mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-10 01:40:17 +01:00
1210 lines
36 KiB
C
1210 lines
36 KiB
C
/* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is the Netscape security libraries.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Netscape Communications Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 2000
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Sheueling Chang Shantz <sheueling.chang@sun.com>,
|
|
* Stephen Fung <stephen.fung@sun.com>, and
|
|
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
/* $Id: mpmontg.c,v 1.20 2006/08/29 02:41:38 nelson%bolyard.com Exp $ */
|
|
|
|
/* This file implements moduluar exponentiation using Montgomery's
|
|
* method for modular reduction. This file implements the method
|
|
* described as "Improvement 1" in the paper "A Cryptogrpahic Library for
|
|
* the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr.
|
|
* published in "Advances in Cryptology: Proceedings of EUROCRYPT '90"
|
|
* "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244,
|
|
* published by Springer Verlag.
|
|
*/
|
|
|
|
#define MP_USING_CACHE_SAFE_MOD_EXP 1
|
|
#include <string.h>
|
|
#include "mpi-priv.h"
|
|
#include "mplogic.h"
|
|
#include "mpprime.h"
|
|
#ifdef MP_USING_MONT_MULF
|
|
#include "montmulf.h"
|
|
#endif
|
|
#include <stddef.h> /* ptrdiff_t */
|
|
|
|
/* if MP_CHAR_STORE_SLOW is defined, we */
|
|
/* need to know endianness of this platform. */
|
|
#ifdef MP_CHAR_STORE_SLOW
|
|
#if !defined(MP_IS_BIG_ENDIAN) && !defined(MP_IS_LITTLE_ENDIAN)
|
|
#error "You must define MP_IS_BIG_ENDIAN or MP_IS_LITTLE_ENDIAN\n" \
|
|
" if you define MP_CHAR_STORE_SLOW."
|
|
#endif
|
|
#endif
|
|
|
|
#define STATIC
|
|
|
|
#define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */
|
|
|
|
#if defined(_WIN32_WCE)
|
|
#define ABORT res = MP_UNDEF; goto CLEANUP
|
|
#else
|
|
#define ABORT abort()
|
|
#endif
|
|
|
|
/* computes T = REDC(T), 2^b == R */
|
|
mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm)
|
|
{
|
|
mp_err res;
|
|
mp_size i;
|
|
|
|
i = MP_USED(T) + MP_USED(&mmm->N) + 2;
|
|
MP_CHECKOK( s_mp_pad(T, i) );
|
|
for (i = 0; i < MP_USED(&mmm->N); ++i ) {
|
|
mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime;
|
|
/* T += N * m_i * (MP_RADIX ** i); */
|
|
MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) );
|
|
}
|
|
s_mp_clamp(T);
|
|
|
|
/* T /= R */
|
|
s_mp_div_2d(T, mmm->b);
|
|
|
|
if ((res = s_mp_cmp(T, &mmm->N)) >= 0) {
|
|
/* T = T - N */
|
|
MP_CHECKOK( s_mp_sub(T, &mmm->N) );
|
|
#ifdef DEBUG
|
|
if ((res = mp_cmp(T, &mmm->N)) >= 0) {
|
|
res = MP_UNDEF;
|
|
goto CLEANUP;
|
|
}
|
|
#endif
|
|
}
|
|
res = MP_OKAY;
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
#if !defined(MP_ASSEMBLY_MUL_MONT) && !defined(MP_MONT_USE_MP_MUL)
|
|
mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
|
|
mp_mont_modulus *mmm)
|
|
{
|
|
mp_digit *pb;
|
|
mp_digit m_i;
|
|
mp_err res;
|
|
mp_size ib;
|
|
mp_size useda, usedb;
|
|
|
|
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
|
if (MP_USED(a) < MP_USED(b)) {
|
|
const mp_int *xch = b; /* switch a and b, to do fewer outer loops */
|
|
b = a;
|
|
a = xch;
|
|
}
|
|
|
|
MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
|
|
ib = MP_USED(a) + MP_MAX(MP_USED(b), MP_USED(&mmm->N)) + 2;
|
|
if((res = s_mp_pad(c, ib)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
useda = MP_USED(a);
|
|
pb = MP_DIGITS(b);
|
|
s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c));
|
|
s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1));
|
|
m_i = MP_DIGIT(c, 0) * mmm->n0prime;
|
|
s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0);
|
|
|
|
/* Outer loop: Digits of b */
|
|
usedb = MP_USED(b);
|
|
for (ib = 1; ib < usedb; ib++) {
|
|
mp_digit b_i = *pb++;
|
|
|
|
/* Inner product: Digits of a */
|
|
if (b_i)
|
|
s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
|
|
m_i = MP_DIGIT(c, ib) * mmm->n0prime;
|
|
s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
|
|
}
|
|
if (usedb < MP_USED(&mmm->N)) {
|
|
for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib ) {
|
|
m_i = MP_DIGIT(c, ib) * mmm->n0prime;
|
|
s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
|
|
}
|
|
}
|
|
s_mp_clamp(c);
|
|
s_mp_div_2d(c, mmm->b);
|
|
if (s_mp_cmp(c, &mmm->N) >= 0) {
|
|
MP_CHECKOK( s_mp_sub(c, &mmm->N) );
|
|
}
|
|
res = MP_OKAY;
|
|
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
STATIC
|
|
mp_err s_mp_to_mont(const mp_int *x, mp_mont_modulus *mmm, mp_int *xMont)
|
|
{
|
|
mp_err res;
|
|
|
|
/* xMont = x * R mod N where N is modulus */
|
|
MP_CHECKOK( mpl_lsh(x, xMont, mmm->b) ); /* xMont = x << b */
|
|
MP_CHECKOK( mp_div(xMont, &mmm->N, 0, xMont) ); /* mod N */
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
#ifdef MP_USING_MONT_MULF
|
|
|
|
/* the floating point multiply is already cache safe,
|
|
* don't turn on cache safe unless we specifically
|
|
* force it */
|
|
#ifndef MP_FORCE_CACHE_SAFE
|
|
#undef MP_USING_CACHE_SAFE_MOD_EXP
|
|
#endif
|
|
|
|
unsigned int mp_using_mont_mulf = 1;
|
|
|
|
/* computes montgomery square of the integer in mResult */
|
|
#define SQR \
|
|
conv_i32_to_d32_and_d16(dm1, d16Tmp, mResult, nLen); \
|
|
mont_mulf_noconv(mResult, dm1, d16Tmp, \
|
|
dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
|
|
|
|
/* computes montgomery product of x and the integer in mResult */
|
|
#define MUL(x) \
|
|
conv_i32_to_d32(dm1, mResult, nLen); \
|
|
mont_mulf_noconv(mResult, dm1, oddPowers[x], \
|
|
dTmp, dn, MP_DIGITS(modulus), nLen, dn0)
|
|
|
|
/* Do modular exponentiation using floating point multiply code. */
|
|
mp_err mp_exptmod_f(const mp_int * montBase,
|
|
const mp_int * exponent,
|
|
const mp_int * modulus,
|
|
mp_int * result,
|
|
mp_mont_modulus *mmm,
|
|
int nLen,
|
|
mp_size bits_in_exponent,
|
|
mp_size window_bits,
|
|
mp_size odd_ints)
|
|
{
|
|
mp_digit *mResult;
|
|
double *dBuf = 0, *dm1, *dn, *dSqr, *d16Tmp, *dTmp;
|
|
double dn0;
|
|
mp_size i;
|
|
mp_err res;
|
|
int expOff;
|
|
int dSize = 0, oddPowSize, dTmpSize;
|
|
mp_int accum1;
|
|
double *oddPowers[MAX_ODD_INTS];
|
|
|
|
/* function for computing n0prime only works if n0 is odd */
|
|
|
|
MP_DIGITS(&accum1) = 0;
|
|
|
|
for (i = 0; i < MAX_ODD_INTS; ++i)
|
|
oddPowers[i] = 0;
|
|
|
|
MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
|
|
|
|
mp_set(&accum1, 1);
|
|
MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
|
|
MP_CHECKOK( s_mp_pad(&accum1, nLen) );
|
|
|
|
oddPowSize = 2 * nLen + 1;
|
|
dTmpSize = 2 * oddPowSize;
|
|
dSize = sizeof(double) * (nLen * 4 + 1 +
|
|
((odd_ints + 1) * oddPowSize) + dTmpSize);
|
|
dBuf = (double *)malloc(dSize);
|
|
dm1 = dBuf; /* array of d32 */
|
|
dn = dBuf + nLen; /* array of d32 */
|
|
dSqr = dn + nLen; /* array of d32 */
|
|
d16Tmp = dSqr + nLen; /* array of d16 */
|
|
dTmp = d16Tmp + oddPowSize;
|
|
|
|
for (i = 0; i < odd_ints; ++i) {
|
|
oddPowers[i] = dTmp;
|
|
dTmp += oddPowSize;
|
|
}
|
|
mResult = (mp_digit *)(dTmp + dTmpSize); /* size is nLen + 1 */
|
|
|
|
/* Make dn and dn0 */
|
|
conv_i32_to_d32(dn, MP_DIGITS(modulus), nLen);
|
|
dn0 = (double)(mmm->n0prime & 0xffff);
|
|
|
|
/* Make dSqr */
|
|
conv_i32_to_d32_and_d16(dm1, oddPowers[0], MP_DIGITS(montBase), nLen);
|
|
mont_mulf_noconv(mResult, dm1, oddPowers[0],
|
|
dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
|
|
conv_i32_to_d32(dSqr, mResult, nLen);
|
|
|
|
for (i = 1; i < odd_ints; ++i) {
|
|
mont_mulf_noconv(mResult, dSqr, oddPowers[i - 1],
|
|
dTmp, dn, MP_DIGITS(modulus), nLen, dn0);
|
|
conv_i32_to_d16(oddPowers[i], mResult, nLen);
|
|
}
|
|
|
|
s_mp_copy(MP_DIGITS(&accum1), mResult, nLen); /* from, to, len */
|
|
|
|
for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) {
|
|
mp_size smallExp;
|
|
MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
|
|
smallExp = (mp_size)res;
|
|
|
|
if (window_bits == 1) {
|
|
if (!smallExp) {
|
|
SQR;
|
|
} else if (smallExp & 1) {
|
|
SQR; MUL(0);
|
|
} else {
|
|
ABORT;
|
|
}
|
|
} else if (window_bits == 4) {
|
|
if (!smallExp) {
|
|
SQR; SQR; SQR; SQR;
|
|
} else if (smallExp & 1) {
|
|
SQR; SQR; SQR; SQR; MUL(smallExp/2);
|
|
} else if (smallExp & 2) {
|
|
SQR; SQR; SQR; MUL(smallExp/4); SQR;
|
|
} else if (smallExp & 4) {
|
|
SQR; SQR; MUL(smallExp/8); SQR; SQR;
|
|
} else if (smallExp & 8) {
|
|
SQR; MUL(smallExp/16); SQR; SQR; SQR;
|
|
} else {
|
|
ABORT;
|
|
}
|
|
} else if (window_bits == 5) {
|
|
if (!smallExp) {
|
|
SQR; SQR; SQR; SQR; SQR;
|
|
} else if (smallExp & 1) {
|
|
SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2);
|
|
} else if (smallExp & 2) {
|
|
SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR;
|
|
} else if (smallExp & 4) {
|
|
SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR;
|
|
} else if (smallExp & 8) {
|
|
SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR;
|
|
} else if (smallExp & 0x10) {
|
|
SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR;
|
|
} else {
|
|
ABORT;
|
|
}
|
|
} else if (window_bits == 6) {
|
|
if (!smallExp) {
|
|
SQR; SQR; SQR; SQR; SQR; SQR;
|
|
} else if (smallExp & 1) {
|
|
SQR; SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2);
|
|
} else if (smallExp & 2) {
|
|
SQR; SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR;
|
|
} else if (smallExp & 4) {
|
|
SQR; SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR;
|
|
} else if (smallExp & 8) {
|
|
SQR; SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR;
|
|
} else if (smallExp & 0x10) {
|
|
SQR; SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR;
|
|
} else if (smallExp & 0x20) {
|
|
SQR; MUL(smallExp/64); SQR; SQR; SQR; SQR; SQR;
|
|
} else {
|
|
ABORT;
|
|
}
|
|
} else {
|
|
ABORT;
|
|
}
|
|
}
|
|
|
|
s_mp_copy(mResult, MP_DIGITS(&accum1), nLen); /* from, to, len */
|
|
|
|
res = s_mp_redc(&accum1, mmm);
|
|
mp_exch(&accum1, result);
|
|
|
|
CLEANUP:
|
|
mp_clear(&accum1);
|
|
if (dBuf) {
|
|
if (dSize)
|
|
memset(dBuf, 0, dSize);
|
|
free(dBuf);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
#undef SQR
|
|
#undef MUL
|
|
#endif
|
|
|
|
#define SQR(a,b) \
|
|
MP_CHECKOK( mp_sqr(a, b) );\
|
|
MP_CHECKOK( s_mp_redc(b, mmm) )
|
|
|
|
#if defined(MP_MONT_USE_MP_MUL)
|
|
#define MUL(x,a,b) \
|
|
MP_CHECKOK( mp_mul(a, oddPowers + (x), b) ); \
|
|
MP_CHECKOK( s_mp_redc(b, mmm) )
|
|
#else
|
|
#define MUL(x,a,b) \
|
|
MP_CHECKOK( s_mp_mul_mont(a, oddPowers + (x), b, mmm) )
|
|
#endif
|
|
|
|
#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
|
|
|
|
/* Do modular exponentiation using integer multiply code. */
|
|
mp_err mp_exptmod_i(const mp_int * montBase,
|
|
const mp_int * exponent,
|
|
const mp_int * modulus,
|
|
mp_int * result,
|
|
mp_mont_modulus *mmm,
|
|
int nLen,
|
|
mp_size bits_in_exponent,
|
|
mp_size window_bits,
|
|
mp_size odd_ints)
|
|
{
|
|
mp_int *pa1, *pa2, *ptmp;
|
|
mp_size i;
|
|
mp_err res;
|
|
int expOff;
|
|
mp_int accum1, accum2, power2, oddPowers[MAX_ODD_INTS];
|
|
|
|
/* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */
|
|
/* oddPowers[i] = base ** (2*i + 1); */
|
|
|
|
MP_DIGITS(&accum1) = 0;
|
|
MP_DIGITS(&accum2) = 0;
|
|
MP_DIGITS(&power2) = 0;
|
|
for (i = 0; i < MAX_ODD_INTS; ++i) {
|
|
MP_DIGITS(oddPowers + i) = 0;
|
|
}
|
|
|
|
MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
|
|
MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
|
|
|
|
MP_CHECKOK( mp_init_copy(&oddPowers[0], montBase) );
|
|
|
|
mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2);
|
|
MP_CHECKOK( mp_sqr(montBase, &power2) ); /* power2 = montBase ** 2 */
|
|
MP_CHECKOK( s_mp_redc(&power2, mmm) );
|
|
|
|
for (i = 1; i < odd_ints; ++i) {
|
|
mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2);
|
|
MP_CHECKOK( mp_mul(oddPowers + (i - 1), &power2, oddPowers + i) );
|
|
MP_CHECKOK( s_mp_redc(oddPowers + i, mmm) );
|
|
}
|
|
|
|
/* set accumulator to montgomery residue of 1 */
|
|
mp_set(&accum1, 1);
|
|
MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
|
|
pa1 = &accum1;
|
|
pa2 = &accum2;
|
|
|
|
for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) {
|
|
mp_size smallExp;
|
|
MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
|
|
smallExp = (mp_size)res;
|
|
|
|
if (window_bits == 1) {
|
|
if (!smallExp) {
|
|
SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 1) {
|
|
SQR(pa1,pa2); MUL(0,pa2,pa1);
|
|
} else {
|
|
ABORT;
|
|
}
|
|
} else if (window_bits == 4) {
|
|
if (!smallExp) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
} else if (smallExp & 1) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
MUL(smallExp/2, pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 2) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
|
|
MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 4) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/8,pa1,pa2);
|
|
SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 8) {
|
|
SQR(pa1,pa2); MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2);
|
|
SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else {
|
|
ABORT;
|
|
}
|
|
} else if (window_bits == 5) {
|
|
if (!smallExp) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 1) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); MUL(smallExp/2,pa2,pa1);
|
|
} else if (smallExp & 2) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
MUL(smallExp/4,pa1,pa2); SQR(pa2,pa1);
|
|
} else if (smallExp & 4) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
|
|
MUL(smallExp/8,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
} else if (smallExp & 8) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/16,pa1,pa2);
|
|
SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
} else if (smallExp & 0x10) {
|
|
SQR(pa1,pa2); MUL(smallExp/32,pa2,pa1); SQR(pa1,pa2);
|
|
SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
} else {
|
|
ABORT;
|
|
}
|
|
} else if (window_bits == 6) {
|
|
if (!smallExp) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); SQR(pa2,pa1);
|
|
} else if (smallExp & 1) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/2,pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 2) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 4) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
MUL(smallExp/8,pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 8) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2);
|
|
MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 0x10) {
|
|
SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/32,pa1,pa2);
|
|
SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 0x20) {
|
|
SQR(pa1,pa2); MUL(smallExp/64,pa2,pa1); SQR(pa1,pa2);
|
|
SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA;
|
|
} else {
|
|
ABORT;
|
|
}
|
|
} else {
|
|
ABORT;
|
|
}
|
|
}
|
|
|
|
res = s_mp_redc(pa1, mmm);
|
|
mp_exch(pa1, result);
|
|
|
|
CLEANUP:
|
|
mp_clear(&accum1);
|
|
mp_clear(&accum2);
|
|
mp_clear(&power2);
|
|
for (i = 0; i < odd_ints; ++i) {
|
|
mp_clear(oddPowers + i);
|
|
}
|
|
return res;
|
|
}
|
|
#undef SQR
|
|
#undef MUL
|
|
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
unsigned int mp_using_cache_safe_exp = 1;
|
|
#endif
|
|
|
|
mp_err mp_set_safe_modexp(int value)
|
|
{
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
mp_using_cache_safe_exp = value;
|
|
return MP_OKAY;
|
|
#else
|
|
if (value == 0) {
|
|
return MP_OKAY;
|
|
}
|
|
return MP_BADARG;
|
|
#endif
|
|
}
|
|
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
#define WEAVE_WORD_SIZE 4
|
|
|
|
#ifndef MP_CHAR_STORE_SLOW
|
|
/*
|
|
* mpi_to_weave takes an array of bignums, a matrix in which each bignum
|
|
* occupies all the columns of a row, and transposes it into a matrix in
|
|
* which each bignum occupies a column of every row. The first row of the
|
|
* input matrix becomes the first column of the output matrix. The n'th
|
|
* row of input becomes the n'th column of output. The input data is said
|
|
* to be "interleaved" or "woven" into the output matrix.
|
|
*
|
|
* The array of bignums is left in this woven form. Each time a single
|
|
* bignum value is needed, it is recreated by fetching the n'th column,
|
|
* forming a single row which is the new bignum.
|
|
*
|
|
* The purpose of this interleaving is make it impossible to determine which
|
|
* of the bignums is being used in any one operation by examining the pattern
|
|
* of cache misses.
|
|
*
|
|
* The weaving function does not transpose the entire input matrix in one call.
|
|
* It transposes 4 rows of mp_ints into their respective columns of output.
|
|
*
|
|
* There are two different implementations of the weaving and unweaving code
|
|
* in this file. One uses byte loads and stores. The second uses loads and
|
|
* stores of mp_weave_word size values. The weaved forms of these two
|
|
* implementations differ. Consequently, each one has its own explanation.
|
|
*
|
|
* Here is the explanation for the byte-at-a-time implementation.
|
|
*
|
|
* This implementation treats each mp_int bignum as an array of bytes,
|
|
* rather than as an array of mp_digits. It stores those bytes as a
|
|
* column of bytes in the output matrix. It doesn't care if the machine
|
|
* uses big-endian or little-endian byte ordering within mp_digits.
|
|
* The first byte of the mp_digit array becomes the first byte in the output
|
|
* column, regardless of whether that byte is the MSB or LSB of the mp_digit.
|
|
*
|
|
* "bignums" is an array of mp_ints.
|
|
* It points to four rows, four mp_ints, a subset of a larger array of mp_ints.
|
|
*
|
|
* "weaved" is the weaved output matrix.
|
|
* The first byte of bignums[0] is stored in weaved[0].
|
|
*
|
|
* "nBignums" is the total number of bignums in the array of which "bignums"
|
|
* is a part.
|
|
*
|
|
* "nDigits" is the size in mp_digits of each mp_int in the "bignums" array.
|
|
* mp_ints that use less than nDigits digits are logically padded with zeros
|
|
* while being stored in the weaved array.
|
|
*/
|
|
mp_err mpi_to_weave(const mp_int *bignums,
|
|
unsigned char *weaved,
|
|
mp_size nDigits, /* in each mp_int of input */
|
|
mp_size nBignums) /* in the entire source array */
|
|
{
|
|
mp_size i;
|
|
unsigned char * endDest = weaved + (nDigits * nBignums * sizeof(mp_digit));
|
|
|
|
for (i=0; i < WEAVE_WORD_SIZE; i++) {
|
|
mp_size used = MP_USED(&bignums[i]);
|
|
unsigned char *pSrc = (unsigned char *)MP_DIGITS(&bignums[i]);
|
|
unsigned char *endSrc = pSrc + (used * sizeof(mp_digit));
|
|
unsigned char *pDest = weaved + i;
|
|
|
|
ARGCHK(MP_SIGN(&bignums[i]) == MP_ZPOS, MP_BADARG);
|
|
ARGCHK(used <= nDigits, MP_BADARG);
|
|
|
|
for (; pSrc < endSrc; pSrc++) {
|
|
*pDest = *pSrc;
|
|
pDest += nBignums;
|
|
}
|
|
while (pDest < endDest) {
|
|
*pDest = 0;
|
|
pDest += nBignums;
|
|
}
|
|
}
|
|
|
|
return MP_OKAY;
|
|
}
|
|
|
|
/* Reverse the operation above for one mp_int.
|
|
* Reconstruct one mp_int from its column in the weaved array.
|
|
* "pSrc" points to the offset into the weave array of the bignum we
|
|
* are going to reconstruct.
|
|
*/
|
|
mp_err weave_to_mpi(mp_int *a, /* output, result */
|
|
const unsigned char *pSrc, /* input, byte matrix */
|
|
mp_size nDigits, /* per mp_int output */
|
|
mp_size nBignums) /* bignums in weaved matrix */
|
|
{
|
|
unsigned char *pDest = (unsigned char *)MP_DIGITS(a);
|
|
unsigned char *endDest = pDest + (nDigits * sizeof(mp_digit));
|
|
|
|
MP_SIGN(a) = MP_ZPOS;
|
|
MP_USED(a) = nDigits;
|
|
|
|
for (; pDest < endDest; pSrc += nBignums, pDest++) {
|
|
*pDest = *pSrc;
|
|
}
|
|
s_mp_clamp(a);
|
|
return MP_OKAY;
|
|
}
|
|
|
|
#else
|
|
|
|
/* Need a primitive that we know is 32 bits long... */
|
|
/* this is true on all modern processors we know of today*/
|
|
typedef unsigned int mp_weave_word;
|
|
|
|
/*
|
|
* on some platforms character stores into memory is very expensive since they
|
|
* generate a read/modify/write operation on the bus. On those platforms
|
|
* we need to do integer writes to the bus. Because of some unrolled code,
|
|
* in this current code the size of mp_weave_word must be four. The code that
|
|
* makes this assumption explicity is called out. (on some platforms a write
|
|
* of 4 bytes still requires a single read-modify-write operation.
|
|
*
|
|
* This function is takes the identical parameters as the function above,
|
|
* however it lays out the final array differently. Where the previous function
|
|
* treats the mpi_int as an byte array, this function treats it as an array of
|
|
* mp_digits where each digit is stored in big endian order.
|
|
*
|
|
* since we need to interleave on a byte by byte basis, we need to collect
|
|
* several mpi structures together into a single uint32 before we write. We
|
|
* also need to make sure the uint32 is arranged so that the first value of
|
|
* the first array winds up in b[0]. This means construction of that uint32
|
|
* is endian specific (even though the layout of the mp_digits in the array
|
|
* is always big endian).
|
|
*
|
|
* The final data is stored as follows :
|
|
*
|
|
* Our same logical array p array, m is sizeof(mp_digit),
|
|
* N is still count and n is now b_size. If we define p[i].digit[j]0 as the
|
|
* most significant byte of the word p[i].digit[j], p[i].digit[j]1 as
|
|
* the next most significant byte of p[i].digit[j], ... and p[i].digit[j]m-1
|
|
* is the least significant byte.
|
|
* Our array would look like:
|
|
* p[0].digit[0]0 p[1].digit[0]0 ... p[N-2].digit[0]0 p[N-1].digit[0]0
|
|
* p[0].digit[0]1 p[1].digit[0]1 ... p[N-2].digit[0]1 p[N-1].digit[0]1
|
|
* . .
|
|
* p[0].digit[0]m-1 p[1].digit[0]m-1 ... p[N-2].digit[0]m-1 p[N-1].digit[0]m-1
|
|
* p[0].digit[1]0 p[1].digit[1]0 ... p[N-2].digit[1]0 p[N-1].digit[1]0
|
|
* . .
|
|
* . .
|
|
* p[0].digit[n-1]m-2 p[1].digit[n-1]m-2 ... p[N-2].digit[n-1]m-2 p[N-1].digit[n-1]m-2
|
|
* p[0].digit[n-1]m-1 p[1].digit[n-1]m-1 ... p[N-2].digit[n-1]m-1 p[N-1].digit[n-1]m-1
|
|
*
|
|
*/
|
|
mp_err mpi_to_weave(const mp_int *a, unsigned char *b,
|
|
mp_size b_size, mp_size count)
|
|
{
|
|
mp_size i;
|
|
mp_digit *digitsa0;
|
|
mp_digit *digitsa1;
|
|
mp_digit *digitsa2;
|
|
mp_digit *digitsa3;
|
|
mp_size useda0;
|
|
mp_size useda1;
|
|
mp_size useda2;
|
|
mp_size useda3;
|
|
mp_weave_word *weaved = (mp_weave_word *)b;
|
|
|
|
count = count/sizeof(mp_weave_word);
|
|
|
|
/* this code pretty much depends on this ! */
|
|
#if MP_ARGCHK == 2
|
|
assert(WEAVE_WORD_SIZE == 4);
|
|
assert(sizeof(mp_weave_word) == 4);
|
|
#endif
|
|
|
|
digitsa0 = MP_DIGITS(&a[0]);
|
|
digitsa1 = MP_DIGITS(&a[1]);
|
|
digitsa2 = MP_DIGITS(&a[2]);
|
|
digitsa3 = MP_DIGITS(&a[3]);
|
|
useda0 = MP_USED(&a[0]);
|
|
useda1 = MP_USED(&a[1]);
|
|
useda2 = MP_USED(&a[2]);
|
|
useda3 = MP_USED(&a[3]);
|
|
|
|
ARGCHK(MP_SIGN(&a[0]) == MP_ZPOS, MP_BADARG);
|
|
ARGCHK(MP_SIGN(&a[1]) == MP_ZPOS, MP_BADARG);
|
|
ARGCHK(MP_SIGN(&a[2]) == MP_ZPOS, MP_BADARG);
|
|
ARGCHK(MP_SIGN(&a[3]) == MP_ZPOS, MP_BADARG);
|
|
ARGCHK(useda0 <= b_size, MP_BADARG);
|
|
ARGCHK(useda1 <= b_size, MP_BADARG);
|
|
ARGCHK(useda2 <= b_size, MP_BADARG);
|
|
ARGCHK(useda3 <= b_size, MP_BADARG);
|
|
|
|
#define SAFE_FETCH(digit, used, word) ((word) < (used) ? (digit[word]) : 0)
|
|
|
|
for (i=0; i < b_size; i++) {
|
|
mp_digit d0 = SAFE_FETCH(digitsa0,useda0,i);
|
|
mp_digit d1 = SAFE_FETCH(digitsa1,useda1,i);
|
|
mp_digit d2 = SAFE_FETCH(digitsa2,useda2,i);
|
|
mp_digit d3 = SAFE_FETCH(digitsa3,useda3,i);
|
|
register mp_weave_word acc;
|
|
|
|
/*
|
|
* ONE_STEP takes the MSB of each of our current digits and places that
|
|
* byte in the appropriate position for writing to the weaved array.
|
|
* On little endian:
|
|
* b3 b2 b1 b0
|
|
* On big endian:
|
|
* b0 b1 b2 b3
|
|
* When the data is written it would always wind up:
|
|
* b[0] = b0
|
|
* b[1] = b1
|
|
* b[2] = b2
|
|
* b[3] = b3
|
|
*
|
|
* Once we've written the MSB, we shift the whole digit up left one
|
|
* byte, putting the Next Most Significant Byte in the MSB position,
|
|
* so we we repeat the next one step that byte will be written.
|
|
* NOTE: This code assumes sizeof(mp_weave_word) and MP_WEAVE_WORD_SIZE
|
|
* is 4.
|
|
*/
|
|
#ifdef MP_IS_LITTLE_ENDIAN
|
|
#define MPI_WEAVE_ONE_STEP \
|
|
acc = (d0 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d0 <<= 8; /*b0*/ \
|
|
acc |= (d1 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d1 <<= 8; /*b1*/ \
|
|
acc |= (d2 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d2 <<= 8; /*b2*/ \
|
|
acc |= (d3 >> (MP_DIGIT_BIT-32)) & 0xff000000; d3 <<= 8; /*b3*/ \
|
|
*weaved = acc; weaved += count;
|
|
#else
|
|
#define MPI_WEAVE_ONE_STEP \
|
|
acc = (d0 >> (MP_DIGIT_BIT-32)) & 0xff000000; d0 <<= 8; /*b0*/ \
|
|
acc |= (d1 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d1 <<= 8; /*b1*/ \
|
|
acc |= (d2 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d2 <<= 8; /*b2*/ \
|
|
acc |= (d3 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d3 <<= 8; /*b3*/ \
|
|
*weaved = acc; weaved += count;
|
|
#endif
|
|
switch (sizeof(mp_digit)) {
|
|
case 32:
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
case 16:
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
case 8:
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
case 4:
|
|
MPI_WEAVE_ONE_STEP
|
|
MPI_WEAVE_ONE_STEP
|
|
case 2:
|
|
MPI_WEAVE_ONE_STEP
|
|
case 1:
|
|
MPI_WEAVE_ONE_STEP
|
|
break;
|
|
}
|
|
}
|
|
|
|
return MP_OKAY;
|
|
}
|
|
|
|
/* reverse the operation above for one entry.
|
|
* b points to the offset into the weave array of the power we are
|
|
* calculating */
|
|
mp_err weave_to_mpi(mp_int *a, const unsigned char *b,
|
|
mp_size b_size, mp_size count)
|
|
{
|
|
mp_digit *pb = MP_DIGITS(a);
|
|
mp_digit *end = &pb[b_size];
|
|
|
|
MP_SIGN(a) = MP_ZPOS;
|
|
MP_USED(a) = b_size;
|
|
|
|
for (; pb < end; pb++) {
|
|
register mp_digit digit;
|
|
|
|
digit = *b << 8; b += count;
|
|
#define MPI_UNWEAVE_ONE_STEP digit |= *b; b += count; digit = digit << 8;
|
|
switch (sizeof(mp_digit)) {
|
|
case 32:
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
case 16:
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
case 8:
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
case 4:
|
|
MPI_UNWEAVE_ONE_STEP
|
|
MPI_UNWEAVE_ONE_STEP
|
|
case 2:
|
|
break;
|
|
}
|
|
digit |= *b; b += count;
|
|
|
|
*pb = digit;
|
|
}
|
|
s_mp_clamp(a);
|
|
return MP_OKAY;
|
|
}
|
|
#endif
|
|
|
|
|
|
#define SQR(a,b) \
|
|
MP_CHECKOK( mp_sqr(a, b) );\
|
|
MP_CHECKOK( s_mp_redc(b, mmm) )
|
|
|
|
#if defined(MP_MONT_USE_MP_MUL)
|
|
#define MUL_NOWEAVE(x,a,b) \
|
|
MP_CHECKOK( mp_mul(a, x, b) ); \
|
|
MP_CHECKOK( s_mp_redc(b, mmm) )
|
|
#else
|
|
#define MUL_NOWEAVE(x,a,b) \
|
|
MP_CHECKOK( s_mp_mul_mont(a, x, b, mmm) )
|
|
#endif
|
|
|
|
#define MUL(x,a,b) \
|
|
MP_CHECKOK( weave_to_mpi(&tmp, powers + (x), nLen, num_powers) ); \
|
|
MUL_NOWEAVE(&tmp,a,b)
|
|
|
|
#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
|
|
#define MP_ALIGN(x,y) ((((ptrdiff_t)(x))+((y)-1))&(((ptrdiff_t)0)-(y)))
|
|
|
|
/* Do modular exponentiation using integer multiply code. */
|
|
mp_err mp_exptmod_safe_i(const mp_int * montBase,
|
|
const mp_int * exponent,
|
|
const mp_int * modulus,
|
|
mp_int * result,
|
|
mp_mont_modulus *mmm,
|
|
int nLen,
|
|
mp_size bits_in_exponent,
|
|
mp_size window_bits,
|
|
mp_size num_powers)
|
|
{
|
|
mp_int *pa1, *pa2, *ptmp;
|
|
mp_size i;
|
|
mp_size first_window;
|
|
mp_err res;
|
|
int expOff;
|
|
mp_int accum1, accum2, accum[WEAVE_WORD_SIZE];
|
|
mp_int tmp;
|
|
unsigned char *powersArray;
|
|
unsigned char *powers;
|
|
|
|
MP_DIGITS(&accum1) = 0;
|
|
MP_DIGITS(&accum2) = 0;
|
|
MP_DIGITS(&accum[0]) = 0;
|
|
MP_DIGITS(&accum[1]) = 0;
|
|
MP_DIGITS(&accum[2]) = 0;
|
|
MP_DIGITS(&accum[3]) = 0;
|
|
MP_DIGITS(&tmp) = 0;
|
|
|
|
powersArray = (unsigned char *)malloc(num_powers*(nLen*sizeof(mp_digit)+1));
|
|
if (powersArray == NULL) {
|
|
res = MP_MEM;
|
|
goto CLEANUP;
|
|
}
|
|
|
|
/* powers[i] = base ** (i); */
|
|
powers = (unsigned char *)MP_ALIGN(powersArray,num_powers);
|
|
|
|
/* grab the first window value. This allows us to preload accumulator1
|
|
* and save a conversion, some squares and a multiple*/
|
|
MP_CHECKOK( mpl_get_bits(exponent,
|
|
bits_in_exponent-window_bits, window_bits) );
|
|
first_window = (mp_size)res;
|
|
|
|
MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
|
|
MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
|
|
MP_CHECKOK( mp_init_size(&tmp, 3 * nLen + 2) );
|
|
|
|
/* build the first WEAVE_WORD powers inline */
|
|
/* if WEAVE_WORD_SIZE is not 4, this code will have to change */
|
|
if (num_powers > 2) {
|
|
MP_CHECKOK( mp_init_size(&accum[0], 3 * nLen + 2) );
|
|
MP_CHECKOK( mp_init_size(&accum[1], 3 * nLen + 2) );
|
|
MP_CHECKOK( mp_init_size(&accum[2], 3 * nLen + 2) );
|
|
MP_CHECKOK( mp_init_size(&accum[3], 3 * nLen + 2) );
|
|
mp_set(&accum[0], 1);
|
|
MP_CHECKOK( s_mp_to_mont(&accum[0], mmm, &accum[0]) );
|
|
MP_CHECKOK( mp_copy(montBase, &accum[1]) );
|
|
SQR(montBase, &accum[2]);
|
|
MUL_NOWEAVE(montBase, &accum[2], &accum[3]);
|
|
MP_CHECKOK( mpi_to_weave(accum, powers, nLen, num_powers) );
|
|
if (first_window < 4) {
|
|
MP_CHECKOK( mp_copy(&accum[first_window], &accum1) );
|
|
first_window = num_powers;
|
|
}
|
|
} else {
|
|
if (first_window == 0) {
|
|
mp_set(&accum1, 1);
|
|
MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
|
|
} else {
|
|
/* assert first_window == 1? */
|
|
MP_CHECKOK( mp_copy(montBase, &accum1) );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* calculate all the powers in the powers array.
|
|
* this adds 2**(k-1)-2 square operations over just calculating the
|
|
* odd powers where k is the window size in the two other mp_modexpt
|
|
* implementations in this file. We will get some of that
|
|
* back by not needing the first 'k' squares and one multiply for the
|
|
* first window */
|
|
for (i = WEAVE_WORD_SIZE; i < num_powers; i++) {
|
|
int acc_index = i & (WEAVE_WORD_SIZE-1); /* i % WEAVE_WORD_SIZE */
|
|
if ( i & 1 ) {
|
|
MUL_NOWEAVE(montBase, &accum[acc_index-1] , &accum[acc_index]);
|
|
/* we've filled the array do our 'per array' processing */
|
|
if (acc_index == (WEAVE_WORD_SIZE-1)) {
|
|
MP_CHECKOK( mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE-1),
|
|
nLen, num_powers) );
|
|
|
|
if (first_window <= i) {
|
|
MP_CHECKOK( mp_copy(&accum[first_window & (WEAVE_WORD_SIZE-1)],
|
|
&accum1) );
|
|
first_window = num_powers;
|
|
}
|
|
}
|
|
} else {
|
|
/* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source
|
|
* and target are the same so we need to copy.. After that, the
|
|
* value is overwritten, so we need to fetch it from the stored
|
|
* weave array */
|
|
if (i > 2* WEAVE_WORD_SIZE) {
|
|
MP_CHECKOK(weave_to_mpi(&accum2, powers+i/2, nLen, num_powers));
|
|
SQR(&accum2, &accum[acc_index]);
|
|
} else {
|
|
int half_power_index = (i/2) & (WEAVE_WORD_SIZE-1);
|
|
if (half_power_index == acc_index) {
|
|
/* copy is cheaper than weave_to_mpi */
|
|
MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2));
|
|
SQR(&accum2,&accum[acc_index]);
|
|
} else {
|
|
SQR(&accum[half_power_index],&accum[acc_index]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* if the accum1 isn't set, Then there is something wrong with our logic
|
|
* above and is an internal programming error.
|
|
*/
|
|
#if MP_ARGCHK == 2
|
|
assert(MP_USED(&accum1) != 0);
|
|
#endif
|
|
|
|
/* set accumulator to montgomery residue of 1 */
|
|
pa1 = &accum1;
|
|
pa2 = &accum2;
|
|
|
|
for (expOff = bits_in_exponent - window_bits*2; expOff >= 0; expOff -= window_bits) {
|
|
mp_size smallExp;
|
|
MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
|
|
smallExp = (mp_size)res;
|
|
|
|
/* handle unroll the loops */
|
|
switch (window_bits) {
|
|
case 1:
|
|
if (!smallExp) {
|
|
SQR(pa1,pa2); SWAPPA;
|
|
} else if (smallExp & 1) {
|
|
SQR(pa1,pa2); MUL_NOWEAVE(montBase,pa2,pa1);
|
|
} else {
|
|
ABORT;
|
|
}
|
|
break;
|
|
case 6:
|
|
SQR(pa1,pa2); SQR(pa2,pa1);
|
|
/* fall through */
|
|
case 4:
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
MUL(smallExp, pa1,pa2); SWAPPA;
|
|
break;
|
|
case 5:
|
|
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
|
SQR(pa1,pa2); MUL(smallExp,pa2,pa1);
|
|
break;
|
|
default:
|
|
ABORT; /* could do a loop? */
|
|
}
|
|
}
|
|
|
|
res = s_mp_redc(pa1, mmm);
|
|
mp_exch(pa1, result);
|
|
|
|
CLEANUP:
|
|
mp_clear(&accum1);
|
|
mp_clear(&accum2);
|
|
mp_clear(&accum[0]);
|
|
mp_clear(&accum[1]);
|
|
mp_clear(&accum[2]);
|
|
mp_clear(&accum[3]);
|
|
mp_clear(&tmp);
|
|
/* PORT_Memset(powers,0,num_powers*nLen*sizeof(mp_digit)); */
|
|
free(powersArray);
|
|
return res;
|
|
}
|
|
#undef SQR
|
|
#undef MUL
|
|
#endif
|
|
|
|
mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
|
|
const mp_int *modulus, mp_int *result)
|
|
{
|
|
const mp_int *base;
|
|
mp_size bits_in_exponent, i, window_bits, odd_ints;
|
|
mp_err res;
|
|
int nLen;
|
|
mp_int montBase, goodBase;
|
|
mp_mont_modulus mmm;
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
static unsigned int max_window_bits;
|
|
#endif
|
|
|
|
/* function for computing n0prime only works if n0 is odd */
|
|
if (!mp_isodd(modulus))
|
|
return s_mp_exptmod(inBase, exponent, modulus, result);
|
|
|
|
MP_DIGITS(&montBase) = 0;
|
|
MP_DIGITS(&goodBase) = 0;
|
|
|
|
if (mp_cmp(inBase, modulus) < 0) {
|
|
base = inBase;
|
|
} else {
|
|
MP_CHECKOK( mp_init(&goodBase) );
|
|
base = &goodBase;
|
|
MP_CHECKOK( mp_mod(inBase, modulus, &goodBase) );
|
|
}
|
|
|
|
nLen = MP_USED(modulus);
|
|
MP_CHECKOK( mp_init_size(&montBase, 2 * nLen + 2) );
|
|
|
|
mmm.N = *modulus; /* a copy of the mp_int struct */
|
|
i = mpl_significant_bits(modulus);
|
|
i += MP_DIGIT_BIT - 1;
|
|
mmm.b = i - i % MP_DIGIT_BIT;
|
|
|
|
/* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX
|
|
** where n0 = least significant mp_digit of N, the modulus.
|
|
*/
|
|
mmm.n0prime = 0 - s_mp_invmod_radix( MP_DIGIT(modulus, 0) );
|
|
|
|
MP_CHECKOK( s_mp_to_mont(base, &mmm, &montBase) );
|
|
|
|
bits_in_exponent = mpl_significant_bits(exponent);
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
if (mp_using_cache_safe_exp) {
|
|
if (bits_in_exponent > 780)
|
|
window_bits = 6;
|
|
else if (bits_in_exponent > 256)
|
|
window_bits = 5;
|
|
else if (bits_in_exponent > 20)
|
|
window_bits = 4;
|
|
/* RSA public key exponents are typically under 20 bits (common values
|
|
* are: 3, 17, 65537) and a 4-bit window is inefficient
|
|
*/
|
|
else
|
|
window_bits = 1;
|
|
} else
|
|
#endif
|
|
if (bits_in_exponent > 480)
|
|
window_bits = 6;
|
|
else if (bits_in_exponent > 160)
|
|
window_bits = 5;
|
|
else if (bits_in_exponent > 20)
|
|
window_bits = 4;
|
|
/* RSA public key exponents are typically under 20 bits (common values
|
|
* are: 3, 17, 65537) and a 4-bit window is inefficient
|
|
*/
|
|
else
|
|
window_bits = 1;
|
|
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
/*
|
|
* clamp the window size based on
|
|
* the cache line size.
|
|
*/
|
|
if (!max_window_bits) {
|
|
unsigned long cache_size = s_mpi_getProcessorLineSize();
|
|
/* processor has no cache, use 'fast' code always */
|
|
if (cache_size == 0) {
|
|
mp_using_cache_safe_exp = 0;
|
|
}
|
|
if ((cache_size == 0) || (cache_size >= 64)) {
|
|
max_window_bits = 6;
|
|
} else if (cache_size >= 32) {
|
|
max_window_bits = 5;
|
|
} else if (cache_size >= 16) {
|
|
max_window_bits = 4;
|
|
} else max_window_bits = 1; /* should this be an assert? */
|
|
}
|
|
|
|
/* clamp the window size down before we caclulate bits_in_exponent */
|
|
if (mp_using_cache_safe_exp) {
|
|
if (window_bits > max_window_bits) {
|
|
window_bits = max_window_bits;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
odd_ints = 1 << (window_bits - 1);
|
|
i = bits_in_exponent % window_bits;
|
|
if (i != 0) {
|
|
bits_in_exponent += window_bits - i;
|
|
}
|
|
|
|
#ifdef MP_USING_MONT_MULF
|
|
if (mp_using_mont_mulf) {
|
|
MP_CHECKOK( s_mp_pad(&montBase, nLen) );
|
|
res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen,
|
|
bits_in_exponent, window_bits, odd_ints);
|
|
} else
|
|
#endif
|
|
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
|
if (mp_using_cache_safe_exp) {
|
|
res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen,
|
|
bits_in_exponent, window_bits, 1 << window_bits);
|
|
} else
|
|
#endif
|
|
res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen,
|
|
bits_in_exponent, window_bits, odd_ints);
|
|
|
|
CLEANUP:
|
|
mp_clear(&montBase);
|
|
mp_clear(&goodBase);
|
|
/* Don't mp_clear mmm.N because it is merely a copy of modulus.
|
|
** Just zap it.
|
|
*/
|
|
memset(&mmm, 0, sizeof mmm);
|
|
return res;
|
|
}
|