RetroZilla/security/nss/lib/freebl/ecl/ecl-priv.h
2015-10-20 23:03:22 -04:00

282 lines
12 KiB
C

/*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Stephen Fung <fungstep@hotmail.com> and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifndef __ecl_priv_h_
#define __ecl_priv_h_
#include "ecl.h"
#include "mpi.h"
#include "mplogic.h"
/* MAX_FIELD_SIZE_DIGITS is the maximum size of field element supported */
/* the following needs to go away... */
#if defined(MP_USE_LONG_LONG_DIGIT) || defined(MP_USE_LONG_DIGIT)
#define ECL_SIXTY_FOUR_BIT
#else
#define ECL_THIRTY_TWO_BIT
#endif
#define ECL_CURVE_DIGITS(curve_size_in_bits) \
(((curve_size_in_bits)+(sizeof(mp_digit)*8-1))/(sizeof(mp_digit)*8))
#define ECL_BITS (sizeof(mp_digit)*8)
#define ECL_MAX_FIELD_SIZE_DIGITS (80/sizeof(mp_digit))
/* Gets the i'th bit in the binary representation of a. If i >= length(a),
* then return 0. (The above behaviour differs from mpl_get_bit, which
* causes an error if i >= length(a).) */
#define MP_GET_BIT(a, i) \
((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i))
#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
#define MP_ADD_CARRY(a1, a2, s, cin, cout) \
{ mp_word w; \
w = ((mp_word)(cin)) + (a1) + (a2); \
s = ACCUM(w); \
cout = CARRYOUT(w); }
#define MP_SUB_BORROW(a1, a2, s, bin, bout) \
{ mp_word w; \
w = ((mp_word)(a1)) - (a2) - (bin); \
s = ACCUM(w); \
bout = (w >> MP_DIGIT_BIT) & 1; }
#else
/* NOTE,
* cin and cout could be the same variable.
* bin and bout could be the same variable.
* a1 or a2 and s could be the same variable.
* don't trash those outputs until their respective inputs have
* been read. */
#define MP_ADD_CARRY(a1, a2, s, cin, cout) \
{ mp_digit tmp,sum; \
tmp = (a1); \
sum = tmp + (a2); \
tmp = (sum < tmp); /* detect overflow */ \
s = sum += (cin); \
cout = tmp + (sum < (cin)); }
#define MP_SUB_BORROW(a1, a2, s, bin, bout) \
{ mp_digit tmp; \
tmp = (a1); \
s = tmp - (a2); \
tmp = (s > tmp); /* detect borrow */ \
if ((bin) && !s--) tmp++; \
bout = tmp; }
#endif
struct GFMethodStr;
typedef struct GFMethodStr GFMethod;
struct GFMethodStr {
/* Indicates whether the structure was constructed from dynamic memory
* or statically created. */
int constructed;
/* Irreducible that defines the field. For prime fields, this is the
* prime p. For binary polynomial fields, this is the bitstring
* representation of the irreducible polynomial. */
mp_int irr;
/* For prime fields, the value irr_arr[0] is the number of bits in the
* field. For binary polynomial fields, the irreducible polynomial
* f(t) is represented as an array of unsigned int[], where f(t) is
* of the form: f(t) = t^p[0] + t^p[1] + ... + t^p[4] where m = p[0]
* > p[1] > ... > p[4] = 0. */
unsigned int irr_arr[5];
/* Field arithmetic methods. All methods (except field_enc and
* field_dec) are assumed to take field-encoded parameters and return
* field-encoded values. All methods (except field_enc and field_dec)
* are required to be implemented. */
mp_err (*field_add) (const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err (*field_neg) (const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err (*field_sub) (const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err (*field_mod) (const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err (*field_mul) (const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err (*field_sqr) (const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err (*field_div) (const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err (*field_enc) (const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err (*field_dec) (const mp_int *a, mp_int *r, const GFMethod *meth);
/* Extra storage for implementation-specific data. Any memory
* allocated to these extra fields will be cleared by extra_free. */
void *extra1;
void *extra2;
void (*extra_free) (GFMethod *meth);
};
/* Construct generic GFMethods. */
GFMethod *GFMethod_consGFp(const mp_int *irr);
GFMethod *GFMethod_consGFp_mont(const mp_int *irr);
GFMethod *GFMethod_consGF2m(const mp_int *irr,
const unsigned int irr_arr[5]);
/* Free the memory allocated (if any) to a GFMethod object. */
void GFMethod_free(GFMethod *meth);
struct ECGroupStr {
/* Indicates whether the structure was constructed from dynamic memory
* or statically created. */
int constructed;
/* Field definition and arithmetic. */
GFMethod *meth;
/* Textual representation of curve name, if any. */
char *text;
/* Curve parameters, field-encoded. */
mp_int curvea, curveb;
/* x and y coordinates of the base point, field-encoded. */
mp_int genx, geny;
/* Order and cofactor of the base point. */
mp_int order;
int cofactor;
/* Point arithmetic methods. All methods are assumed to take
* field-encoded parameters and return field-encoded values. All
* methods (except base_point_mul and points_mul) are required to be
* implemented. */
mp_err (*point_add) (const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
mp_err (*point_sub) (const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
mp_err (*point_dbl) (const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
mp_err (*point_mul) (const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
mp_err (*base_point_mul) (const mp_int *n, mp_int *rx, mp_int *ry,
const ECGroup *group);
mp_err (*points_mul) (const mp_int *k1, const mp_int *k2,
const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
mp_err (*validate_point) (const mp_int *px, const mp_int *py, const ECGroup *group);
/* Extra storage for implementation-specific data. Any memory
* allocated to these extra fields will be cleared by extra_free. */
void *extra1;
void *extra2;
void (*extra_free) (ECGroup *group);
};
/* Wrapper functions for generic prime field arithmetic. */
mp_err ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
/* fixed length in-line adds. Count is in words */
mp_err ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
/* Wrapper functions for generic binary polynomial field arithmetic. */
mp_err ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
/* Montgomery prime field arithmetic. */
mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
void ec_GFp_extra_free_mont(GFMethod *meth);
/* point multiplication */
mp_err ec_pts_mul_basic(const mp_int *k1, const mp_int *k2,
const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
mp_err ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2,
const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should
* be an array of signed char's to output to, bitsize should be the number
* of bits of out, in is the original scalar, and w is the window size.
* NAF is discussed in the paper: D. Hankerson, J. Hernandez and A.
* Menezes, "Software implementation of elliptic curve cryptography over
* binary fields", Proc. CHES 2000. */
mp_err ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in,
int w);
/* Optimized field arithmetic */
mp_err ec_group_set_gfp192(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp224(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp256(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp384(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp521(ECGroup *group, ECCurveName);
mp_err ec_group_set_gf2m163(ECGroup *group, ECCurveName name);
mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name);
mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name);
/* Optimized floating-point arithmetic */
#ifdef ECL_USE_FP
mp_err ec_group_set_secp160r1_fp(ECGroup *group);
mp_err ec_group_set_nistp192_fp(ECGroup *group);
mp_err ec_group_set_nistp224_fp(ECGroup *group);
#endif
#endif /* __ecl_priv_h_ */