RetroZilla/gc/boehm/leaksoup/leaksoup.java
2015-10-20 23:03:22 -04:00

626 lines
19 KiB
Java

/* -*- Mode: Java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/NPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is Mozilla Communicator client code, released
* March 31, 1998.
*
* The Initial Developer of the Original Code is Netscape
* Communications Corporation. Portions created by Netscape are
* Copyright (C) 1998 Netscape Communications Corporation. All
* Rights Reserved.
*
* Contributor(s):
*
* Patrick C. Beard <beard@netscape.com>
*
* Alternatively, the contents of this file may be used under the
* terms of the GNU Public License (the "GPL"), in which case the
* provisions of the GPL are applicable instead of those above.
* If you wish to allow use of your version of this file only
* under the terms of the GPL and not to allow others to use your
* version of this file under the NPL, indicate your decision by
* deleting the provisions above and replace them with the notice
* and other provisions required by the GPL. If you do not delete
* the provisions above, a recipient may use your version of this
* file under either the NPL or the GPL.
*/
import java.io.*;
import java.util.*;
class Leak extends Reference {
String mName;
long mCrawlOffset;
short mCrawlCount;
short mRefCount;
short mChildCount;
Leak[] mParents;
int mTotalSize;
boolean mMarked;
Leak(String addr, Type type, Object[] refs, long crawlOffset, short crawlCount) {
super(addr, type, refs);
mName = addr;
mCrawlOffset = crawlOffset;
mCrawlCount = crawlCount;
mRefCount = 0;
mChildCount = 0;
mParents = null;
mTotalSize = 0;
mMarked = false;
}
void setParents(Vector parents) {
mParents = new Leak[parents.size()];
parents.copyInto(mParents);
}
void computeTotalSize() {
// first, mark this node as having been visited.
// we only want to include nodes that haven't been
// visited in our total size.
mTotalSize = mType.mSize;
// then, visit all nodes that haven't been visited,
// and include their total size in ours.
int count = mReferences.length;
for (int i = 0; i < count; ++i) {
Object ref = mReferences[i];
if (ref instanceof Leak) {
Leak leak = (Leak) ref;
if (leak.mTotalSize == 0) {
leak.computeTotalSize();
mTotalSize += leak.mTotalSize;
}
}
}
}
void clearTotalSize() {
// first, clear our total size.
mTotalSize = 0;
// then, visit all nodes that haven't been visited,
// and clear each one's total size.
int count = mReferences.length;
for (int i = 0; i < count; ++i) {
Object ref = mReferences[i];
if (ref instanceof Leak) {
Leak leak = (Leak) ref;
if (leak.mTotalSize != 0)
leak.clearTotalSize();
}
}
}
void clearMarks() {
// first, clear mark.
mMarked = false;
// then, visit all nodes that haven't been visited,
// and clear each one's mark.
int count = mReferences.length;
for (int i = 0; i < count; ++i) {
Object ref = mReferences[i];
if (ref instanceof Leak) {
Leak leak = (Leak) ref;
if (leak.mMarked)
leak.clearMarks();
}
}
}
static final char INDENT = '\t';
void printGraph(PrintWriter out) {
printGraph(out, 0);
clearMarks();
}
private void printGraph(PrintWriter out, int indent) {
// first, mark this node as having been visited.
// we only want to include nodes that haven't been
// visited in our total size.
mMarked = true;
for (int i = 0; i < indent; ++i)
out.print(INDENT);
out.println(toString());
// then, visit all nodes that haven't been visited,
// and include their total size in ours.
int count = mReferences.length;
if (count > 0) {
int subIndent = indent + 1;
for (int i = 0; i < count; ++i) {
Object ref = mReferences[i];
if (ref instanceof Leak) {
Leak leak = (Leak) ref;
if (!leak.mMarked)
leak.printGraph(out, subIndent);
}
}
}
}
void printCycle(PrintWriter out) {
printCycle(out, 0);
clearMarks();
}
private void printCycle(PrintWriter out, int indent) {
// first, mark this node as having been visited.
// we only want to include nodes that haven't been
// visited in our total size.
mMarked = true;
// then, visit all nodes that haven't been visited,
// and include their total size in ours.
if (mChildCount > 0) {
// don't print leaf nodes in a cycle. they aren't interesting.
for (int i = 0; i < indent; ++i)
out.print(INDENT);
out.println(toString());
int subIndent = indent + 1;
int count = mReferences.length;
for (int i = 0; i < count; ++i) {
Object ref = mReferences[i];
if (ref instanceof Leak) {
Leak leak = (Leak) ref;
if (!leak.mMarked)
leak.printCycle(out, subIndent);
}
}
}
}
public String toString() {
return ("<A HREF=\"#" + mName + "\">" + mName + "</A> [" + mRefCount + "] " + mType + "{" + mTotalSize + "}");
}
/**
* Sorts in order of increasing reference count.
*/
static class ByRefCount extends QuickSort.Comparator {
public int compare(Object obj1, Object obj2) {
Leak l1 = (Leak) obj1, l2 = (Leak) obj2;
return (l1.mRefCount - l2.mRefCount);
}
}
/**
* Sorts in order of decreasing number of children.
*/
public static class ByChildCount extends QuickSort.Comparator {
public int compare(Object obj1, Object obj2) {
Leak l1 = (Leak) obj1, l2 = (Leak) obj2;
return (l2.mChildCount - l1.mChildCount);
}
}
/**
* Sorts in order of decreasing total size.
*/
static class ByTotalSize extends QuickSort.Comparator {
public int compare(Object obj1, Object obj2) {
Leak l1 = (Leak) obj1, l2 = (Leak) obj2;
return (l2.mTotalSize - l1.mTotalSize);
}
}
}
final class LineReader {
BufferedReader reader;
long offset;
LineReader(BufferedReader reader) {
this.reader = reader;
this.offset = 0;
}
String readLine() throws IOException {
String line = reader.readLine();
if (line != null)
offset += 1 + line.length();
return line;
}
void close() throws IOException {
reader.close();
}
}
public class leaksoup {
private static boolean ROOTS_ONLY = false;
public static void main(String[] args) {
if (args.length == 0) {
System.out.println("usage: leaksoup [-blame] [-lxr] [-assign] [-roots] leaks");
System.exit(1);
}
// assume user want's blame URLs.
FileLocator.USE_BLAME = true;
FileLocator.ASSIGN_BLAME = false;
ROOTS_ONLY = false;
for (int i = 0; i < args.length; i++) {
String arg = args[i];
if (arg.charAt(0) == '-') {
if (arg.equals("-blame"))
FileLocator.USE_BLAME = true;
else if (arg.equals("-lxr"))
FileLocator.USE_BLAME = false;
else if (arg.equals("-assign"))
FileLocator.ASSIGN_BLAME = true;
else if (arg.equals("-roots"))
ROOTS_ONLY = true;
else
System.out.println("unrecognized option: " + arg);
} else {
cook(arg);
}
}
// quit the application.
System.exit(0);
}
static void cook(String inputName) {
try {
Vector vec = new Vector();
Hashtable leakTable = new Hashtable();
Hashtable types = new Hashtable();
Histogram hist = new Histogram();
LineReader reader = new LineReader(new BufferedReader(new InputStreamReader(new FileInputStream(inputName))));
StringTable strings = new StringTable();
String line = reader.readLine();
while (line != null) {
if (line.startsWith("0x")) {
String addr = strings.intern(line.substring(0, 10));
String name = strings.intern(line.substring(line.indexOf('<') + 1, line.indexOf('>')));
int size;
try {
String str = line.substring(line.indexOf('(') + 1, line.indexOf(')')).trim();
size = Integer.parseInt(str);
} catch (NumberFormatException nfe) {
size = 0;
}
// generate a unique type for this object.
String key = strings.intern(name + "_" + size);
Type type = (Type) types.get(key);
if (type == null) {
type = new Type(name, size);
types.put(key, type);
}
// read in fields. could compress these by converting to Integer objects.
vec.setSize(0);
for (line = reader.readLine(); line != null && line.charAt(0) == '\t'; line = reader.readLine())
vec.addElement(strings.intern(line.substring(1, 11)));
Object[] refs = new Object[vec.size()];
vec.copyInto(refs);
vec.setSize(0);
// record the offset of the stack crawl, which will be read in and formatted at the end, to save memory.
long crawlOffset = reader.offset;
short crawlCount = 0;
for (line = reader.readLine(); line != null && !line.startsWith("Leaked "); line = reader.readLine())
++crawlCount;
// record the leak.
leakTable.put(addr, new Leak(addr, type, refs, crawlOffset, crawlCount));
// count the leak types in a histogram.
hist.record(type);
} else {
line = reader.readLine();
}
}
reader.close();
// don't need the interned strings table anymore.
strings = null;
Leak[] leaks = new Leak[leakTable.size()];
int leakCount = 0;
long totalSize = 0;
Hashtable parentTable = new Hashtable();
// now, we have a table full of leaked objects, lets derive reference counts, and build the graph.
Enumeration e = leakTable.elements();
while (e.hasMoreElements()) {
Leak leak = (Leak) e.nextElement();
Object[] refs = leak.mReferences;
int count = refs.length;
for (int r = 0; r < count; ++r) {
String addr = (String) refs[r];
Leak ref = (Leak) leakTable.get(addr);
if (ref != null) {
// increase the ref count.
ref.mRefCount++;
// change string to ref itself.
refs[r] = ref;
// add leak to ref's parents vector.
Vector parents = (Vector) parentTable.get(ref);
if (parents == null) {
parents = new Vector();
parentTable.put(ref, parents);
}
parents.addElement(leak);
}
}
leaks[leakCount++] = leak;
totalSize += leak.mType.mSize;
}
// be nice to the GC.
leakTable.clear();
leakTable = null;
// sort the leaks by address, and find interior pointers.
{
QuickSort byAddress = new QuickSort(new Reference.ByAddress());
byAddress.sort(leaks);
}
for (int i = 0; i < leakCount; ++i) {
Leak leak = leaks[i];
Object[] refs = leak.mReferences;
int count = refs.length;
short childCount = 0;
for (int r = 0; r < count; ++r) {
if (refs[r] instanceof String) {
String addr = (String) refs[r];
if (addr.equals("0x00000000")) continue;
int address = (int) Long.parseLong(addr.substring(2), 16);
Leak ref = (Leak) Reference.findNearest(leaks, address);
if (ref != null) {
// increase the ref count.
ref.mRefCount++;
// change string to ref itself.
refs[r] = ref;
// add leak to ref's parents vector.
Vector parents = (Vector) parentTable.get(ref);
if (parents == null) {
parents = new Vector();
parentTable.put(ref, parents);
}
parents.addElement(leak);
++childCount;
}
} else {
++childCount;
}
}
leak.mChildCount = childCount;
}
// set the parents of each leak.
e = parentTable.keys();
while (e.hasMoreElements()) {
Leak leak = (Leak) e.nextElement();
Vector parents = (Vector) parentTable.get(leak);
if (parents != null)
leak.setParents(parents);
}
// be nice to the GC.
parentTable.clear();
parentTable = null;
// store the leak report in inputName + ".html"
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(new FileOutputStream(inputName + ".html"))));
Date now = new Date();
out.println("<TITLE>Leaks as of " + now + "</TITLE>");
// print leak summary.
out.println("<H2>Leak Summary</H2>");
out.println("total objects leaked = " + leakCount + "<BR>");
out.println("total memory leaked = " + totalSize + " bytes.<BR>");
printLeakHistogram(out, hist);
printLeakStructure(out, leaks);
// open original file again, as a RandomAccessFile, to read in stack crawl information.
// print the leak report.
if (!ROOTS_ONLY) {
RandomAccessFile in = new RandomAccessFile(inputName, "r");
printLeaks(in, out, leaks);
in.close();
}
out.close();
} catch (Exception e) {
e.printStackTrace(System.err);
}
}
/**
* Sorts the bins of a histogram by (count * typeSize) to show the
* most pressing leaks.
*/
static class ByTypeBinSize extends QuickSort.Comparator {
Histogram hist;
ByTypeBinSize(Histogram hist) {
this.hist = hist;
}
public int compare(Object obj1, Object obj2) {
Type t1 = (Type) obj1, t2 = (Type) obj2;
return (hist.count(t1) * t1.mSize - hist.count(t2) * t2.mSize);
}
}
static void printLeakHistogram(PrintWriter out, Histogram hist) throws IOException {
// sort the types by histogram count.
Object[] types = hist.objects();
QuickSort byTypeBinSize = new QuickSort(new ByTypeBinSize(hist));
byTypeBinSize.sort(types);
out.println("<H2>Leak Histogram</H2>");
out.println("<PRE>");
int index = types.length;
while (index > 0) {
Type type = (Type) types[--index];
int count = hist.count(type);
out.println(type.toString() + " : " + count + " {" + (count * type.mSize) + "}");
}
out.println("</PRE>");
}
static void printLeakStructure(PrintWriter out, Leak[] leaks) {
// print root leaks. consider only leaks with a reference
// count of 0, which when fixed, will hopefully reclaim
// all of the objects below them in the graph.
{
QuickSort byRefCount = new QuickSort(new Leak.ByRefCount());
byRefCount.sort(leaks);
}
int rootCount = 0;
int leakCount = leaks.length;
for (int i = 0; i < leakCount; ++i) {
Leak leak = leaks[i];
if (leak.mRefCount > 0)
break;
++rootCount;
leak.computeTotalSize();
}
{
QuickSort byTotalSize = new QuickSort(new Leak.ByTotalSize());
byTotalSize.sort(leaks, rootCount);
}
out.println("<H2>Leak Roots</H2>");
out.println("<PRE>");
for (int i = 0; i < rootCount; ++i) {
Leak leak = leaks[i];
leak.printGraph(out);
}
out.println("</PRE>");
// print leak cycles. traverse the leaks from objects with most number
// of children to least, so that leaf objects will be printed after
// their parents.
{
QuickSort byChildCount = new QuickSort(new Leak.ByChildCount());
byChildCount.sort(leaks);
}
out.println("<H2>Leak Cycles</H2>");
out.println("<PRE>");
for (int i = 0; i < leakCount; ++i) {
Leak leak = leaks[i];
// if an object's total size isn't known yet, then it must
// be a member of a cycle, since it wasn't reached when traversing roots.
if (leak.mTotalSize == 0) {
leak.computeTotalSize();
leak.printCycle(out);
}
}
out.println("</PRE>");
}
static StringBuffer appendChar(StringBuffer buffer, int ch) {
if (ch > 32 && ch < 0x7F) {
switch (ch) {
case '<': buffer.append("&LT;"); break;
case '>': buffer.append("&GT;"); break;
default: buffer.append((char)ch); break;
}
} else {
buffer.append("&#183;");
}
return buffer;
}
static void printField(PrintWriter out, Object field) {
String value = field.toString();
if (field instanceof String) {
// this is just a plain HEX value, print its contents as ASCII as well.
if (value.startsWith("0x")) {
try {
int hexValue = Integer.parseInt(value.substring(2), 16);
// don't interpret some common values, to save some space.
if (hexValue != 0 && hexValue != -1) {
StringBuffer buffer = new StringBuffer(value);
buffer.append('\t');
appendChar(buffer, ((hexValue >>> 24) & 0x00FF));
appendChar(buffer, ((hexValue >>> 16) & 0x00FF));
appendChar(buffer, ((hexValue >>> 8) & 0x00FF));
appendChar(buffer, (hexValue & 0x00FF));
value = buffer.toString();
}
} catch (NumberFormatException nfe) {
}
}
}
out.println("\t" + value);
}
static void printLeaks(RandomAccessFile in, PrintWriter out, Leak[] leaks) throws IOException {
// sort the leaks by total size.
QuickSort bySize = new QuickSort(new Leak.ByTotalSize());
bySize.sort(leaks);
// now, print the report, sorted by type size.
out.println("<PRE>");
Type anchorType = null;
int leakCount = leaks.length;
for (int i = 0; i < leakCount; ++i) {
Leak leak = leaks[i];
if (anchorType != leak.mType) {
anchorType = leak.mType;
out.println("\n<HR>");
out.println("<A NAME=\"" + anchorType.mName + "_" + anchorType.mSize + "\"></A>");
out.println("<H3>" + anchorType + " Leaks</H3>");
}
out.println("<A NAME=\"" + leak.mName + "\"></A>");
if (leak.mParents != null) {
out.print(leak);
out.println(" <A HREF=\"#" + leak.mName + "_parents\">parents</A>");
} else {
out.println(leak);
}
// print object's fields:
Object[] refs = leak.mReferences;
int count = refs.length;
for (int j = 0; j < count; j++)
printField(out, refs[j]);
// print object's stack crawl:
in.seek(leak.mCrawlOffset);
short crawlCount = leak.mCrawlCount;
while (crawlCount-- > 0) {
String line = in.readLine();
String location = FileLocator.getFileLocation(line);
out.println(location);
}
// print object's parents.
if (leak.mParents != null) {
out.println("<A NAME=\"" + leak.mName + "_parents\"></A>");
out.println("\nLeak Parents:");
Leak[] parents = leak.mParents;
count = parents.length;
for (int j = 0; j < count; j++)
out.println("\t" + parents[j]);
}
}
out.println("</PRE>");
}
}