mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-13 11:10:13 +01:00
44b7f056d9
bug1001332, 56b691c003ad, bug1086145, bug1054069, bug1155922, bug991783, bug1125025, bug1162521, bug1162644, bug1132941, bug1164364, bug1166205, bug1166163, bug1166515, bug1138554, bug1167046, bug1167043, bug1169451, bug1172128, bug1170322, bug102794, bug1128184, bug557830, bug1174648, bug1180244, bug1177784, bug1173413, bug1169174, bug1084669, bug951455, bug1183395, bug1177430, bug1183827, bug1160139, bug1154106, bug1142209, bug1185033, bug1193467, bug1182667(with sha512 changes backed out, which breaks VC6 compilation), bug1158489, bug337796
462 lines
14 KiB
C
462 lines
14 KiB
C
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifdef FREEBL_NO_DEPEND
|
|
#include "stubs.h"
|
|
#endif
|
|
|
|
#include <memory.h>
|
|
#include "blapi.h"
|
|
#include "sha_fast.h"
|
|
#include "prerror.h"
|
|
|
|
#ifdef TRACING_SSL
|
|
#include "ssl.h"
|
|
#include "ssltrace.h"
|
|
#endif
|
|
|
|
static void shaCompress(volatile SHA_HW_t *X, const PRUint32 * datain);
|
|
|
|
#define W u.w
|
|
#define B u.b
|
|
|
|
|
|
#define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z))
|
|
#define SHA_F2(X,Y,Z) ((X)^(Y)^(Z))
|
|
#define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y))))
|
|
#define SHA_F4(X,Y,Z) ((X)^(Y)^(Z))
|
|
|
|
#define SHA_MIX(n,a,b,c) XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1)
|
|
|
|
/*
|
|
* SHA: initialize context
|
|
*/
|
|
void
|
|
SHA1_Begin(SHA1Context *ctx)
|
|
{
|
|
ctx->size = 0;
|
|
/*
|
|
* Initialize H with constants from FIPS180-1.
|
|
*/
|
|
ctx->H[0] = 0x67452301L;
|
|
ctx->H[1] = 0xefcdab89L;
|
|
ctx->H[2] = 0x98badcfeL;
|
|
ctx->H[3] = 0x10325476L;
|
|
ctx->H[4] = 0xc3d2e1f0L;
|
|
}
|
|
|
|
/* Explanation of H array and index values:
|
|
* The context's H array is actually the concatenation of two arrays
|
|
* defined by SHA1, the H array of state variables (5 elements),
|
|
* and the W array of intermediate values, of which there are 16 elements.
|
|
* The W array starts at H[5], that is W[0] is H[5].
|
|
* Although these values are defined as 32-bit values, we use 64-bit
|
|
* variables to hold them because the AMD64 stores 64 bit values in
|
|
* memory MUCH faster than it stores any smaller values.
|
|
*
|
|
* Rather than passing the context structure to shaCompress, we pass
|
|
* this combined array of H and W values. We do not pass the address
|
|
* of the first element of this array, but rather pass the address of an
|
|
* element in the middle of the array, element X. Presently X[0] is H[11].
|
|
* So we pass the address of H[11] as the address of array X to shaCompress.
|
|
* Then shaCompress accesses the members of the array using positive AND
|
|
* negative indexes.
|
|
*
|
|
* Pictorially: (each element is 8 bytes)
|
|
* H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf |
|
|
* X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
|
|
*
|
|
* The byte offset from X[0] to any member of H and W is always
|
|
* representable in a signed 8-bit value, which will be encoded
|
|
* as a single byte offset in the X86-64 instruction set.
|
|
* If we didn't pass the address of H[11], and instead passed the
|
|
* address of H[0], the offsets to elements H[16] and above would be
|
|
* greater than 127, not representable in a signed 8-bit value, and the
|
|
* x86-64 instruction set would encode every such offset as a 32-bit
|
|
* signed number in each instruction that accessed element H[16] or
|
|
* higher. This results in much bigger and slower code.
|
|
*/
|
|
#if !defined(SHA_PUT_W_IN_STACK)
|
|
#define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */
|
|
#define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */
|
|
#else
|
|
#define H2X 0
|
|
#endif
|
|
|
|
/*
|
|
* SHA: Add data to context.
|
|
*/
|
|
void
|
|
SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len)
|
|
{
|
|
register unsigned int lenB;
|
|
register unsigned int togo;
|
|
|
|
if (!len)
|
|
return;
|
|
|
|
/* accumulate the byte count. */
|
|
lenB = (unsigned int)(ctx->size) & 63U;
|
|
|
|
ctx->size += len;
|
|
|
|
/*
|
|
* Read the data into W and process blocks as they get full
|
|
*/
|
|
if (lenB > 0) {
|
|
togo = 64U - lenB;
|
|
if (len < togo)
|
|
togo = len;
|
|
memcpy(ctx->B + lenB, dataIn, togo);
|
|
len -= togo;
|
|
dataIn += togo;
|
|
lenB = (lenB + togo) & 63U;
|
|
if (!lenB) {
|
|
shaCompress(&ctx->H[H2X], ctx->W);
|
|
}
|
|
}
|
|
#if !defined(SHA_ALLOW_UNALIGNED_ACCESS)
|
|
if ((ptrdiff_t)dataIn % sizeof(PRUint32)) {
|
|
while (len >= 64U) {
|
|
memcpy(ctx->B, dataIn, 64);
|
|
len -= 64U;
|
|
shaCompress(&ctx->H[H2X], ctx->W);
|
|
dataIn += 64U;
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
while (len >= 64U) {
|
|
len -= 64U;
|
|
shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn);
|
|
dataIn += 64U;
|
|
}
|
|
}
|
|
if (len) {
|
|
memcpy(ctx->B, dataIn, len);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* SHA: Generate hash value from context
|
|
*/
|
|
void
|
|
SHA1_End(SHA1Context *ctx, unsigned char *hashout,
|
|
unsigned int *pDigestLen, unsigned int maxDigestLen)
|
|
{
|
|
register PRUint64 size;
|
|
register PRUint32 lenB;
|
|
|
|
static const unsigned char bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
|
|
#define tmp lenB
|
|
|
|
PORT_Assert (maxDigestLen >= SHA1_LENGTH);
|
|
|
|
/*
|
|
* Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits
|
|
*/
|
|
size = ctx->size;
|
|
|
|
lenB = (PRUint32)size & 63;
|
|
SHA1_Update(ctx, bulk_pad, (((55+64) - lenB) & 63) + 1);
|
|
PORT_Assert(((PRUint32)ctx->size & 63) == 56);
|
|
/* Convert size from bytes to bits. */
|
|
size <<= 3;
|
|
ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32));
|
|
ctx->W[15] = SHA_HTONL((PRUint32)size);
|
|
shaCompress(&ctx->H[H2X], ctx->W);
|
|
|
|
/*
|
|
* Output hash
|
|
*/
|
|
SHA_STORE_RESULT;
|
|
if (pDigestLen) {
|
|
*pDigestLen = SHA1_LENGTH;
|
|
}
|
|
#undef tmp
|
|
}
|
|
|
|
void
|
|
SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout,
|
|
unsigned int *pDigestLen, unsigned int maxDigestLen)
|
|
{
|
|
#if defined(SHA_NEED_TMP_VARIABLE)
|
|
register PRUint32 tmp;
|
|
#endif
|
|
PORT_Assert (maxDigestLen >= SHA1_LENGTH);
|
|
|
|
SHA_STORE_RESULT;
|
|
if (pDigestLen)
|
|
*pDigestLen = SHA1_LENGTH;
|
|
}
|
|
|
|
#undef B
|
|
/*
|
|
* SHA: Compression function, unrolled.
|
|
*
|
|
* Some operations in shaCompress are done as 5 groups of 16 operations.
|
|
* Others are done as 4 groups of 20 operations.
|
|
* The code below shows that structure.
|
|
*
|
|
* The functions that compute the new values of the 5 state variables
|
|
* A-E are done in 4 groups of 20 operations (or you may also think
|
|
* of them as being done in 16 groups of 5 operations). They are
|
|
* done by the SHA_RNDx macros below, in the right column.
|
|
*
|
|
* The functions that set the 16 values of the W array are done in
|
|
* 5 groups of 16 operations. The first group is done by the
|
|
* LOAD macros below, the latter 4 groups are done by SHA_MIX below,
|
|
* in the left column.
|
|
*
|
|
* gcc's optimizer observes that each member of the W array is assigned
|
|
* a value 5 times in this code. It reduces the number of store
|
|
* operations done to the W array in the context (that is, in the X array)
|
|
* by creating a W array on the stack, and storing the W values there for
|
|
* the first 4 groups of operations on W, and storing the values in the
|
|
* context's W array only in the fifth group. This is undesirable.
|
|
* It is MUCH bigger code than simply using the context's W array, because
|
|
* all the offsets to the W array in the stack are 32-bit signed offsets,
|
|
* and it is no faster than storing the values in the context's W array.
|
|
*
|
|
* The original code for sha_fast.c prevented this creation of a separate
|
|
* W array in the stack by creating a W array of 80 members, each of
|
|
* whose elements is assigned only once. It also separated the computations
|
|
* of the W array values and the computations of the values for the 5
|
|
* state variables into two separate passes, W's, then A-E's so that the
|
|
* second pass could be done all in registers (except for accessing the W
|
|
* array) on machines with fewer registers. The method is suboptimal
|
|
* for machines with enough registers to do it all in one pass, and it
|
|
* necessitates using many instructions with 32-bit offsets.
|
|
*
|
|
* This code eliminates the separate W array on the stack by a completely
|
|
* different means: by declaring the X array volatile. This prevents
|
|
* the optimizer from trying to reduce the use of the X array by the
|
|
* creation of a MORE expensive W array on the stack. The result is
|
|
* that all instructions use signed 8-bit offsets and not 32-bit offsets.
|
|
*
|
|
* The combination of this code and the -O3 optimizer flag on GCC 3.4.3
|
|
* results in code that is 3 times faster than the previous NSS sha_fast
|
|
* code on AMD64.
|
|
*/
|
|
static void
|
|
shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf)
|
|
{
|
|
register SHA_HW_t A, B, C, D, E;
|
|
|
|
#if defined(SHA_NEED_TMP_VARIABLE)
|
|
register PRUint32 tmp;
|
|
#endif
|
|
|
|
#if !defined(SHA_PUT_W_IN_STACK)
|
|
#define XH(n) X[n-H2X]
|
|
#define XW(n) X[n-W2X]
|
|
#else
|
|
SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7,
|
|
w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
|
|
#define XW(n) w_ ## n
|
|
#define XH(n) X[n]
|
|
#endif
|
|
|
|
#define K0 0x5a827999L
|
|
#define K1 0x6ed9eba1L
|
|
#define K2 0x8f1bbcdcL
|
|
#define K3 0xca62c1d6L
|
|
|
|
#define SHA_RND1(a,b,c,d,e,n) \
|
|
a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30)
|
|
#define SHA_RND2(a,b,c,d,e,n) \
|
|
a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30)
|
|
#define SHA_RND3(a,b,c,d,e,n) \
|
|
a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30)
|
|
#define SHA_RND4(a,b,c,d,e,n) \
|
|
a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30)
|
|
|
|
#define LOAD(n) XW(n) = SHA_HTONL(inbuf[n])
|
|
|
|
A = XH(0);
|
|
B = XH(1);
|
|
C = XH(2);
|
|
D = XH(3);
|
|
E = XH(4);
|
|
|
|
LOAD(0); SHA_RND1(E,A,B,C,D, 0);
|
|
LOAD(1); SHA_RND1(D,E,A,B,C, 1);
|
|
LOAD(2); SHA_RND1(C,D,E,A,B, 2);
|
|
LOAD(3); SHA_RND1(B,C,D,E,A, 3);
|
|
LOAD(4); SHA_RND1(A,B,C,D,E, 4);
|
|
LOAD(5); SHA_RND1(E,A,B,C,D, 5);
|
|
LOAD(6); SHA_RND1(D,E,A,B,C, 6);
|
|
LOAD(7); SHA_RND1(C,D,E,A,B, 7);
|
|
LOAD(8); SHA_RND1(B,C,D,E,A, 8);
|
|
LOAD(9); SHA_RND1(A,B,C,D,E, 9);
|
|
LOAD(10); SHA_RND1(E,A,B,C,D,10);
|
|
LOAD(11); SHA_RND1(D,E,A,B,C,11);
|
|
LOAD(12); SHA_RND1(C,D,E,A,B,12);
|
|
LOAD(13); SHA_RND1(B,C,D,E,A,13);
|
|
LOAD(14); SHA_RND1(A,B,C,D,E,14);
|
|
LOAD(15); SHA_RND1(E,A,B,C,D,15);
|
|
|
|
SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0);
|
|
SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1);
|
|
SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2);
|
|
SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3);
|
|
|
|
SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4);
|
|
SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5);
|
|
SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6);
|
|
SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7);
|
|
SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8);
|
|
SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9);
|
|
SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10);
|
|
SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11);
|
|
SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12);
|
|
SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13);
|
|
SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14);
|
|
SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15);
|
|
|
|
SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0);
|
|
SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1);
|
|
SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2);
|
|
SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3);
|
|
SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4);
|
|
SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5);
|
|
SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6);
|
|
SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7);
|
|
|
|
SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8);
|
|
SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9);
|
|
SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10);
|
|
SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11);
|
|
SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12);
|
|
SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13);
|
|
SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14);
|
|
SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15);
|
|
|
|
SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0);
|
|
SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1);
|
|
SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2);
|
|
SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3);
|
|
SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4);
|
|
SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5);
|
|
SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6);
|
|
SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7);
|
|
SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8);
|
|
SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9);
|
|
SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10);
|
|
SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11);
|
|
|
|
SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12);
|
|
SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13);
|
|
SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14);
|
|
SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15);
|
|
|
|
SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0);
|
|
SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1);
|
|
SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2);
|
|
SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3);
|
|
SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4);
|
|
SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5);
|
|
SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6);
|
|
SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7);
|
|
SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8);
|
|
SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9);
|
|
SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10);
|
|
SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11);
|
|
SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12);
|
|
SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13);
|
|
SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14);
|
|
SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15);
|
|
|
|
XH(0) += A;
|
|
XH(1) += B;
|
|
XH(2) += C;
|
|
XH(3) += D;
|
|
XH(4) += E;
|
|
}
|
|
|
|
/*************************************************************************
|
|
** Code below this line added to make SHA code support BLAPI interface
|
|
*/
|
|
|
|
SHA1Context *
|
|
SHA1_NewContext(void)
|
|
{
|
|
SHA1Context *cx;
|
|
|
|
/* no need to ZNew, SHA1_Begin will init the context */
|
|
cx = PORT_New(SHA1Context);
|
|
return cx;
|
|
}
|
|
|
|
/* Zero and free the context */
|
|
void
|
|
SHA1_DestroyContext(SHA1Context *cx, PRBool freeit)
|
|
{
|
|
memset(cx, 0, sizeof *cx);
|
|
if (freeit) {
|
|
PORT_Free(cx);
|
|
}
|
|
}
|
|
|
|
SECStatus
|
|
SHA1_HashBuf(unsigned char *dest, const unsigned char *src, PRUint32 src_length)
|
|
{
|
|
SHA1Context ctx;
|
|
unsigned int outLen;
|
|
|
|
SHA1_Begin(&ctx);
|
|
SHA1_Update(&ctx, src, src_length);
|
|
SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH);
|
|
memset(&ctx, 0, sizeof ctx);
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* Hash a null-terminated character string. */
|
|
SECStatus
|
|
SHA1_Hash(unsigned char *dest, const char *src)
|
|
{
|
|
return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen (src));
|
|
}
|
|
|
|
/*
|
|
* need to support save/restore state in pkcs11. Stores all the info necessary
|
|
* for a structure into just a stream of bytes.
|
|
*/
|
|
unsigned int
|
|
SHA1_FlattenSize(SHA1Context *cx)
|
|
{
|
|
return sizeof(SHA1Context);
|
|
}
|
|
|
|
SECStatus
|
|
SHA1_Flatten(SHA1Context *cx,unsigned char *space)
|
|
{
|
|
PORT_Memcpy(space,cx, sizeof(SHA1Context));
|
|
return SECSuccess;
|
|
}
|
|
|
|
SHA1Context *
|
|
SHA1_Resurrect(unsigned char *space,void *arg)
|
|
{
|
|
SHA1Context *cx = SHA1_NewContext();
|
|
if (cx == NULL) return NULL;
|
|
|
|
PORT_Memcpy(cx,space, sizeof(SHA1Context));
|
|
return cx;
|
|
}
|
|
|
|
void SHA1_Clone(SHA1Context *dest, SHA1Context *src)
|
|
{
|
|
memcpy(dest, src, sizeof *dest);
|
|
}
|
|
|
|
void
|
|
SHA1_TraceState(SHA1Context *ctx)
|
|
{
|
|
PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
|
|
}
|