mirror of
https://github.com/rn10950/RetroZilla.git
synced 2024-11-15 04:00:12 +01:00
430790c1b1
bug1182667(other parts), bug1117022, bug1190248, bug1192020, bug1185033, bug1199349, bug1199467, bug1199494
1846 lines
58 KiB
C
1846 lines
58 KiB
C
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/*
|
|
* PQG parameter generation/verification. Based on FIPS 186-3.
|
|
*/
|
|
#ifdef FREEBL_NO_DEPEND
|
|
#include "stubs.h"
|
|
#endif
|
|
|
|
#include "prerr.h"
|
|
#include "secerr.h"
|
|
|
|
#include "prtypes.h"
|
|
#include "blapi.h"
|
|
#include "secitem.h"
|
|
#include "mpi.h"
|
|
#include "mpprime.h"
|
|
#include "mplogic.h"
|
|
#include "secmpi.h"
|
|
|
|
#define MAX_ITERATIONS 1000 /* Maximum number of iterations of primegen */
|
|
|
|
typedef enum {
|
|
FIPS186_1_TYPE, /* Probablistic */
|
|
FIPS186_3_TYPE, /* Probablistic */
|
|
FIPS186_3_ST_TYPE /* Shawe-Taylor provable */
|
|
} pqgGenType;
|
|
|
|
/*
|
|
* These test iterations are quite a bit larger than we previously had.
|
|
* This is because FIPS 186-3 is worried about the primes in PQG generation.
|
|
* It may be possible to purposefully construct composites which more
|
|
* iterations of Miller-Rabin than the for your normal randomly selected
|
|
* numbers.There are 3 ways to counter this: 1) use one of the cool provably
|
|
* prime algorithms (which would require a lot more work than DSA-2 deservers.
|
|
* 2) add a Lucas primality test (which requires coding a Lucas primality test,
|
|
* or 3) use a larger M-R test count. I chose the latter. It increases the time
|
|
* that it takes to prove the selected prime, but it shouldn't increase the
|
|
* overall time to run the algorithm (non-primes should still faile M-R
|
|
* realively quickly). If you want to get that last bit of performance,
|
|
* implement Lucas and adjust these two functions. See FIPS 186-3 Appendix C
|
|
* and F for more information.
|
|
*/
|
|
int prime_testcount_p(int L, int N)
|
|
{
|
|
switch (L) {
|
|
case 1024:
|
|
return 40;
|
|
case 2048:
|
|
return 56;
|
|
case 3072:
|
|
return 64;
|
|
default:
|
|
break;
|
|
}
|
|
return 50; /* L = 512-960 */
|
|
}
|
|
|
|
/* The q numbers are different if you run M-R followd by Lucas. I created
|
|
* a separate function so if someone wanted to add the Lucas check, they
|
|
* could do so fairly easily */
|
|
int prime_testcount_q(int L, int N)
|
|
{
|
|
return prime_testcount_p(L,N);
|
|
}
|
|
|
|
/*
|
|
* generic function to make sure our input matches DSA2 requirements
|
|
* this gives us one place to go if we need to bump the requirements in the
|
|
* future.
|
|
*/
|
|
static SECStatus
|
|
pqg_validate_dsa2(unsigned int L, unsigned int N)
|
|
{
|
|
|
|
switch (L) {
|
|
case 1024:
|
|
if (N != DSA1_Q_BITS) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
break;
|
|
case 2048:
|
|
if ((N != 224) && (N != 256)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
break;
|
|
case 3072:
|
|
if (N != 256) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
break;
|
|
default:
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
static unsigned int
|
|
pqg_get_default_N(unsigned int L)
|
|
{
|
|
unsigned int N = 0;
|
|
switch (L) {
|
|
case 1024:
|
|
N = DSA1_Q_BITS;
|
|
break;
|
|
case 2048:
|
|
N = 224;
|
|
break;
|
|
case 3072:
|
|
N = 256;
|
|
break;
|
|
default:
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
break; /* N already set to zero */
|
|
}
|
|
return N;
|
|
}
|
|
|
|
/*
|
|
* Select the lowest hash algorithm usable
|
|
*/
|
|
static HASH_HashType
|
|
getFirstHash(unsigned int L, unsigned int N)
|
|
{
|
|
if (N < 224) {
|
|
return HASH_AlgSHA1;
|
|
}
|
|
if (N < 256) {
|
|
return HASH_AlgSHA224;
|
|
}
|
|
if (N < 384) {
|
|
return HASH_AlgSHA256;
|
|
}
|
|
if (N < 512) {
|
|
return HASH_AlgSHA384;
|
|
}
|
|
return HASH_AlgSHA512;
|
|
}
|
|
|
|
/*
|
|
* find the next usable hash algorthim
|
|
*/
|
|
static HASH_HashType
|
|
getNextHash(HASH_HashType hashtype)
|
|
{
|
|
switch (hashtype) {
|
|
case HASH_AlgSHA1:
|
|
hashtype = HASH_AlgSHA224;
|
|
break;
|
|
case HASH_AlgSHA224:
|
|
hashtype = HASH_AlgSHA256;
|
|
break;
|
|
case HASH_AlgSHA256:
|
|
hashtype = HASH_AlgSHA384;
|
|
break;
|
|
case HASH_AlgSHA384:
|
|
hashtype = HASH_AlgSHA512;
|
|
break;
|
|
case HASH_AlgSHA512:
|
|
default:
|
|
hashtype = HASH_AlgTOTAL;
|
|
break;
|
|
}
|
|
return hashtype;
|
|
}
|
|
|
|
static unsigned int
|
|
HASH_ResultLen(HASH_HashType type)
|
|
{
|
|
const SECHashObject *hash_obj = HASH_GetRawHashObject(type);
|
|
if (hash_obj == NULL) {
|
|
return 0;
|
|
}
|
|
return hash_obj->length;
|
|
}
|
|
|
|
static SECStatus
|
|
HASH_HashBuf(HASH_HashType type, unsigned char *dest,
|
|
const unsigned char *src, PRUint32 src_len)
|
|
{
|
|
const SECHashObject *hash_obj = HASH_GetRawHashObject(type);
|
|
void *hashcx = NULL;
|
|
unsigned int dummy;
|
|
|
|
if (hash_obj == NULL) {
|
|
return SECFailure;
|
|
}
|
|
|
|
hashcx = hash_obj->create();
|
|
if (hashcx == NULL) {
|
|
return SECFailure;
|
|
}
|
|
hash_obj->begin(hashcx);
|
|
hash_obj->update(hashcx,src,src_len);
|
|
hash_obj->end(hashcx,dest, &dummy, hash_obj->length);
|
|
hash_obj->destroy(hashcx, PR_TRUE);
|
|
return SECSuccess;
|
|
}
|
|
|
|
unsigned int
|
|
PQG_GetLength(const SECItem *obj)
|
|
{
|
|
unsigned int len = obj->len;
|
|
|
|
if (obj->data == NULL) {
|
|
return 0;
|
|
}
|
|
if (len > 1 && obj->data[0] == 0) {
|
|
len--;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
SECStatus
|
|
PQG_Check(const PQGParams *params)
|
|
{
|
|
unsigned int L,N;
|
|
SECStatus rv = SECSuccess;
|
|
|
|
if (params == NULL) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
|
|
L = PQG_GetLength(¶ms->prime)*PR_BITS_PER_BYTE;
|
|
N = PQG_GetLength(¶ms->subPrime)*PR_BITS_PER_BYTE;
|
|
|
|
if (L < 1024) {
|
|
int j;
|
|
|
|
/* handle DSA1 pqg parameters with less thatn 1024 bits*/
|
|
if ( N != DSA1_Q_BITS ) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
j = PQG_PBITS_TO_INDEX(L);
|
|
if ( j < 0 ) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
rv = SECFailure;
|
|
}
|
|
} else {
|
|
/* handle DSA2 parameters (includes DSA1, 1024 bits) */
|
|
rv = pqg_validate_dsa2(L, N);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
HASH_HashType
|
|
PQG_GetHashType(const PQGParams *params)
|
|
{
|
|
unsigned int L,N;
|
|
|
|
if (params == NULL) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return HASH_AlgNULL;
|
|
}
|
|
|
|
L = PQG_GetLength(¶ms->prime)*PR_BITS_PER_BYTE;
|
|
N = PQG_GetLength(¶ms->subPrime)*PR_BITS_PER_BYTE;
|
|
return getFirstHash(L, N);
|
|
}
|
|
|
|
/* Get a seed for generating P and Q. If in testing mode, copy in the
|
|
** seed from FIPS 186-1 appendix 5. Otherwise, obtain bytes from the
|
|
** global random number generator.
|
|
*/
|
|
static SECStatus
|
|
getPQseed(SECItem *seed, PLArenaPool* arena)
|
|
{
|
|
SECStatus rv;
|
|
|
|
if (!seed->data) {
|
|
seed->data = (unsigned char*)PORT_ArenaZAlloc(arena, seed->len);
|
|
}
|
|
if (!seed->data) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
rv = RNG_GenerateGlobalRandomBytes(seed->data, seed->len);
|
|
/*
|
|
* NIST CMVP disallows a sequence of 20 bytes with the most
|
|
* significant byte equal to 0. Perhaps they interpret
|
|
* "a sequence of at least 160 bits" as "a number >= 2^159".
|
|
* So we always set the most significant bit to 1. (bug 334533)
|
|
*/
|
|
seed->data[0] |= 0x80;
|
|
return rv;
|
|
}
|
|
|
|
/* Generate a candidate h value. If in testing mode, use the h value
|
|
** specified in FIPS 186-1 appendix 5, h = 2. Otherwise, obtain bytes
|
|
** from the global random number generator.
|
|
*/
|
|
static SECStatus
|
|
generate_h_candidate(SECItem *hit, mp_int *H)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
mp_err err = MP_OKAY;
|
|
#ifdef FIPS_186_1_A5_TEST
|
|
memset(hit->data, 0, hit->len);
|
|
hit->data[hit->len-1] = 0x02;
|
|
#else
|
|
rv = RNG_GenerateGlobalRandomBytes(hit->data, hit->len);
|
|
#endif
|
|
if (rv)
|
|
return SECFailure;
|
|
err = mp_read_unsigned_octets(H, hit->data, hit->len);
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus
|
|
addToSeed(const SECItem * seed,
|
|
unsigned long addend,
|
|
int seedlen, /* g in 186-1 */
|
|
SECItem * seedout)
|
|
{
|
|
mp_int s, sum, modulus, tmp;
|
|
mp_err err = MP_OKAY;
|
|
SECStatus rv = SECSuccess;
|
|
MP_DIGITS(&s) = 0;
|
|
MP_DIGITS(&sum) = 0;
|
|
MP_DIGITS(&modulus) = 0;
|
|
MP_DIGITS(&tmp) = 0;
|
|
CHECK_MPI_OK( mp_init(&s) );
|
|
CHECK_MPI_OK( mp_init(&sum) );
|
|
CHECK_MPI_OK( mp_init(&modulus) );
|
|
SECITEM_TO_MPINT(*seed, &s); /* s = seed */
|
|
/* seed += addend */
|
|
if (addend < MP_DIGIT_MAX) {
|
|
CHECK_MPI_OK( mp_add_d(&s, (mp_digit)addend, &s) );
|
|
} else {
|
|
CHECK_MPI_OK( mp_init(&tmp) );
|
|
CHECK_MPI_OK( mp_set_ulong(&tmp, addend) );
|
|
CHECK_MPI_OK( mp_add(&s, &tmp, &s) );
|
|
}
|
|
/*sum = s mod 2**seedlen */
|
|
CHECK_MPI_OK( mp_div_2d(&s, (mp_digit)seedlen, NULL, &sum) );
|
|
if (seedout->data != NULL) {
|
|
SECITEM_ZfreeItem(seedout, PR_FALSE);
|
|
}
|
|
MPINT_TO_SECITEM(&sum, seedout, NULL);
|
|
cleanup:
|
|
mp_clear(&s);
|
|
mp_clear(&sum);
|
|
mp_clear(&modulus);
|
|
mp_clear(&tmp);
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
return SECFailure;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* Compute Hash[(SEED + addend) mod 2**g]
|
|
** Result is placed in shaOutBuf.
|
|
** This computation is used in steps 2 and 7 of FIPS 186 Appendix 2.2 and
|
|
** step 11.2 of FIPS 186-3 Appendix A.1.1.2 .
|
|
*/
|
|
static SECStatus
|
|
addToSeedThenHash(HASH_HashType hashtype,
|
|
const SECItem * seed,
|
|
unsigned long addend,
|
|
int seedlen, /* g in 186-1 */
|
|
unsigned char * hashOutBuf)
|
|
{
|
|
SECItem str = { 0, 0, 0 };
|
|
SECStatus rv;
|
|
rv = addToSeed(seed, addend, seedlen, &str);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
rv = HASH_HashBuf(hashtype, hashOutBuf, str.data, str.len);/* hash result */
|
|
if (str.data)
|
|
SECITEM_ZfreeItem(&str, PR_FALSE);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
** Perform steps 2 and 3 of FIPS 186-1, appendix 2.2.
|
|
** Generate Q from seed.
|
|
*/
|
|
static SECStatus
|
|
makeQfromSeed(
|
|
unsigned int g, /* input. Length of seed in bits. */
|
|
const SECItem * seed, /* input. */
|
|
mp_int * Q) /* output. */
|
|
{
|
|
unsigned char sha1[SHA1_LENGTH];
|
|
unsigned char sha2[SHA1_LENGTH];
|
|
unsigned char U[SHA1_LENGTH];
|
|
SECStatus rv = SECSuccess;
|
|
mp_err err = MP_OKAY;
|
|
int i;
|
|
/* ******************************************************************
|
|
** Step 2.
|
|
** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]."
|
|
**/
|
|
CHECK_SEC_OK( SHA1_HashBuf(sha1, seed->data, seed->len) );
|
|
CHECK_SEC_OK( addToSeedThenHash(HASH_AlgSHA1, seed, 1, g, sha2) );
|
|
for (i=0; i<SHA1_LENGTH; ++i)
|
|
U[i] = sha1[i] ^ sha2[i];
|
|
/* ******************************************************************
|
|
** Step 3.
|
|
** "Form Q from U by setting the most signficant bit (the 2**159 bit)
|
|
** and the least signficant bit to 1. In terms of boolean operations,
|
|
** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160."
|
|
*/
|
|
U[0] |= 0x80; /* U is MSB first */
|
|
U[SHA1_LENGTH-1] |= 0x01;
|
|
err = mp_read_unsigned_octets(Q, U, SHA1_LENGTH);
|
|
cleanup:
|
|
memset(U, 0, SHA1_LENGTH);
|
|
memset(sha1, 0, SHA1_LENGTH);
|
|
memset(sha2, 0, SHA1_LENGTH);
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
return SECFailure;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
** Perform steps 6 and 7 of FIPS 186-3, appendix A.1.1.2.
|
|
** Generate Q from seed.
|
|
*/
|
|
static SECStatus
|
|
makeQ2fromSeed(
|
|
HASH_HashType hashtype, /* selected Hashing algorithm */
|
|
unsigned int N, /* input. Length of q in bits. */
|
|
const SECItem * seed, /* input. */
|
|
mp_int * Q) /* output. */
|
|
{
|
|
unsigned char U[HASH_LENGTH_MAX];
|
|
SECStatus rv = SECSuccess;
|
|
mp_err err = MP_OKAY;
|
|
int N_bytes = N/PR_BITS_PER_BYTE; /* length of N in bytes rather than bits */
|
|
int hashLen = HASH_ResultLen(hashtype);
|
|
int offset = 0;
|
|
|
|
/* ******************************************************************
|
|
** Step 6.
|
|
** "Compute U = hash[SEED] mod 2**N-1]."
|
|
**/
|
|
CHECK_SEC_OK( HASH_HashBuf(hashtype, U, seed->data, seed->len) );
|
|
/* mod 2**N . Step 7 will explicitly set the top bit to 1, so no need
|
|
* to handle mod 2**N-1 */
|
|
if (hashLen > N_bytes) {
|
|
offset = hashLen - N_bytes;
|
|
}
|
|
/* ******************************************************************
|
|
** Step 7.
|
|
** computed_q = 2**(N-1) + U + 1 - (U mod 2)
|
|
**
|
|
** This is the same as:
|
|
** computed_q = 2**(N-1) | U | 1;
|
|
*/
|
|
U[offset] |= 0x80; /* U is MSB first */
|
|
U[hashLen-1] |= 0x01;
|
|
err = mp_read_unsigned_octets(Q, &U[offset], N_bytes);
|
|
cleanup:
|
|
memset(U, 0, HASH_LENGTH_MAX);
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
return SECFailure;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
** Perform steps from FIPS 186-3, Appendix A.1.2.1 and Appendix C.6
|
|
**
|
|
** This generates a provable prime from two smaller prime. The resulting
|
|
** prime p will have q0 as a multiple of p-1. q0 can be 1.
|
|
**
|
|
** This implments steps 4 thorough 22 of FIPS 186-3 A.1.2.1 and
|
|
** steps 16 through 34 of FIPS 186-2 C.6
|
|
*/
|
|
#define MAX_ST_SEED_BITS (HASH_LENGTH_MAX*PR_BITS_PER_BYTE)
|
|
SECStatus
|
|
makePrimefromPrimesShaweTaylor(
|
|
HASH_HashType hashtype, /* selected Hashing algorithm */
|
|
unsigned int length, /* input. Length of prime in bits. */
|
|
mp_int * c0, /* seed prime */
|
|
mp_int * q, /* sub prime, can be 1 */
|
|
mp_int * prime, /* output. */
|
|
SECItem * prime_seed, /* input/output. */
|
|
unsigned int *prime_gen_counter) /* input/output. */
|
|
{
|
|
mp_int c;
|
|
mp_int c0_2;
|
|
mp_int t;
|
|
mp_int a;
|
|
mp_int z;
|
|
mp_int two_length_minus_1;
|
|
SECStatus rv = SECFailure;
|
|
int hashlen = HASH_ResultLen(hashtype);
|
|
int outlen = hashlen*PR_BITS_PER_BYTE;
|
|
int offset;
|
|
unsigned char bit, mask;
|
|
/* x needs to hold roundup(L/outlen)*outlen.
|
|
* This can be no larger than L+outlen-1, So we set it's size to
|
|
* our max L + max outlen and know we are safe */
|
|
unsigned char x[DSA_MAX_P_BITS/8+HASH_LENGTH_MAX];
|
|
mp_err err = MP_OKAY;
|
|
int i;
|
|
int iterations;
|
|
int old_counter;
|
|
|
|
MP_DIGITS(&c) = 0;
|
|
MP_DIGITS(&c0_2) = 0;
|
|
MP_DIGITS(&t) = 0;
|
|
MP_DIGITS(&a) = 0;
|
|
MP_DIGITS(&z) = 0;
|
|
MP_DIGITS(&two_length_minus_1) = 0;
|
|
CHECK_MPI_OK( mp_init(&c) );
|
|
CHECK_MPI_OK( mp_init(&c0_2) );
|
|
CHECK_MPI_OK( mp_init(&t) );
|
|
CHECK_MPI_OK( mp_init(&a) );
|
|
CHECK_MPI_OK( mp_init(&z) );
|
|
CHECK_MPI_OK( mp_init(&two_length_minus_1) );
|
|
|
|
|
|
/*
|
|
** There is a slight mapping of variable names depending on which
|
|
** FIPS 186 steps are being carried out. The mapping is as follows:
|
|
** variable A.1.2.1 C.6
|
|
** c0 p0 c0
|
|
** q q 1
|
|
** c p c
|
|
** c0_2 2*p0*q 2*c0
|
|
** length L length
|
|
** prime_seed pseed prime_seed
|
|
** prime_gen_counter pgen_counter prime_gen_counter
|
|
**
|
|
** Also note: or iterations variable is actually iterations+1, since
|
|
** iterations+1 works better in C.
|
|
*/
|
|
|
|
/* Step 4/16 iterations = ceiling(length/outlen)-1 */
|
|
iterations = (length+outlen-1)/outlen; /* NOTE: iterations +1 */
|
|
/* Step 5/17 old_counter = prime_gen_counter */
|
|
old_counter = *prime_gen_counter;
|
|
/*
|
|
** Comment: Generate a pseudorandom integer x in the interval
|
|
** [2**(lenght-1), 2**length].
|
|
**
|
|
** Step 6/18 x = 0
|
|
*/
|
|
PORT_Memset(x, 0, sizeof(x));
|
|
/*
|
|
** Step 7/19 for i = 0 to iterations do
|
|
** x = x + (HASH(prime_seed + i) * 2^(i*outlen))
|
|
*/
|
|
for (i=0; i < iterations; i++) {
|
|
/* is bigger than prime_seed should get to */
|
|
CHECK_SEC_OK( addToSeedThenHash(hashtype, prime_seed, i,
|
|
MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen]));
|
|
}
|
|
/* Step 8/20 prime_seed = prime_seed + iterations + 1 */
|
|
CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS,
|
|
prime_seed));
|
|
/*
|
|
** Step 9/21 x = 2 ** (length-1) + x mod 2 ** (length-1)
|
|
**
|
|
** This step mathematically sets the high bit and clears out
|
|
** all the other bits higher than length. 'x' is stored
|
|
** in the x array, MSB first. The above formula gives us an 'x'
|
|
** which is length bytes long and has the high bit set. We also know
|
|
** that length <= iterations*outlen since
|
|
** iterations=ceiling(length/outlen). First we find the offset in
|
|
** bytes into the array where the high bit is.
|
|
*/
|
|
offset = (outlen*iterations - length)/PR_BITS_PER_BYTE;
|
|
/* now we want to set the 'high bit', since length may not be a
|
|
* multiple of 8,*/
|
|
bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */
|
|
/* we need to zero out the rest of the bits in the byte above */
|
|
mask = (bit-1);
|
|
/* now we set it */
|
|
x[offset] = (mask & x[offset]) | bit;
|
|
/*
|
|
** Comment: Generate a candidate prime c in the interval
|
|
** [2**(lenght-1), 2**length].
|
|
**
|
|
** Step 10 t = ceiling(x/(2q(p0)))
|
|
** Step 22 t = ceiling(x/(2(c0)))
|
|
*/
|
|
CHECK_MPI_OK( mp_read_unsigned_octets(&t, &x[offset],
|
|
hashlen*iterations - offset ) ); /* t = x */
|
|
CHECK_MPI_OK( mp_mul(c0, q, &c0_2) ); /* c0_2 is now c0*q */
|
|
CHECK_MPI_OK( mp_add(&c0_2, &c0_2, &c0_2) ); /* c0_2 is now 2*q*c0 */
|
|
CHECK_MPI_OK( mp_add(&t, &c0_2, &t) ); /* t = x+2*q*c0 */
|
|
CHECK_MPI_OK( mp_sub_d(&t, (mp_digit) 1, &t) ); /* t = x+2*q*c0 -1 */
|
|
/* t = floor((x+2qc0-1)/2qc0) = ceil(x/2qc0) */
|
|
CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) );
|
|
/*
|
|
** step 11: if (2tqp0 +1 > 2**length), then t = ceiling(2**(length-1)/2qp0)
|
|
** step 12: t = 2tqp0 +1.
|
|
**
|
|
** step 23: if (2tc0 +1 > 2**length), then t = ceiling(2**(length-1)/2c0)
|
|
** step 24: t = 2tc0 +1.
|
|
*/
|
|
CHECK_MPI_OK( mp_2expt(&two_length_minus_1, length-1) );
|
|
step_23:
|
|
CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) ); /* c = t*2qc0 */
|
|
CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/
|
|
if (mpl_significant_bits(&c) > length) { /* if c > 2**length */
|
|
CHECK_MPI_OK( mp_sub_d(&c0_2, (mp_digit) 1, &t) ); /* t = 2qc0-1 */
|
|
/* t = 2**(length-1) + 2qc0 -1 */
|
|
CHECK_MPI_OK( mp_add(&two_length_minus_1,&t, &t) );
|
|
/* t = floor((2**(length-1)+2qc0 -1)/2qco)
|
|
* = ceil(2**(lenght-2)/2qc0) */
|
|
CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) );
|
|
CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) );
|
|
CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/
|
|
}
|
|
/* Step 13/25 prime_gen_counter = prime_gen_counter + 1*/
|
|
(*prime_gen_counter)++;
|
|
/*
|
|
** Comment: Test the candidate prime c for primality; first pick an
|
|
** integer a between 2 and c-2.
|
|
**
|
|
** Step 14/26 a=0
|
|
*/
|
|
PORT_Memset(x, 0, sizeof(x)); /* use x for a */
|
|
/*
|
|
** Step 15/27 for i = 0 to iterations do
|
|
** a = a + (HASH(prime_seed + i) * 2^(i*outlen))
|
|
**
|
|
** NOTE: we reuse the x array for 'a' initially.
|
|
*/
|
|
for (i=0; i < iterations; i++) {
|
|
/* MAX_ST_SEED_BITS is bigger than prime_seed should get to */
|
|
CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, i,
|
|
MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen]));
|
|
}
|
|
/* Step 16/28 prime_seed = prime_seed + iterations + 1 */
|
|
CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS,
|
|
prime_seed));
|
|
/* Step 17/29 a = 2 + (a mod (c-3)). */
|
|
CHECK_MPI_OK( mp_read_unsigned_octets(&a, x, iterations*hashlen) );
|
|
CHECK_MPI_OK( mp_sub_d(&c, (mp_digit) 3, &z) ); /* z = c -3 */
|
|
CHECK_MPI_OK( mp_mod(&a, &z, &a) ); /* a = a mod c -3 */
|
|
CHECK_MPI_OK( mp_add_d(&a, (mp_digit) 2, &a) ); /* a = 2 + a mod c -3 */
|
|
/*
|
|
** Step 18 z = a**(2tq) mod p.
|
|
** Step 30 z = a**(2t) mod c.
|
|
*/
|
|
CHECK_MPI_OK( mp_mul(&t, q, &z) ); /* z = tq */
|
|
CHECK_MPI_OK( mp_add(&z, &z, &z) ); /* z = 2tq */
|
|
CHECK_MPI_OK( mp_exptmod(&a, &z, &c, &z) ); /* z = a**(2tq) mod c */
|
|
/*
|
|
** Step 19 if (( 1 == GCD(z-1,p)) and ( 1 == z**p0 mod p )), then
|
|
** Step 31 if (( 1 == GCD(z-1,c)) and ( 1 == z**c0 mod c )), then
|
|
*/
|
|
CHECK_MPI_OK( mp_sub_d(&z, (mp_digit) 1, &a) );
|
|
CHECK_MPI_OK( mp_gcd(&a,&c,&a ));
|
|
if (mp_cmp_d(&a, (mp_digit)1) == 0) {
|
|
CHECK_MPI_OK( mp_exptmod(&z, c0, &c, &a) );
|
|
if (mp_cmp_d(&a, (mp_digit)1) == 0) {
|
|
/* Step 31.1 prime = c */
|
|
CHECK_MPI_OK( mp_copy(&c, prime) );
|
|
/*
|
|
** Step 31.2 return Success, prime, prime_seed,
|
|
** prime_gen_counter
|
|
*/
|
|
rv = SECSuccess;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
/*
|
|
** Step 20/32 If (prime_gen_counter > 4 * length + old_counter then
|
|
** return (FAILURE, 0, 0, 0).
|
|
** NOTE: the test is reversed, so we fall through on failure to the
|
|
** cleanup routine
|
|
*/
|
|
if (*prime_gen_counter < (4*length + old_counter)) {
|
|
/* Step 21/33 t = t + 1 */
|
|
CHECK_MPI_OK( mp_add_d(&t, (mp_digit) 1, &t) );
|
|
/* Step 22/34 Go to step 23/11 */
|
|
goto step_23;
|
|
}
|
|
|
|
/* if (prime_gencont > (4*length + old_counter), fall through to failure */
|
|
rv = SECFailure; /* really is already set, but paranoia is good */
|
|
|
|
cleanup:
|
|
mp_clear(&c);
|
|
mp_clear(&c0_2);
|
|
mp_clear(&t);
|
|
mp_clear(&a);
|
|
mp_clear(&z);
|
|
mp_clear(&two_length_minus_1);
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
rv = SECFailure;
|
|
}
|
|
if (rv == SECFailure) {
|
|
mp_zero(prime);
|
|
if (prime_seed->data) {
|
|
SECITEM_FreeItem(prime_seed, PR_FALSE);
|
|
}
|
|
*prime_gen_counter = 0;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
** Perform steps from FIPS 186-3, Appendix C.6
|
|
**
|
|
** This generates a provable prime from a seed
|
|
*/
|
|
SECStatus
|
|
makePrimefromSeedShaweTaylor(
|
|
HASH_HashType hashtype, /* selected Hashing algorithm */
|
|
unsigned int length, /* input. Length of prime in bits. */
|
|
const SECItem * input_seed, /* input. */
|
|
mp_int * prime, /* output. */
|
|
SECItem * prime_seed, /* output. */
|
|
unsigned int *prime_gen_counter) /* output. */
|
|
{
|
|
mp_int c;
|
|
mp_int c0;
|
|
mp_int one;
|
|
SECStatus rv = SECFailure;
|
|
int hashlen = HASH_ResultLen(hashtype);
|
|
int outlen = hashlen*PR_BITS_PER_BYTE;
|
|
int offset;
|
|
unsigned char bit, mask;
|
|
unsigned char x[HASH_LENGTH_MAX*2];
|
|
mp_digit dummy;
|
|
mp_err err = MP_OKAY;
|
|
int i;
|
|
|
|
MP_DIGITS(&c) = 0;
|
|
MP_DIGITS(&c0) = 0;
|
|
MP_DIGITS(&one) = 0;
|
|
CHECK_MPI_OK( mp_init(&c) );
|
|
CHECK_MPI_OK( mp_init(&c0) );
|
|
CHECK_MPI_OK( mp_init(&one) );
|
|
|
|
/* Step 1. if length < 2 then return (FAILURE, 0, 0, 0) */
|
|
if (length < 2) {
|
|
rv = SECFailure;
|
|
goto cleanup;
|
|
}
|
|
/* Step 2. if length >= 33 then goto step 14 */
|
|
if (length >= 33) {
|
|
mp_zero(&one);
|
|
CHECK_MPI_OK( mp_add_d(&one, (mp_digit) 1, &one) );
|
|
|
|
/* Step 14 (status, c0, prime_seed, prime_gen_counter) =
|
|
** (ST_Random_Prime((ceil(length/2)+1, input_seed)
|
|
*/
|
|
rv = makePrimefromSeedShaweTaylor(hashtype, (length+1)/2+1,
|
|
input_seed, &c0, prime_seed, prime_gen_counter);
|
|
/* Step 15 if FAILURE is returned, return (FAILURE, 0, 0, 0). */
|
|
if (rv != SECSuccess) {
|
|
goto cleanup;
|
|
}
|
|
/* Steps 16-34 */
|
|
rv = makePrimefromPrimesShaweTaylor(hashtype,length, &c0, &one,
|
|
prime, prime_seed, prime_gen_counter);
|
|
goto cleanup; /* we're done, one way or the other */
|
|
}
|
|
/* Step 3 prime_seed = input_seed */
|
|
CHECK_SEC_OK(SECITEM_CopyItem(NULL, prime_seed, input_seed));
|
|
/* Step 4 prime_gen_count = 0 */
|
|
*prime_gen_counter = 0;
|
|
|
|
step_5:
|
|
/* Step 5 c = Hash(prime_seed) xor Hash(prime_seed+1). */
|
|
CHECK_SEC_OK(HASH_HashBuf(hashtype, x, prime_seed->data, prime_seed->len) );
|
|
CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, 1,
|
|
MAX_ST_SEED_BITS, &x[hashlen]) );
|
|
for (i=0; i < hashlen; i++) {
|
|
x[i] = x[i] ^ x[i+hashlen];
|
|
}
|
|
/* Step 6 c = 2**length-1 + c mod 2**length-1 */
|
|
/* This step mathematically sets the high bit and clears out
|
|
** all the other bits higher than length. Right now c is stored
|
|
** in the x array, MSB first. The above formula gives us a c which
|
|
** is length bytes long and has the high bit set. We also know that
|
|
** length < outlen since the smallest outlen is 160 bits and the largest
|
|
** length at this point is 32 bits. So first we find the offset in bytes
|
|
** into the array where the high bit is.
|
|
*/
|
|
offset = (outlen - length)/PR_BITS_PER_BYTE;
|
|
/* now we want to set the 'high bit'. We have to calculate this since
|
|
* length may not be a multiple of 8.*/
|
|
bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */
|
|
/* we need to zero out the rest of the bits in the byte above */
|
|
mask = (bit-1);
|
|
/* now we set it */
|
|
x[offset] = (mask & x[offset]) | bit;
|
|
/* Step 7 c = c*floor(c/2) + 1 */
|
|
/* set the low bit. much easier to find (the end of the array) */
|
|
x[hashlen-1] |= 1;
|
|
/* now that we've set our bits, we can create our candidate "c" */
|
|
CHECK_MPI_OK( mp_read_unsigned_octets(&c, &x[offset], hashlen-offset) );
|
|
/* Step 8 prime_gen_counter = prime_gen_counter + 1 */
|
|
(*prime_gen_counter)++;
|
|
/* Step 9 prime_seed = prime_seed + 2 */
|
|
CHECK_SEC_OK(addToSeed(prime_seed, 2, MAX_ST_SEED_BITS, prime_seed));
|
|
/* Step 10 Perform deterministic primality test on c. For example, since
|
|
** c is small, it's primality can be tested by trial division, See
|
|
** See Appendic C.7.
|
|
**
|
|
** We in fact test with trial division. mpi has a built int trial divider
|
|
** that divides all divisors up to 2^16.
|
|
*/
|
|
if (prime_tab[prime_tab_size-1] < 0xFFF1) {
|
|
/* we aren't testing all the primes between 0 and 2^16, we really
|
|
* can't use this construction. Just fail. */
|
|
rv = SECFailure;
|
|
goto cleanup;
|
|
}
|
|
dummy = prime_tab_size;
|
|
err = mpp_divis_primes(&c, &dummy);
|
|
/* Step 11 if c is prime then */
|
|
if (err == MP_NO) {
|
|
/* Step 11.1 prime = c */
|
|
CHECK_MPI_OK( mp_copy(&c, prime) );
|
|
/* Step 11.2 return SUCCESS prime, prime_seed, prime_gen_counter */
|
|
err = MP_OKAY;
|
|
rv = SECSuccess;
|
|
goto cleanup;
|
|
} else if (err != MP_YES) {
|
|
goto cleanup; /* function failed, bail out */
|
|
} else {
|
|
/* reset mp_err */
|
|
err = MP_OKAY;
|
|
}
|
|
/*
|
|
** Step 12 if (prime_gen_counter > (4*len))
|
|
** then return (FAILURE, 0, 0, 0))
|
|
** Step 13 goto step 5
|
|
*/
|
|
if (*prime_gen_counter <= (4*length)) {
|
|
goto step_5;
|
|
}
|
|
/* if (prime_gencont > 4*length), fall through to failure */
|
|
rv = SECFailure; /* really is already set, but paranoia is good */
|
|
|
|
cleanup:
|
|
mp_clear(&c);
|
|
mp_clear(&c0);
|
|
mp_clear(&one);
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
rv = SECFailure;
|
|
}
|
|
if (rv == SECFailure) {
|
|
mp_zero(prime);
|
|
if (prime_seed->data) {
|
|
SECITEM_FreeItem(prime_seed, PR_FALSE);
|
|
}
|
|
*prime_gen_counter = 0;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
|
|
/*
|
|
* Find a Q and algorithm from Seed.
|
|
*/
|
|
static SECStatus
|
|
findQfromSeed(
|
|
unsigned int L, /* input. Length of p in bits. */
|
|
unsigned int N, /* input. Length of q in bits. */
|
|
unsigned int g, /* input. Length of seed in bits. */
|
|
const SECItem * seed, /* input. */
|
|
mp_int * Q, /* input. */
|
|
mp_int * Q_, /* output. */
|
|
unsigned int *qseed_len, /* output */
|
|
HASH_HashType *hashtypePtr, /* output. Hash uses */
|
|
pqgGenType *typePtr) /* output. Generation Type used */
|
|
{
|
|
HASH_HashType hashtype;
|
|
SECItem firstseed = { 0, 0, 0 };
|
|
SECItem qseed = { 0, 0, 0 };
|
|
SECStatus rv;
|
|
|
|
*qseed_len = 0; /* only set if FIPS186_3_ST_TYPE */
|
|
|
|
/* handle legacy small DSA first can only be FIPS186_1_TYPE */
|
|
if (L < 1024) {
|
|
rv =makeQfromSeed(g,seed,Q_);
|
|
if ((rv == SECSuccess) && (mp_cmp(Q,Q_) == 0)) {
|
|
*hashtypePtr = HASH_AlgSHA1;
|
|
*typePtr = FIPS186_1_TYPE;
|
|
return SECSuccess;
|
|
}
|
|
return SECFailure;
|
|
}
|
|
/* 1024 could use FIPS186_1 or FIPS186_3 algorithms, we need to try
|
|
* them both */
|
|
if (L == 1024) {
|
|
rv = makeQfromSeed(g,seed,Q_);
|
|
if (rv == SECSuccess) {
|
|
if (mp_cmp(Q,Q_) == 0) {
|
|
*hashtypePtr = HASH_AlgSHA1;
|
|
*typePtr = FIPS186_1_TYPE;
|
|
return SECSuccess;
|
|
}
|
|
}
|
|
/* fall through for FIPS186_3 types */
|
|
}
|
|
/* at this point we know we aren't using FIPS186_1, start trying FIPS186_3
|
|
* with appropriate hash types */
|
|
for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL;
|
|
hashtype=getNextHash(hashtype)) {
|
|
rv = makeQ2fromSeed(hashtype, N, seed, Q_);
|
|
if (rv != SECSuccess) {
|
|
continue;
|
|
}
|
|
if (mp_cmp(Q,Q_) == 0) {
|
|
*hashtypePtr = hashtype;
|
|
*typePtr = FIPS186_3_TYPE;
|
|
return SECSuccess;
|
|
}
|
|
}
|
|
/*
|
|
* OK finally try FIPS186_3 Shawe-Taylor
|
|
*/
|
|
firstseed = *seed;
|
|
firstseed.len = seed->len/3;
|
|
for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL;
|
|
hashtype=getNextHash(hashtype)) {
|
|
unsigned int count;
|
|
|
|
rv = makePrimefromSeedShaweTaylor(hashtype, N, &firstseed, Q_,
|
|
&qseed, &count);
|
|
if (rv != SECSuccess) {
|
|
continue;
|
|
}
|
|
if (mp_cmp(Q,Q_) == 0) {
|
|
/* check qseed as well... */
|
|
int offset = seed->len - qseed.len;
|
|
if ((offset < 0) ||
|
|
(PORT_Memcmp(&seed->data[offset],qseed.data,qseed.len) != 0)) {
|
|
/* we found q, but the seeds don't match. This isn't an
|
|
* accident, someone has been tweeking with the seeds, just
|
|
* fail a this point. */
|
|
SECITEM_FreeItem(&qseed,PR_FALSE);
|
|
return SECFailure;
|
|
}
|
|
*qseed_len = qseed.len;
|
|
*hashtypePtr = hashtype;
|
|
*typePtr = FIPS186_3_ST_TYPE;
|
|
SECITEM_FreeItem(&qseed, PR_FALSE);
|
|
return SECSuccess;
|
|
}
|
|
SECITEM_FreeItem(&qseed, PR_FALSE);
|
|
}
|
|
/* no hash algorithms found which match seed to Q, fail */
|
|
return SECFailure;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** Perform steps 7, 8 and 9 of FIPS 186, appendix 2.2.
|
|
** which are the same as steps 11.1-11.5 of FIPS 186-2, App A.1.1.2
|
|
** Generate P from Q, seed, L, and offset.
|
|
*/
|
|
static SECStatus
|
|
makePfromQandSeed(
|
|
HASH_HashType hashtype, /* selected Hashing algorithm */
|
|
unsigned int L, /* Length of P in bits. Per FIPS 186. */
|
|
unsigned int N, /* Length of Q in bits. Per FIPS 186. */
|
|
unsigned int offset, /* Per FIPS 186, App 2.2. & 186-3 App A.1.1.2 */
|
|
unsigned int seedlen, /* input. Length of seed in bits. (g in 186-1)*/
|
|
const SECItem * seed, /* input. */
|
|
const mp_int * Q, /* input. */
|
|
mp_int * P) /* output. */
|
|
{
|
|
unsigned int j; /* Per FIPS 186-3 App. A.1.1.2 (k in 186-1)*/
|
|
unsigned int n; /* Per FIPS 186, appendix 2.2. */
|
|
mp_digit b; /* Per FIPS 186, appendix 2.2. */
|
|
unsigned int outlen; /* Per FIPS 186-3 App. A.1.1.2 */
|
|
unsigned int hashlen; /* outlen in bytes */
|
|
unsigned char V_j[HASH_LENGTH_MAX];
|
|
mp_int W, X, c, twoQ, V_n, tmp;
|
|
mp_err err = MP_OKAY;
|
|
SECStatus rv = SECSuccess;
|
|
/* Initialize bignums */
|
|
MP_DIGITS(&W) = 0;
|
|
MP_DIGITS(&X) = 0;
|
|
MP_DIGITS(&c) = 0;
|
|
MP_DIGITS(&twoQ) = 0;
|
|
MP_DIGITS(&V_n) = 0;
|
|
MP_DIGITS(&tmp) = 0;
|
|
CHECK_MPI_OK( mp_init(&W) );
|
|
CHECK_MPI_OK( mp_init(&X) );
|
|
CHECK_MPI_OK( mp_init(&c) );
|
|
CHECK_MPI_OK( mp_init(&twoQ) );
|
|
CHECK_MPI_OK( mp_init(&tmp) );
|
|
CHECK_MPI_OK( mp_init(&V_n) );
|
|
|
|
hashlen = HASH_ResultLen(hashtype);
|
|
outlen = hashlen*PR_BITS_PER_BYTE;
|
|
|
|
/* L - 1 = n*outlen + b */
|
|
n = (L - 1) / outlen;
|
|
b = (L - 1) % outlen;
|
|
|
|
/* ******************************************************************
|
|
** Step 11.1 (Step 7 in 186-1)
|
|
** "for j = 0 ... n let
|
|
** V_j = SHA[(SEED + offset + j) mod 2**seedlen]."
|
|
**
|
|
** Step 11.2 (Step 8 in 186-1)
|
|
** "W = V_0 + (V_1 * 2**outlen) + ... + (V_n-1 * 2**((n-1)*outlen))
|
|
** + ((V_n mod 2**b) * 2**(n*outlen))
|
|
*/
|
|
for (j=0; j<n; ++j) { /* Do the first n terms of V_j */
|
|
/* Do step 11.1 for iteration j.
|
|
** V_j = HASH[(seed + offset + j) mod 2**g]
|
|
*/
|
|
CHECK_SEC_OK( addToSeedThenHash(hashtype,seed,offset+j, seedlen, V_j) );
|
|
/* Do step 11.2 for iteration j.
|
|
** W += V_j * 2**(j*outlen)
|
|
*/
|
|
OCTETS_TO_MPINT(V_j, &tmp, hashlen); /* get bignum V_j */
|
|
CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, j*outlen) );/* tmp=V_j << j*outlen */
|
|
CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */
|
|
}
|
|
/* Step 11.2, continued.
|
|
** [W += ((V_n mod 2**b) * 2**(n*outlen))]
|
|
*/
|
|
CHECK_SEC_OK( addToSeedThenHash(hashtype, seed, offset + n, seedlen, V_j) );
|
|
OCTETS_TO_MPINT(V_j, &V_n, hashlen); /* get bignum V_n */
|
|
CHECK_MPI_OK( mp_div_2d(&V_n, b, NULL, &tmp) ); /* tmp = V_n mod 2**b */
|
|
CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, n*outlen) ); /* tmp = tmp << n*outlen */
|
|
CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */
|
|
/* Step 11.3, (Step 8 in 186-1)
|
|
** "X = W + 2**(L-1).
|
|
** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
|
|
*/
|
|
CHECK_MPI_OK( mpl_set_bit(&X, (mp_size)(L-1), 1) ); /* X = 2**(L-1) */
|
|
CHECK_MPI_OK( mp_add(&X, &W, &X) ); /* X += W */
|
|
/*************************************************************
|
|
** Step 11.4. (Step 9 in 186-1)
|
|
** "c = X mod 2q"
|
|
*/
|
|
CHECK_MPI_OK( mp_mul_2(Q, &twoQ) ); /* 2q */
|
|
CHECK_MPI_OK( mp_mod(&X, &twoQ, &c) ); /* c = X mod 2q */
|
|
/*************************************************************
|
|
** Step 11.5. (Step 9 in 186-1)
|
|
** "p = X - (c - 1).
|
|
** Note that p is congruent to 1 mod 2q."
|
|
*/
|
|
CHECK_MPI_OK( mp_sub_d(&c, 1, &c) ); /* c -= 1 */
|
|
CHECK_MPI_OK( mp_sub(&X, &c, P) ); /* P = X - c */
|
|
cleanup:
|
|
mp_clear(&W);
|
|
mp_clear(&X);
|
|
mp_clear(&c);
|
|
mp_clear(&twoQ);
|
|
mp_clear(&V_n);
|
|
mp_clear(&tmp);
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
return SECFailure;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
** Generate G from h, P, and Q.
|
|
*/
|
|
static SECStatus
|
|
makeGfromH(const mp_int *P, /* input. */
|
|
const mp_int *Q, /* input. */
|
|
mp_int *H, /* input and output. */
|
|
mp_int *G, /* output. */
|
|
PRBool *passed)
|
|
{
|
|
mp_int exp, pm1;
|
|
mp_err err = MP_OKAY;
|
|
SECStatus rv = SECSuccess;
|
|
*passed = PR_FALSE;
|
|
MP_DIGITS(&exp) = 0;
|
|
MP_DIGITS(&pm1) = 0;
|
|
CHECK_MPI_OK( mp_init(&exp) );
|
|
CHECK_MPI_OK( mp_init(&pm1) );
|
|
CHECK_MPI_OK( mp_sub_d(P, 1, &pm1) ); /* P - 1 */
|
|
if ( mp_cmp(H, &pm1) >= 0) /* H >= P-1 */
|
|
CHECK_MPI_OK( mp_sub(H, &pm1, H) ); /* H = H mod (P-1) */
|
|
/* Let b = 2**n (smallest power of 2 greater than P).
|
|
** Since P-1 >= b/2, and H < b, quotient(H/(P-1)) = 0 or 1
|
|
** so the above operation safely computes H mod (P-1)
|
|
*/
|
|
/* Check for H = to 0 or 1. Regen H if so. (Regen means return error). */
|
|
if (mp_cmp_d(H, 1) <= 0) {
|
|
rv = SECFailure;
|
|
goto cleanup;
|
|
}
|
|
/* Compute G, according to the equation G = (H ** ((P-1)/Q)) mod P */
|
|
CHECK_MPI_OK( mp_div(&pm1, Q, &exp, NULL) ); /* exp = (P-1)/Q */
|
|
CHECK_MPI_OK( mp_exptmod(H, &exp, P, G) ); /* G = H ** exp mod P */
|
|
/* Check for G == 0 or G == 1, return error if so. */
|
|
if (mp_cmp_d(G, 1) <= 0) {
|
|
rv = SECFailure;
|
|
goto cleanup;
|
|
}
|
|
*passed = PR_TRUE;
|
|
cleanup:
|
|
mp_clear(&exp);
|
|
mp_clear(&pm1);
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
rv = SECFailure;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
** Generate G from seed, index, P, and Q.
|
|
*/
|
|
static SECStatus
|
|
makeGfromIndex(HASH_HashType hashtype,
|
|
const mp_int *P, /* input. */
|
|
const mp_int *Q, /* input. */
|
|
const SECItem *seed, /* input. */
|
|
unsigned char index, /* input. */
|
|
mp_int *G) /* input/output */
|
|
{
|
|
mp_int e, pm1, W;
|
|
unsigned int count;
|
|
unsigned char data[HASH_LENGTH_MAX];
|
|
unsigned int len;
|
|
mp_err err = MP_OKAY;
|
|
SECStatus rv = SECSuccess;
|
|
const SECHashObject *hashobj = NULL;
|
|
void *hashcx = NULL;
|
|
|
|
MP_DIGITS(&e) = 0;
|
|
MP_DIGITS(&pm1) = 0;
|
|
MP_DIGITS(&W) = 0;
|
|
CHECK_MPI_OK( mp_init(&e) );
|
|
CHECK_MPI_OK( mp_init(&pm1) );
|
|
CHECK_MPI_OK( mp_init(&W) );
|
|
|
|
/* initialize our hash stuff */
|
|
hashobj = HASH_GetRawHashObject(hashtype);
|
|
if (hashobj == NULL) {
|
|
/* shouldn't happen */
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
rv = SECFailure;
|
|
goto cleanup;
|
|
}
|
|
hashcx = hashobj->create();
|
|
if (hashcx == NULL) {
|
|
rv = SECFailure;
|
|
goto cleanup;
|
|
}
|
|
|
|
CHECK_MPI_OK( mp_sub_d(P, 1, &pm1) ); /* P - 1 */
|
|
/* Step 3 e = (p-1)/q */
|
|
CHECK_MPI_OK( mp_div(&pm1, Q, &e, NULL) ); /* e = (P-1)/Q */
|
|
/* Steps 4, 5, and 6 */
|
|
/* count is a 16 bit value in the spec. We actually represent count
|
|
* as more than 16 bits so we can easily detect the 16 bit overflow */
|
|
#define MAX_COUNT 0x10000
|
|
for (count = 1; count < MAX_COUNT; count++) {
|
|
/* step 7
|
|
* U = domain_param_seed || "ggen" || index || count
|
|
* step 8
|
|
* W = HASH(U)
|
|
*/
|
|
hashobj->begin(hashcx);
|
|
hashobj->update(hashcx,seed->data,seed->len);
|
|
hashobj->update(hashcx, (unsigned char *)"ggen", 4);
|
|
hashobj->update(hashcx,&index, 1);
|
|
data[0] = (count >> 8) & 0xff;
|
|
data[1] = count & 0xff;
|
|
hashobj->update(hashcx, data, 2);
|
|
hashobj->end(hashcx, data, &len, sizeof(data));
|
|
OCTETS_TO_MPINT(data, &W, len);
|
|
/* step 9. g = W**e mod p */
|
|
CHECK_MPI_OK( mp_exptmod(&W, &e, P, G) );
|
|
/* step 10. if (g < 2) then goto step 5 */
|
|
/* NOTE: this weird construct is to keep the flow according to the spec.
|
|
* the continue puts us back to step 5 of the for loop */
|
|
if (mp_cmp_d(G, 2) < 0) {
|
|
continue;
|
|
}
|
|
break; /* step 11 follows step 10 if the test condition is false */
|
|
}
|
|
if (count >= MAX_COUNT) {
|
|
rv = SECFailure; /* last part of step 6 */
|
|
}
|
|
/* step 11.
|
|
* return valid G */
|
|
cleanup:
|
|
PORT_Memset(data, 0, sizeof(data));
|
|
if (hashcx) {
|
|
hashobj->destroy(hashcx, PR_TRUE);
|
|
}
|
|
mp_clear(&e);
|
|
mp_clear(&pm1);
|
|
mp_clear(&W);
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
rv = SECFailure;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* This code uses labels and gotos, so that it can follow the numbered
|
|
** steps in the algorithms from FIPS 186-3 appendix A.1.1.2 very closely,
|
|
** and so that the correctness of this code can be easily verified.
|
|
** So, please forgive the ugly c code.
|
|
**/
|
|
static SECStatus
|
|
pqg_ParamGen(unsigned int L, unsigned int N, pqgGenType type,
|
|
unsigned int seedBytes, PQGParams **pParams, PQGVerify **pVfy)
|
|
{
|
|
unsigned int n; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
|
|
unsigned int seedlen; /* Per FIPS 186-3 app A.1.1.2 (was 'g' 186-1)*/
|
|
unsigned int counter; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
|
|
unsigned int offset; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
|
|
unsigned int outlen; /* Per FIPS 186-3, appendix A.1.1.2. */
|
|
unsigned int maxCount;
|
|
HASH_HashType hashtype;
|
|
SECItem *seed; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
|
|
PLArenaPool *arena = NULL;
|
|
PQGParams *params = NULL;
|
|
PQGVerify *verify = NULL;
|
|
PRBool passed;
|
|
SECItem hit = { 0, 0, 0 };
|
|
SECItem firstseed = { 0, 0, 0 };
|
|
SECItem qseed = { 0, 0, 0 };
|
|
SECItem pseed = { 0, 0, 0 };
|
|
mp_int P, Q, G, H, l, p0;
|
|
mp_err err = MP_OKAY;
|
|
SECStatus rv = SECFailure;
|
|
int iterations = 0;
|
|
|
|
|
|
/* Step 1. L and N already checked by caller*/
|
|
/* Step 2. if (seedlen < N) return INVALID; */
|
|
if (seedBytes < N/PR_BITS_PER_BYTE || !pParams || !pVfy) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
/* Initialize an arena for the params. */
|
|
arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
|
|
if (!arena) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
params = (PQGParams *)PORT_ArenaZAlloc(arena, sizeof(PQGParams));
|
|
if (!params) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
PORT_FreeArena(arena, PR_TRUE);
|
|
return SECFailure;
|
|
}
|
|
params->arena = arena;
|
|
/* Initialize an arena for the verify. */
|
|
arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
|
|
if (!arena) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
PORT_FreeArena(params->arena, PR_TRUE);
|
|
return SECFailure;
|
|
}
|
|
verify = (PQGVerify *)PORT_ArenaZAlloc(arena, sizeof(PQGVerify));
|
|
if (!verify) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
PORT_FreeArena(arena, PR_TRUE);
|
|
PORT_FreeArena(params->arena, PR_TRUE);
|
|
return SECFailure;
|
|
}
|
|
verify->arena = arena;
|
|
seed = &verify->seed;
|
|
arena = NULL;
|
|
/* Initialize bignums */
|
|
MP_DIGITS(&P) = 0;
|
|
MP_DIGITS(&Q) = 0;
|
|
MP_DIGITS(&G) = 0;
|
|
MP_DIGITS(&H) = 0;
|
|
MP_DIGITS(&l) = 0;
|
|
MP_DIGITS(&p0) = 0;
|
|
CHECK_MPI_OK( mp_init(&P) );
|
|
CHECK_MPI_OK( mp_init(&Q) );
|
|
CHECK_MPI_OK( mp_init(&G) );
|
|
CHECK_MPI_OK( mp_init(&H) );
|
|
CHECK_MPI_OK( mp_init(&l) );
|
|
CHECK_MPI_OK( mp_init(&p0) );
|
|
|
|
/* Select Hash and Compute lengths. */
|
|
/* getFirstHash gives us the smallest acceptable hash for this key
|
|
* strength */
|
|
hashtype = getFirstHash(L,N);
|
|
outlen = HASH_ResultLen(hashtype)*PR_BITS_PER_BYTE;
|
|
|
|
/* Step 3: n = Ceil(L/outlen)-1; (same as n = Floor((L-1)/outlen)) */
|
|
n = (L - 1) / outlen;
|
|
/* Step 4: (skipped since we don't use b): b = L -1 - (n*outlen); */
|
|
seedlen = seedBytes * PR_BITS_PER_BYTE; /* bits in seed */
|
|
step_5:
|
|
/* ******************************************************************
|
|
** Step 5. (Step 1 in 186-1)
|
|
** "Choose an abitrary sequence of at least N bits and call it SEED.
|
|
** Let g be the length of SEED in bits."
|
|
*/
|
|
if (++iterations > MAX_ITERATIONS) { /* give up after a while */
|
|
PORT_SetError(SEC_ERROR_NEED_RANDOM);
|
|
goto cleanup;
|
|
}
|
|
seed->len = seedBytes;
|
|
CHECK_SEC_OK( getPQseed(seed, verify->arena) );
|
|
/* ******************************************************************
|
|
** Step 6. (Step 2 in 186-1)
|
|
**
|
|
** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]. (186-1)"
|
|
** "Compute U = HASH[SEED] 2**(N-1). (186-3)"
|
|
**
|
|
** Step 7. (Step 3 in 186-1)
|
|
** "Form Q from U by setting the most signficant bit (the 2**159 bit)
|
|
** and the least signficant bit to 1. In terms of boolean operations,
|
|
** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160. (186-1)"
|
|
**
|
|
** "q = 2**(N-1) + U + 1 - (U mod 2) (186-3)
|
|
**
|
|
** Note: Both formulations are the same for U < 2**(N-1) and N=160
|
|
**
|
|
** If using Shawe-Taylor, We do the entire A.1.2.1.2 setps in the block
|
|
** FIPS186_3_ST_TYPE.
|
|
*/
|
|
if (type == FIPS186_1_TYPE) {
|
|
CHECK_SEC_OK( makeQfromSeed(seedlen, seed, &Q) );
|
|
} else if (type == FIPS186_3_TYPE) {
|
|
CHECK_SEC_OK( makeQ2fromSeed(hashtype, N, seed, &Q) );
|
|
} else {
|
|
/* FIPS186_3_ST_TYPE */
|
|
unsigned int qgen_counter, pgen_counter;
|
|
|
|
/* Step 1 (L,N) already checked for acceptability */
|
|
|
|
firstseed = *seed;
|
|
qgen_counter = 0;
|
|
/* Step 2. Use N and firstseed to generate random prime q
|
|
* using Apendix C.6 */
|
|
CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, N, &firstseed, &Q,
|
|
&qseed, &qgen_counter) );
|
|
/* Step 3. Use floor(L/2+1) and qseed to generate random prime p0
|
|
* using Appendix C.6 */
|
|
pgen_counter = 0;
|
|
CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, (L+1)/2+1,
|
|
&qseed, &p0, &pseed, &pgen_counter) );
|
|
/* Steps 4-22 FIPS 186-3 appendix A.1.2.1.2 */
|
|
CHECK_SEC_OK( makePrimefromPrimesShaweTaylor(hashtype, L,
|
|
&p0, &Q, &P, &pseed, &pgen_counter) );
|
|
|
|
/* combine all the seeds */
|
|
seed->len = firstseed.len +qseed.len + pseed.len;
|
|
seed->data = PORT_ArenaZAlloc(verify->arena, seed->len);
|
|
if (seed->data == NULL) {
|
|
goto cleanup;
|
|
}
|
|
PORT_Memcpy(seed->data, firstseed.data, firstseed.len);
|
|
PORT_Memcpy(seed->data+firstseed.len, pseed.data, pseed.len);
|
|
PORT_Memcpy(seed->data+firstseed.len+pseed.len, qseed.data, qseed.len);
|
|
counter = 0 ; /* (qgen_counter << 16) | pgen_counter; */
|
|
|
|
/* we've generated both P and Q now, skip to generating G */
|
|
goto generate_G;
|
|
}
|
|
/* ******************************************************************
|
|
** Step 8. (Step 4 in 186-1)
|
|
** "Use a robust primality testing algorithm to test whether q is prime."
|
|
**
|
|
** Appendix 2.1 states that a Rabin test with at least 50 iterations
|
|
** "will give an acceptable probability of error."
|
|
*/
|
|
/*CHECK_SEC_OK( prm_RabinTest(&Q, &passed) );*/
|
|
err = mpp_pprime(&Q, prime_testcount_q(L,N));
|
|
passed = (err == MP_YES) ? SECSuccess : SECFailure;
|
|
/* ******************************************************************
|
|
** Step 9. (Step 5 in 186-1) "If q is not prime, goto step 5 (1 in 186-1)."
|
|
*/
|
|
if (passed != SECSuccess)
|
|
goto step_5;
|
|
/* ******************************************************************
|
|
** Step 10.
|
|
** offset = 1;
|
|
**( Step 6b 186-1)"Let counter = 0 and offset = 2."
|
|
*/
|
|
offset = (type == FIPS186_1_TYPE) ? 2 : 1;
|
|
/*
|
|
** Step 11. (Step 6a,13a,14 in 186-1)
|
|
** For counter - 0 to (4L-1) do
|
|
**
|
|
*/
|
|
maxCount = L >= 1024 ? (4*L - 1) : 4095;
|
|
for (counter = 0; counter <= maxCount; counter++) {
|
|
/* ******************************************************************
|
|
** Step 11.1 (Step 7 in 186-1)
|
|
** "for j = 0 ... n let
|
|
** V_j = HASH[(SEED + offset + j) mod 2**seedlen]."
|
|
**
|
|
** Step 11.2 (Step 8 in 186-1)
|
|
** "W = V_0 + V_1*2**outlen+...+ V_n-1 * 2**((n-1)*outlen) +
|
|
** ((Vn* mod 2**b)*2**(n*outlen))"
|
|
** Step 11.3 (Step 8 in 186-1)
|
|
** "X = W + 2**(L-1)
|
|
** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
|
|
**
|
|
** Step 11.4 (Step 9 in 186-1).
|
|
** "c = X mod 2q"
|
|
**
|
|
** Step 11.5 (Step 9 in 186-1).
|
|
** " p = X - (c - 1).
|
|
** Note that p is congruent to 1 mod 2q."
|
|
*/
|
|
CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, seedlen,
|
|
seed, &Q, &P) );
|
|
/*************************************************************
|
|
** Step 11.6. (Step 10 in 186-1)
|
|
** "if p < 2**(L-1), then goto step 11.9. (step 13 in 186-1)"
|
|
*/
|
|
CHECK_MPI_OK( mpl_set_bit(&l, (mp_size)(L-1), 1) ); /* l = 2**(L-1) */
|
|
if (mp_cmp(&P, &l) < 0)
|
|
goto step_11_9;
|
|
/************************************************************
|
|
** Step 11.7 (step 11 in 186-1)
|
|
** "Perform a robust primality test on p."
|
|
*/
|
|
/*CHECK_SEC_OK( prm_RabinTest(&P, &passed) );*/
|
|
err = mpp_pprime(&P, prime_testcount_p(L, N));
|
|
passed = (err == MP_YES) ? SECSuccess : SECFailure;
|
|
/* ******************************************************************
|
|
** Step 11.8. "If p is determined to be primed return VALID
|
|
** values of p, q, seed and counter."
|
|
*/
|
|
if (passed == SECSuccess)
|
|
break;
|
|
step_11_9:
|
|
/* ******************************************************************
|
|
** Step 11.9. "offset = offset + n + 1."
|
|
*/
|
|
offset += n + 1;
|
|
}
|
|
/* ******************************************************************
|
|
** Step 12. "goto step 5."
|
|
**
|
|
** NOTE: if counter <= maxCount, then we exited the loop at Step 11.8
|
|
** and now need to return p,q, seed, and counter.
|
|
*/
|
|
if (counter > maxCount)
|
|
goto step_5;
|
|
|
|
generate_G:
|
|
/* ******************************************************************
|
|
** returning p, q, seed and counter
|
|
*/
|
|
if (type == FIPS186_1_TYPE) {
|
|
/* Generate g, This is called the "Unverifiable Generation of g
|
|
* in FIPA186-3 Appedix A.2.1. For compatibility we maintain
|
|
* this version of the code */
|
|
SECITEM_AllocItem(NULL, &hit, L/8); /* h is no longer than p */
|
|
if (!hit.data) goto cleanup;
|
|
do {
|
|
/* loop generate h until 1<h<p-1 and (h**[(p-1)/q])mod p > 1 */
|
|
CHECK_SEC_OK( generate_h_candidate(&hit, &H) );
|
|
CHECK_SEC_OK( makeGfromH(&P, &Q, &H, &G, &passed) );
|
|
} while (passed != PR_TRUE);
|
|
MPINT_TO_SECITEM(&H, &verify->h, verify->arena);
|
|
} else {
|
|
unsigned char index = 1; /* default to 1 */
|
|
verify->h.data = (unsigned char *)PORT_ArenaZAlloc(verify->arena, 1);
|
|
if (verify->h.data == NULL) { goto cleanup; }
|
|
verify->h.len = 1;
|
|
verify->h.data[0] = index;
|
|
/* Generate g, using the FIPS 186-3 Appendix A.23 */
|
|
CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, seed, index, &G) );
|
|
}
|
|
/* All generation is done. Now, save the PQG params. */
|
|
MPINT_TO_SECITEM(&P, ¶ms->prime, params->arena);
|
|
MPINT_TO_SECITEM(&Q, ¶ms->subPrime, params->arena);
|
|
MPINT_TO_SECITEM(&G, ¶ms->base, params->arena);
|
|
verify->counter = counter;
|
|
*pParams = params;
|
|
*pVfy = verify;
|
|
cleanup:
|
|
if (pseed.data) {
|
|
PORT_Free(pseed.data);
|
|
}
|
|
if (qseed.data) {
|
|
PORT_Free(qseed.data);
|
|
}
|
|
mp_clear(&P);
|
|
mp_clear(&Q);
|
|
mp_clear(&G);
|
|
mp_clear(&H);
|
|
mp_clear(&l);
|
|
mp_clear(&p0);
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
rv = SECFailure;
|
|
}
|
|
if (rv) {
|
|
PORT_FreeArena(params->arena, PR_TRUE);
|
|
PORT_FreeArena(verify->arena, PR_TRUE);
|
|
}
|
|
if (hit.data) {
|
|
SECITEM_FreeItem(&hit, PR_FALSE);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
SECStatus
|
|
PQG_ParamGen(unsigned int j, PQGParams **pParams, PQGVerify **pVfy)
|
|
{
|
|
unsigned int L; /* Length of P in bits. Per FIPS 186. */
|
|
unsigned int seedBytes;
|
|
|
|
if (j > 8 || !pParams || !pVfy) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
L = 512 + (j * 64); /* bits in P */
|
|
seedBytes = L/8;
|
|
return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes,
|
|
pParams, pVfy);
|
|
}
|
|
|
|
SECStatus
|
|
PQG_ParamGenSeedLen(unsigned int j, unsigned int seedBytes,
|
|
PQGParams **pParams, PQGVerify **pVfy)
|
|
{
|
|
unsigned int L; /* Length of P in bits. Per FIPS 186. */
|
|
|
|
if (j > 8 || !pParams || !pVfy) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
L = 512 + (j * 64); /* bits in P */
|
|
return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes,
|
|
pParams, pVfy);
|
|
}
|
|
|
|
SECStatus
|
|
PQG_ParamGenV2(unsigned int L, unsigned int N, unsigned int seedBytes,
|
|
PQGParams **pParams, PQGVerify **pVfy)
|
|
{
|
|
if (N == 0) {
|
|
N = pqg_get_default_N(L);
|
|
}
|
|
if (seedBytes == 0) {
|
|
/* seedBytes == L/8 for probable primes, N/8 for Shawe-Taylor Primes */
|
|
seedBytes = N/8;
|
|
}
|
|
if (pqg_validate_dsa2(L,N) != SECSuccess) {
|
|
/* error code already set */
|
|
return SECFailure;
|
|
}
|
|
return pqg_ParamGen(L, N, FIPS186_3_ST_TYPE, seedBytes, pParams, pVfy);
|
|
}
|
|
|
|
|
|
/*
|
|
* verify can use vfy structures returned from either FIPS186-1 or
|
|
* FIPS186-2, and can handle differences in selected Hash functions to
|
|
* generate the parameters.
|
|
*/
|
|
SECStatus
|
|
PQG_VerifyParams(const PQGParams *params,
|
|
const PQGVerify *vfy, SECStatus *result)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
unsigned int g, n, L, N, offset, outlen;
|
|
mp_int p0, P, Q, G, P_, Q_, G_, r, h;
|
|
mp_err err = MP_OKAY;
|
|
int j;
|
|
unsigned int counter_max = 0; /* handle legacy L < 1024 */
|
|
unsigned int qseed_len;
|
|
SECItem pseed_ = {0, 0, 0};
|
|
HASH_HashType hashtype;
|
|
pqgGenType type;
|
|
|
|
#define CHECKPARAM(cond) \
|
|
if (!(cond)) { \
|
|
*result = SECFailure; \
|
|
goto cleanup; \
|
|
}
|
|
if (!params || !vfy || !result) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
/* always need at least p, q, and seed for any meaningful check */
|
|
if ((params->prime.len == 0) || (params->subPrime.len == 0) ||
|
|
(vfy->seed.len == 0)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
/* we want to either check PQ or G or both. If we don't have G, make
|
|
* sure we have count so we can check P. */
|
|
if ((params->base.len == 0) && (vfy->counter == -1)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
|
|
MP_DIGITS(&p0) = 0;
|
|
MP_DIGITS(&P) = 0;
|
|
MP_DIGITS(&Q) = 0;
|
|
MP_DIGITS(&G) = 0;
|
|
MP_DIGITS(&P_) = 0;
|
|
MP_DIGITS(&Q_) = 0;
|
|
MP_DIGITS(&G_) = 0;
|
|
MP_DIGITS(&r) = 0;
|
|
MP_DIGITS(&h) = 0;
|
|
CHECK_MPI_OK( mp_init(&p0) );
|
|
CHECK_MPI_OK( mp_init(&P) );
|
|
CHECK_MPI_OK( mp_init(&Q) );
|
|
CHECK_MPI_OK( mp_init(&G) );
|
|
CHECK_MPI_OK( mp_init(&P_) );
|
|
CHECK_MPI_OK( mp_init(&Q_) );
|
|
CHECK_MPI_OK( mp_init(&G_) );
|
|
CHECK_MPI_OK( mp_init(&r) );
|
|
CHECK_MPI_OK( mp_init(&h) );
|
|
*result = SECSuccess;
|
|
SECITEM_TO_MPINT(params->prime, &P);
|
|
SECITEM_TO_MPINT(params->subPrime, &Q);
|
|
/* if G isn't specified, just check P and Q */
|
|
if (params->base.len != 0) {
|
|
SECITEM_TO_MPINT(params->base, &G);
|
|
}
|
|
/* 1. Check (L,N) pair */
|
|
N = mpl_significant_bits(&Q);
|
|
L = mpl_significant_bits(&P);
|
|
if (L < 1024) {
|
|
/* handle DSA1 pqg parameters with less thatn 1024 bits*/
|
|
CHECKPARAM( N == DSA1_Q_BITS );
|
|
j = PQG_PBITS_TO_INDEX(L);
|
|
CHECKPARAM( j >= 0 && j <= 8 );
|
|
counter_max = 4096;
|
|
} else {
|
|
/* handle DSA2 parameters (includes DSA1, 1024 bits) */
|
|
CHECKPARAM(pqg_validate_dsa2(L, N) == SECSuccess);
|
|
counter_max = 4*L;
|
|
}
|
|
/* 3. G < P */
|
|
if (params->base.len != 0) {
|
|
CHECKPARAM( mp_cmp(&G, &P) < 0 );
|
|
}
|
|
/* 4. P % Q == 1 */
|
|
CHECK_MPI_OK( mp_mod(&P, &Q, &r) );
|
|
CHECKPARAM( mp_cmp_d(&r, 1) == 0 );
|
|
/* 5. Q is prime */
|
|
CHECKPARAM( mpp_pprime(&Q, prime_testcount_q(L,N)) == MP_YES );
|
|
/* 6. P is prime */
|
|
CHECKPARAM( mpp_pprime(&P, prime_testcount_p(L,N)) == MP_YES );
|
|
/* Steps 7-12 are done only if the optional PQGVerify is supplied. */
|
|
/* continue processing P */
|
|
/* 7. counter < 4*L */
|
|
CHECKPARAM( (vfy->counter == -1) || (vfy->counter < counter_max) );
|
|
/* 8. g >= N and g < 2*L (g is length of seed in bits) */
|
|
g = vfy->seed.len * 8;
|
|
CHECKPARAM( g >= N && g < counter_max/2 );
|
|
/* 9. Q generated from SEED matches Q in PQGParams. */
|
|
/* This function checks all possible hash and generation types to
|
|
* find a Q_ which matches Q. */
|
|
CHECKPARAM( findQfromSeed(L, N, g, &vfy->seed, &Q, &Q_, &qseed_len,
|
|
&hashtype, &type) == SECSuccess );
|
|
CHECKPARAM( mp_cmp(&Q, &Q_) == 0 );
|
|
if (type == FIPS186_3_ST_TYPE) {
|
|
SECItem qseed = { 0, 0, 0 };
|
|
SECItem pseed = { 0, 0, 0 };
|
|
unsigned int first_seed_len;
|
|
unsigned int pgen_counter = 0;
|
|
|
|
/* extract pseed and qseed from domain_parameter_seed, which is
|
|
* first_seed || pseed || qseed. qseed is first_seed + small_integer
|
|
* pseed is qseed + small_integer. This means most of the time
|
|
* first_seed.len == qseed.len == pseed.len. Rarely qseed.len and/or
|
|
* pseed.len will be one greater than first_seed.len, so we can
|
|
* depend on the fact that
|
|
* first_seed.len = floor(domain_parameter_seed.len/3).
|
|
* findQfromSeed returned qseed.len, so we can calculate pseed.len as
|
|
* pseed.len = domain_parameter_seed.len - first_seed.len - qseed.len
|
|
* this is probably over kill, since 99.999% of the time they will all
|
|
* be equal.
|
|
*
|
|
* With the lengths, we can now find the offsets;
|
|
* first_seed.data = domain_parameter_seed.data + 0
|
|
* pseed.data = domain_parameter_seed.data + first_seed.len
|
|
* qseed.data = domain_parameter_seed.data
|
|
* + domain_paramter_seed.len - qseed.len
|
|
*
|
|
*/
|
|
first_seed_len = vfy->seed.len/3;
|
|
CHECKPARAM(qseed_len < vfy->seed.len);
|
|
CHECKPARAM(first_seed_len*8 > N-1);
|
|
CHECKPARAM(first_seed_len+qseed_len < vfy->seed.len);
|
|
qseed.len = qseed_len;
|
|
qseed.data = vfy->seed.data + vfy->seed.len - qseed.len;
|
|
pseed.len = vfy->seed.len - (first_seed_len+qseed_len);
|
|
pseed.data = vfy->seed.data + first_seed_len;
|
|
|
|
/*
|
|
* now complete FIPS 186-3 A.1.2.1.2. Step 1 was completed
|
|
* above in our initial checks, Step 2 was completed by
|
|
* findQfromSeed */
|
|
|
|
/* Step 3 (status, c0, prime_seed, prime_gen_counter) =
|
|
** (ST_Random_Prime((ceil(length/2)+1, input_seed)
|
|
*/
|
|
CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, (L+1)/2+1,
|
|
&qseed, &p0, &pseed_, &pgen_counter) );
|
|
/* Steps 4-22 FIPS 186-3 appendix A.1.2.1.2 */
|
|
CHECK_SEC_OK( makePrimefromPrimesShaweTaylor(hashtype, L,
|
|
&p0, &Q_, &P_, &pseed_, &pgen_counter) );
|
|
CHECKPARAM( mp_cmp(&P, &P_) == 0 );
|
|
/* make sure pseed wasn't tampered with (since it is part of
|
|
* calculating G) */
|
|
CHECKPARAM( SECITEM_CompareItem(&pseed, &pseed_) == SECEqual );
|
|
} else if (vfy->counter == -1) {
|
|
/* If counter is set to -1, we are really only verifying G, skip
|
|
* the remainder of the checks for P */
|
|
CHECKPARAM(type != FIPS186_1_TYPE); /* we only do this for DSA2 */
|
|
} else {
|
|
/* 10. P generated from (L, counter, g, SEED, Q) matches P
|
|
* in PQGParams. */
|
|
outlen = HASH_ResultLen(hashtype)*PR_BITS_PER_BYTE;
|
|
n = (L - 1) / outlen;
|
|
offset = vfy->counter * (n + 1) + ((type == FIPS186_1_TYPE) ? 2 : 1);
|
|
CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, g, &vfy->seed,
|
|
&Q, &P_) );
|
|
CHECKPARAM( mp_cmp(&P, &P_) == 0 );
|
|
}
|
|
|
|
/* now check G, skip if don't have a g */
|
|
if (params->base.len == 0) goto cleanup;
|
|
|
|
/* first Always check that G is OK FIPS186-3 A.2.2 & A.2.4*/
|
|
/* 1. 2 < G < P-1 */
|
|
/* P is prime, p-1 == zero 1st bit */
|
|
CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) );
|
|
CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) < 0 );
|
|
CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */
|
|
/* 2. verify g**q mod p == 1 */
|
|
CHECK_MPI_OK( mp_exptmod(&G, &Q, &P, &h) ); /* h = G ** Q mod P */
|
|
CHECKPARAM(mp_cmp_d(&h, 1) == 0);
|
|
|
|
/* no h, the above is the best we can do */
|
|
if (vfy->h.len == 0) {
|
|
if (type != FIPS186_1_TYPE) {
|
|
*result = SECWouldBlock;
|
|
}
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* If h is one byte and FIPS186-3 was used to generate Q (we've verified
|
|
* Q was generated from seed already, then we assume that FIPS 186-3
|
|
* appendix A.2.3 was used to generate G. Otherwise we assume A.2.1 was
|
|
* used to generate G.
|
|
*/
|
|
if ((vfy->h.len == 1) && (type != FIPS186_1_TYPE)) {
|
|
/* A.2.3 */
|
|
CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, &vfy->seed,
|
|
vfy->h.data[0], &G_) );
|
|
CHECKPARAM( mp_cmp(&G, &G_) == 0 );
|
|
} else {
|
|
int passed;
|
|
/* A.2.1 */
|
|
SECITEM_TO_MPINT(vfy->h, &h);
|
|
/* 11. 1 < h < P-1 */
|
|
/* P is prime, p-1 == zero 1st bit */
|
|
CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) );
|
|
CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) );
|
|
CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */
|
|
/* 12. G generated from h matches G in PQGParams. */
|
|
CHECK_SEC_OK( makeGfromH(&P, &Q, &h, &G_, &passed) );
|
|
CHECKPARAM( passed && mp_cmp(&G, &G_) == 0 );
|
|
}
|
|
cleanup:
|
|
mp_clear(&p0);
|
|
mp_clear(&P);
|
|
mp_clear(&Q);
|
|
mp_clear(&G);
|
|
mp_clear(&P_);
|
|
mp_clear(&Q_);
|
|
mp_clear(&G_);
|
|
mp_clear(&r);
|
|
mp_clear(&h);
|
|
if (pseed_.data) {
|
|
SECITEM_FreeItem(&pseed_,PR_FALSE);
|
|
}
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
rv = SECFailure;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Free the PQGParams struct and the things it points to. *
|
|
**************************************************************************/
|
|
void
|
|
PQG_DestroyParams(PQGParams *params)
|
|
{
|
|
if (params == NULL)
|
|
return;
|
|
if (params->arena != NULL) {
|
|
PORT_FreeArena(params->arena, PR_FALSE); /* don't zero it */
|
|
} else {
|
|
SECITEM_FreeItem(¶ms->prime, PR_FALSE); /* don't free prime */
|
|
SECITEM_FreeItem(¶ms->subPrime, PR_FALSE); /* don't free subPrime */
|
|
SECITEM_FreeItem(¶ms->base, PR_FALSE); /* don't free base */
|
|
PORT_Free(params);
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Free the PQGVerify struct and the things it points to. *
|
|
**************************************************************************/
|
|
|
|
void
|
|
PQG_DestroyVerify(PQGVerify *vfy)
|
|
{
|
|
if (vfy == NULL)
|
|
return;
|
|
if (vfy->arena != NULL) {
|
|
PORT_FreeArena(vfy->arena, PR_FALSE); /* don't zero it */
|
|
} else {
|
|
SECITEM_FreeItem(&vfy->seed, PR_FALSE); /* don't free seed */
|
|
SECITEM_FreeItem(&vfy->h, PR_FALSE); /* don't free h */
|
|
PORT_Free(vfy);
|
|
}
|
|
}
|