
unsigned int *outputLen, unsigned int maxOutputLen,
|
|
const unsigned char *input, unsigned int inputLen)
|
|
{
|
|
int blocksize;
|
|
/* Check args */
|
|
if (cx == NULL || output == NULL || (input == NULL && inputLen != 0)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
blocksize = 4 * cx->Nb;
|
|
if (cx->isBlock && (inputLen % blocksize != 0)) {
|
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
if (maxOutputLen < inputLen) {
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
*outputLen = inputLen;
|
|
return (*cx->worker)(cx->worker_cx, output, outputLen, maxOutputLen,
|
|
input, inputLen, blocksize);
|
|
}
|
|
|
|
/*
|
|
* AES_Decrypt
|
|
*
|
|
* Decrypt and arbitrary-length buffer. The output buffer must already be
|
|
* allocated to at least inputLen.
|
|
*/
|
|
SECStatus
|
|
AES_Decrypt(AESContext *cx, unsigned char *output,
|
|
unsigned int *outputLen, unsigned int maxOutputLen,
|
|
const unsigned char *input, unsigned int inputLen)
|
|
{
|
|
int blocksize;
|
|
/* Check args */
|
|
if (cx == NULL || output == NULL || (input == NULL && inputLen != 0)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
blocksize = 4 * cx->Nb;
|
|
if (cx->isBlock && (inputLen % blocksize != 0)) {
|
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
if (maxOutputLen < inputLen) {
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
*outputLen = inputLen;
|
|
return (*cx->worker)(cx->worker_cx, output, outputLen, maxOutputLen,
|
|
input, inputLen, blocksize);
|
|
}
|