RetroZilla/security/nss/lib/pki1/oid.c
2015-10-20 23:03:22 -04:00

1619 lines
35 KiB
C

/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1994-2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifdef DEBUG
static const char CVS_ID[] = "@(#) $RCSfile: oid.c,v $ $Revision: 1.6 $ $Date: 2005/01/20 02:25:49 $";
#endif /* DEBUG */
/*
* oid.c
*
* This file contains the implementation of the basic OID routines.
*/
#ifndef BASE_H
#include "base.h"
#endif /* BASE_H */
#ifndef PKI1_H
#include "pki1.h"
#endif /* PKI1_H */
#include "plhash.h"
#include "plstr.h"
/*
* NSSOID
*
* The public "methods" regarding this "object" are:
*
* NSSOID_CreateFromBER -- constructor
* NSSOID_CreateFromUTF8 -- constructor
* (there is no explicit destructor)
*
* NSSOID_GetDEREncoding
* NSSOID_GetUTF8Encoding
* The non-public "methods" regarding this "object" are:
*
* nssOID_CreateFromBER -- constructor
* nssOID_CreateFromUTF8 -- constructor
* (there is no explicit destructor)
*
* nssOID_GetDEREncoding
* nssOID_GetUTF8Encoding
*
* In debug builds, the following non-public calls are also available:
*
* nssOID_verifyPointer
* nssOID_getExplanation
* nssOID_getTaggedUTF8
*/
const NSSOID *NSS_OID_UNKNOWN = (NSSOID *)NULL;
/*
* First, the public "wrappers"
*/
/*
* NSSOID_CreateFromBER
*
* This routine creates an NSSOID by decoding a BER- or DER-encoded
* OID. It may return NULL upon error, in which case it
* will have created an error stack.
*
* The error may be one of the following values:
* NSS_ERROR_INVALID_BER
* NSS_ERROR_NO_MEMORY
*
* Return value:
* NULL upon error
* An NSSOID upon success
*/
NSS_EXTERN NSSOID *
NSSOID_CreateFromBER
(
NSSBER *berOid
)
{
nss_ClearErrorStack();
#ifdef DEBUG
/*
* NSSBERs can be created by the user,
* so no pointer-tracking can be checked.
*/
if( (NSSBER *)NULL == berOid ) {
nss_SetError(NSS_ERROR_INVALID_BER);
return (NSSOID *)NULL;
}
if( (void *)NULL == berOid->data ) {
nss_SetError(NSS_ERROR_INVALID_BER);
return (NSSOID *)NULL;
}
#endif /* DEBUG */
return nssOID_CreateFromBER(berOid);
}
/*
* NSSOID_CreateFromUTF8
*
* This routine creates an NSSOID by decoding a UTF8 string
* representation of an OID in dotted-number format. The string may
* optionally begin with an octothorpe. It may return NULL
* upon error, in which case it will have created an error stack.
*
* The error may be one of the following values:
* NSS_ERROR_INVALID_UTF8
* NSS_ERROR_NO_MEMORY
*
* Return value:
* NULL upon error
* An NSSOID upon success
*/
NSS_EXTERN NSSOID *
NSSOID_CreateFromUTF8
(
NSSUTF8 *stringOid
)
{
nss_ClearErrorStack();
#ifdef DEBUG
/*
* NSSUTF8s can be created by the user,
* so no pointer-tracking can be checked.
*/
if( (NSSUTF8 *)NULL == stringOid ) {
nss_SetError(NSS_ERROR_INVALID_UTF8);
return (NSSOID *)NULL;
}
#endif /* DEBUG */
return nssOID_CreateFromUTF8(stringOid);
}
/*
* NSSOID_GetDEREncoding
*
* This routine returns the DER encoding of the specified NSSOID.
* If the optional arena argument is non-null, the memory used will
* be obtained from that arena; otherwise, the memory will be obtained
* from the heap. This routine may return return null upon error, in
* which case it will have created an error stack.
*
* The error may be one of the following values:
* NSS_ERROR_INVALID_NSSOID
* NSS_ERROR_NO_MEMORY
*
* Return value:
* NULL upon error
* The DER encoding of this NSSOID
*/
NSS_EXTERN NSSDER *
NSSOID_GetDEREncoding
(
const NSSOID *oid,
NSSDER *rvOpt,
NSSArena *arenaOpt
)
{
nss_ClearErrorStack();
#ifdef DEBUG
if( PR_SUCCESS != nssOID_verifyPointer(oid) ) {
return (NSSDER *)NULL;
}
if( (NSSArena *)NULL != arenaOpt ) {
if( PR_SUCCESS != nssArena_verifyPointer(arenaOpt) ) {
return (NSSDER *)NULL;
}
}
#endif /* DEBUG */
return nssOID_GetDEREncoding(oid, rvOpt, arenaOpt);
}
/*
* NSSOID_GetUTF8Encoding
*
* This routine returns a UTF8 string containing the dotted-number
* encoding of the specified NSSOID. If the optional arena argument
* is non-null, the memory used will be obtained from that arena;
* otherwise, the memory will be obtained from the heap. This routine
* may return null upon error, in which case it will have created an
* error stack.
*
* The error may be one of the following values:
* NSS_ERROR_INVALID_NSSOID
* NSS_ERROR_NO_MEMORY
*
* Return value:
* NULL upon error
* A pointer to a UTF8 string containing the dotted-digit encoding of
* this NSSOID
*/
NSS_EXTERN NSSUTF8 *
NSSOID_GetUTF8Encoding
(
const NSSOID *oid,
NSSArena *arenaOpt
)
{
nss_ClearErrorStack();
#ifdef DEBUG
if( PR_SUCCESS != nssOID_verifyPointer(oid) ) {
return (NSSUTF8 *)NULL;
}
if( (NSSArena *)NULL != arenaOpt ) {
if( PR_SUCCESS != nssArena_verifyPointer(arenaOpt) ) {
return (NSSUTF8 *)NULL;
}
}
#endif /* DEBUG */
return nssOID_GetUTF8Encoding(oid, arenaOpt);
}
/*
* Next, some internal bookkeeping; including the OID "tag" table
* and the debug-version pointer tracker.
*/
/*
* For implementation reasons (so NSSOIDs can be compared with ==),
* we hash all NSSOIDs. This is the hash table.
*/
static PLHashTable *oid_hash_table;
/*
* And this is its lock.
*/
static PZLock *oid_hash_lock;
/*
* This is the hash function. We simply XOR the encoded form with
* itself in sizeof(PLHashNumber)-byte chunks. Improving this
* routine is left as an excercise for the more mathematically
* inclined student.
*/
static PLHashNumber PR_CALLBACK
oid_hash
(
const void *key
)
{
const NSSItem *item = (const NSSItem *)key;
PLHashNumber rv = 0;
PRUint8 *data = (PRUint8 *)item->data;
PRUint32 i;
PRUint8 *rvc = (PRUint8 *)&rv;
for( i = 0; i < item->size; i++ ) {
rvc[ i % sizeof(rv) ] ^= *data;
data++;
}
return rv;
}
/*
* This is the key-compare function. It simply does a lexical
* comparison on the encoded OID form. This does not result in
* quite the same ordering as the "sequence of numbers" order,
* but heck it's only used internally by the hash table anyway.
*/
static PRIntn PR_CALLBACK
oid_hash_compare
(
const void *k1,
const void *k2
)
{
PRIntn rv;
const NSSItem *i1 = (const NSSItem *)k1;
const NSSItem *i2 = (const NSSItem *)k2;
PRUint32 size = (i1->size < i2->size) ? i1->size : i2->size;
rv = (PRIntn)nsslibc_memequal(i1->data, i2->data, size, (PRStatus *)NULL);
if( 0 == rv ) {
rv = i1->size - i2->size;
}
return !rv;
}
/*
* The pointer-tracking code
*/
#ifdef DEBUG
extern const NSSError NSS_ERROR_INTERNAL_ERROR;
static nssPointerTracker oid_pointer_tracker;
static PRStatus
oid_add_pointer
(
const NSSOID *oid
)
{
PRStatus rv;
rv = nssPointerTracker_initialize(&oid_pointer_tracker);
if( PR_SUCCESS != rv ) {
return rv;
}
rv = nssPointerTracker_add(&oid_pointer_tracker, oid);
if( PR_SUCCESS != rv ) {
NSSError e = NSS_GetError();
if( NSS_ERROR_NO_MEMORY != e ) {
nss_SetError(NSS_ERROR_INTERNAL_ERROR);
}
return rv;
}
return PR_SUCCESS;
}
#if defined(CAN_DELETE_OIDS)
/*
* We actually don't define NSSOID deletion, since we keep OIDs
* in a hash table for easy comparison. Were we to, this is
* what the pointer-removal function would look like.
*/
static PRStatus
oid_remove_pointer
(
const NSSOID *oid
)
{
PRStatus rv;
rv = nssPointerTracker_remove(&oid_pointer_tracker, oid);
if( PR_SUCCESS != rv ) {
nss_SetError(NSS_ERROR_INTERNAL_ERROR);
}
return rv;
}
#endif /* CAN_DELETE_OIDS */
#endif /* DEBUG */
/*
* All dynamically-added OIDs get their memory from one statically-
* declared arena here, merely so that any cleanup code will have
* an easier time of it.
*/
static NSSArena *oid_arena;
/*
* This is the call-once function which initializes the hashtable.
* It creates it, then prepopulates it with all of the builtin OIDs.
* It also creates the aforementioned NSSArena.
*/
static PRStatus PR_CALLBACK
oid_once_func
(
void
)
{
PRUint32 i;
/* Initialize the arena */
oid_arena = nssArena_Create();
if( (NSSArena *)NULL == oid_arena ) {
goto loser;
}
/* Create the hash table lock */
oid_hash_lock = PZ_NewLock(nssILockOID);
if( (PZLock *)NULL == oid_hash_lock ) {
nss_SetError(NSS_ERROR_NO_MEMORY);
goto loser;
}
/* Create the hash table */
oid_hash_table = PL_NewHashTable(0, oid_hash, oid_hash_compare,
PL_CompareValues,
(PLHashAllocOps *)0,
(void *)0);
if( (PLHashTable *)NULL == oid_hash_table ) {
nss_SetError(NSS_ERROR_NO_MEMORY);
goto loser;
}
/* And populate it with all the builtins */
for( i = 0; i < nss_builtin_oid_count; i++ ) {
NSSOID *oid = (NSSOID *)&nss_builtin_oids[i];
PLHashEntry *e = PL_HashTableAdd(oid_hash_table, &oid->data, oid);
if( (PLHashEntry *)NULL == e ) {
nss_SetError(NSS_ERROR_NO_MEMORY);
goto loser;
}
#ifdef DEBUG
if( PR_SUCCESS != oid_add_pointer(oid) ) {
goto loser;
}
#endif /* DEBUG */
}
return PR_SUCCESS;
loser:
if( (PLHashTable *)NULL != oid_hash_table ) {
PL_HashTableDestroy(oid_hash_table);
oid_hash_table = (PLHashTable *)NULL;
}
if( (PZLock *)NULL != oid_hash_lock ) {
PZ_DestroyLock(oid_hash_lock);
oid_hash_lock = (PZLock *)NULL;
}
if( (NSSArena *)NULL != oid_arena ) {
(void)nssArena_Destroy(oid_arena);
oid_arena = (NSSArena *)NULL;
}
return PR_FAILURE;
}
/*
* This is NSPR's once-block.
*/
static PRCallOnceType oid_call_once;
/*
* And this is our multiply-callable internal init routine, which
* will call-once our call-once function.
*/
static PRStatus
oid_init
(
void
)
{
return PR_CallOnce(&oid_call_once, oid_once_func);
}
#ifdef DEBUG
/*
* nssOID_verifyPointer
*
* This method is only present in debug builds.
*
* If the specified pointer is a valid pointer to an NSSOID object,
* this routine will return PR_SUCCESS. Otherwise, it will put an
* error on the error stack and return PR_FAILURE.
*
* The error may be one of the following values:
* NSS_ERROR_INVALID_NSSOID
* NSS_ERROR_NO_MEMORY
*
* Return value:
* PR_SUCCESS if the pointer is valid
* PR_FAILURE if it isn't
*/
NSS_EXTERN PRStatus
nssOID_verifyPointer
(
const NSSOID *oid
)
{
PRStatus rv;
rv = oid_init();
if( PR_SUCCESS != rv ) {
return PR_FAILURE;
}
rv = nssPointerTracker_initialize(&oid_pointer_tracker);
if( PR_SUCCESS != rv ) {
return PR_FAILURE;
}
rv = nssPointerTracker_verify(&oid_pointer_tracker, oid);
if( PR_SUCCESS != rv ) {
nss_SetError(NSS_ERROR_INVALID_NSSOID);
return PR_FAILURE;
}
return PR_SUCCESS;
}
#endif /* DEBUG */
/*
* oid_sanity_check_ber
*
* This routine merely applies some sanity-checking to the BER-encoded
* OID.
*/
static PRStatus
oid_sanity_check_ber
(
NSSBER *berOid
)
{
PRUint32 i;
PRUint8 *data = (PRUint8 *)berOid->data;
/*
* The size must be longer than zero bytes.
*/
if( berOid->size <= 0 ) {
return PR_FAILURE;
}
/*
* In general, we can't preclude any number from showing up
* someday. We could probably guess that top-level numbers
* won't get very big (beyond the current ccitt(0), iso(1),
* or joint-ccitt-iso(2)). However, keep in mind that the
* encoding rules wrap the first two numbers together, as
*
* (first * 40) + second
*
* Also, it is noted in the specs that this implies that the
* second number won't go above forty.
*
* 128 encodes 3.8, which seems pretty safe for now. Let's
* check that the first byte is less than that.
*
* XXX This is a "soft check" -- we may want to exclude it.
*/
if( data[0] >= 0x80 ) {
return PR_FAILURE;
}
/*
* In a normalised format, leading 0x80s will never show up.
* This means that no 0x80 will be preceeded by the final
* byte of a sequence, which would naturaly be less than 0x80.
* Our internal encoding for the single-digit OIDs uses 0x80,
* but the only places we use them (loading the builtin table,
* and adding a UTF8-encoded OID) bypass this check.
*/
for( i = 1; i < berOid->size; i++ ) {
if( (0x80 == data[i]) && (data[i-1] < 0x80) ) {
return PR_FAILURE;
}
}
/*
* The high bit of each octet indicates that following octets
* are included in the current number. Thus the last byte can't
* have the high bit set.
*/
if( data[ berOid->size-1 ] >= 0x80 ) {
return PR_FAILURE;
}
/*
* Other than that, any byte sequence is legit.
*/
return PR_SUCCESS;
}
/*
* nssOID_CreateFromBER
*
* This routine creates an NSSOID by decoding a BER- or DER-encoded
* OID. It may return NULL upon error, in which case it
* will have set an error on the error stack.
*
* The error may be one of the following values:
* NSS_ERROR_INVALID_BER
* NSS_ERROR_NO_MEMORY
*
* Return value:
* NULL upon error
* An NSSOID upon success
*/
NSS_EXTERN NSSOID *
nssOID_CreateFromBER
(
NSSBER *berOid
)
{
NSSOID *rv;
PLHashEntry *e;
if( PR_SUCCESS != oid_init() ) {
return (NSSOID *)NULL;
}
if( PR_SUCCESS != oid_sanity_check_ber(berOid) ) {
nss_SetError(NSS_ERROR_INVALID_BER);
return (NSSOID *)NULL;
}
/*
* Does it exist?
*/
PZ_Lock(oid_hash_lock);
rv = (NSSOID *)PL_HashTableLookup(oid_hash_table, berOid);
(void)PZ_Unlock(oid_hash_lock);
if( (NSSOID *)NULL != rv ) {
/* Found it! */
return rv;
}
/*
* Doesn't exist-- create it.
*/
rv = nss_ZNEW(oid_arena, NSSOID);
if( (NSSOID *)NULL == rv ) {
return (NSSOID *)NULL;
}
rv->data.data = nss_ZAlloc(oid_arena, berOid->size);
if( (void *)NULL == rv->data.data ) {
return (NSSOID *)NULL;
}
rv->data.size = berOid->size;
nsslibc_memcpy(rv->data.data, berOid->data, berOid->size);
#ifdef DEBUG
rv->tag = "<runtime>";
rv->expl = "(OID registered at runtime)";
#endif /* DEBUG */
PZ_Lock(oid_hash_lock);
e = PL_HashTableAdd(oid_hash_table, &rv->data, rv);
(void)PZ_Unlock(oid_hash_lock);
if( (PLHashEntry *)NULL == e ) {
nss_ZFreeIf(rv->data.data);
nss_ZFreeIf(rv);
nss_SetError(NSS_ERROR_NO_MEMORY);
return (NSSOID *)NULL;
}
#ifdef DEBUG
{
PRStatus st;
st = oid_add_pointer(rv);
if( PR_SUCCESS != st ) {
PZ_Lock(oid_hash_lock);
(void)PL_HashTableRemove(oid_hash_table, &rv->data);
(void)PZ_Unlock(oid_hash_lock);
(void)nss_ZFreeIf(rv->data.data);
(void)nss_ZFreeIf(rv);
return (NSSOID *)NULL;
}
}
#endif /* DEBUG */
return rv;
}
/*
* oid_sanity_check_utf8
*
* This routine merely applies some sanity-checking to the
* UTF8-encoded OID.
*/
static PRStatus
oid_sanity_check_utf8
(
NSSUTF8 *s
)
{
/*
* It may begin with an octothorpe, which we skip.
*/
if( '#' == *s ) {
s++;
}
/*
* It begins with a number
*/
if( (*s < '0') || (*s > '9') ) {
return PR_FAILURE;
}
/*
* First number is only one digit long
*
* XXX This is a "soft check" -- we may want to exclude it
*/
if( (s[1] != '.') && (s[1] != '\0') ) {
return PR_FAILURE;
}
/*
* Every character is either a digit or a period
*/
for( ; '\0' != *s; s++ ) {
if( ('.' != *s) && ((*s < '0') || (*s > '9')) ) {
return PR_FAILURE;
}
/* No two consecutive periods */
if( ('.' == *s) && ('.' == s[1]) ) {
return PR_FAILURE;
}
}
/*
* The last character isn't a period
*/
if( '.' == *--s ) {
return PR_FAILURE;
}
return PR_SUCCESS;
}
static PRUint32
oid_encode_number
(
PRUint32 n,
PRUint8 *dp,
PRUint32 nb
)
{
PRUint32 a[5];
PRUint32 i;
PRUint32 rv;
a[0] = (n >> 28) & 0x7f;
a[1] = (n >> 21) & 0x7f;
a[2] = (n >> 14) & 0x7f;
a[3] = (n >> 7) & 0x7f;
a[4] = n & 0x7f;
for( i = 0; i < 5; i++ ) {
if( 0 != a[i] ) {
break;
}
}
if( 5 == i ) {
i--;
}
rv = 5-i;
if( rv > nb ) {
return rv;
}
for( ; i < 4; i++ ) {
*dp = 0x80 | a[i];
dp++;
}
*dp = a[4];
return rv;
}
/*
* oid_encode_huge
*
* This routine will convert a huge decimal number into the DER
* encoding for oid numbers. It is not limited to numbers that will
* fit into some wordsize, like oid_encode_number. But it's not
* necessarily very fast, either. This is here in case some joker
* throws us an ASCII oid like 1.2.3.99999999999999999999999999.
*/
static PRUint32
oid_encode_huge
(
NSSUTF8 *s,
NSSUTF8 *e,
PRUint8 *dp,
PRUint32 nb
)
{
PRUint32 slen = (e-s);
PRUint32 blen = (slen+1)/2;
PRUint8 *st = (PRUint8 *)NULL;
PRUint8 *bd = (PRUint8 *)NULL;
PRUint32 i;
PRUint32 bitno;
PRUint8 *last;
PRUint8 *first;
PRUint32 byteno;
PRUint8 mask;
/* We'll be munging the data, so duplicate it */
st = (PRUint8 *)nss_ZAlloc((NSSArena *)NULL, slen);
if( (PRUint8 *)NULL == st ) {
return 0;
}
/* Don't know ahead of time exactly how long we'll need */
bd = (PRUint8 *)nss_ZAlloc((NSSArena *)NULL, blen);
if( (PRUint8 *)NULL == bd ) {
(void)nss_ZFreeIf(st);
return 0;
}
/* Copy the original, and convert ASCII to numbers */
for( i = 0; i < slen; i++ ) {
st[i] = (PRUint8)(s[i] - '0');
}
last = &st[slen-1];
first = &st[0];
/*
* The way we create the binary version is by looking at it
* bit by bit. Start with the least significant bit. If the
* number is odd, set that bit. Halve the number (with integer
* division), and go to the next least significant bit. Keep
* going until the number goes to zero.
*/
for( bitno = 0; ; bitno++ ) {
PRUint8 *d;
byteno = bitno/7;
mask = (PRUint8)(1 << (bitno%7));
/* Skip leading zeroes */
for( ; first < last; first ++ ) {
if( 0 != *first ) {
break;
}
}
/* Down to one number and it's a zero? Done. */
if( (first == last) && (0 == *last) ) {
break;
}
/* Last digit is odd? Set the bit */
if( *last & 1 ) {
bd[ byteno ] |= mask;
}
/*
* Divide the number in half. This is just a matter
* of going from the least significant digit upwards,
* halving each one. If any digit is odd (other than
* the last, which has already been handled), add five
* to the digit to its right.
*/
*last /= 2;
for( d = &last[-1]; d >= first; d-- ) {
if( *d & 1 ) {
d[1] += 5;
}
*d /= 2;
}
}
/* Is there room to write the encoded data? */
if( (byteno+1) > nb ) {
return (byteno+1);
}
/* Trim any leading zero that crept in there */
for( ; byteno > 0; byteno-- ) {
if( 0 != bd[ byteno ] ) {
break;
}
}
/* Copy all but the last, marking the "continue" bit */
for( i = 0; i < byteno; i++ ) {
dp[i] = bd[ byteno-i ] | 0x80;
}
/* And the last with the "continue" bit clear */
dp[byteno] = bd[0];
(void)nss_ZFreeIf(bd);
(void)nss_ZFreeIf(st);
return (byteno+1);
}
/*
* oid_encode_string
*
* This routine converts a dotted-number OID into a DER-encoded
* one. It assumes we've already sanity-checked the string.
*/
extern const NSSError NSS_ERROR_INTERNAL_ERROR;
static NSSOID *
oid_encode_string
(
NSSUTF8 *s
)
{
PRUint32 nn = 0; /* number of numbers */
PRUint32 nb = 0; /* number of bytes (estimated) */
NSSUTF8 *t;
PRUint32 nd = 0; /* number of digits */
NSSOID *rv;
PRUint8 *dp;
PRUint32 a, b;
PRUint32 inc;
/* Dump any octothorpe */
if( '#' == *s ) {
s++;
}
/* Count up the bytes needed */
for( t = s; '\0' != *t; t++ ) {
if( '.' == *t ) {
nb += (nd+1)/2; /* errs on the big side */
nd = 0;
nn++;
} else {
nd++;
}
}
nb += (nd+1)/2;
nn++;
if( 1 == nn ) {
/*
* We have our own "denormalised" encoding for these,
* which is only used internally.
*/
nb++;
}
/*
* Allocate. Note that we don't use the oid_arena here.. this is
* because there really isn't a "free()" for stuff allocated out of
* arenas (at least with the current implementation), so this would
* keep using up memory each time a UTF8-encoded OID were added.
* If need be (if this is the first time this oid has been seen),
* we'll copy it.
*/
rv = nss_ZNEW((NSSArena *)NULL, NSSOID);
if( (NSSOID *)NULL == rv ) {
return (NSSOID *)NULL;
}
rv->data.data = nss_ZAlloc((NSSArena *)NULL, nb);
if( (void *)NULL == rv->data.data ) {
(void)nss_ZFreeIf(rv);
return (NSSOID *)NULL;
}
dp = (PRUint8 *)rv->data.data;
a = atoi(s);
if( 1 == nn ) {
dp[0] = '\x80';
inc = oid_encode_number(a, &dp[1], nb-1);
if( inc >= nb ) {
goto loser;
}
} else {
for( t = s; '.' != *t; t++ ) {
;
}
t++;
b = atoi(t);
inc = oid_encode_number(a*40+b, dp, nb);
if( inc > nb ) {
goto loser;
}
dp += inc;
nb -= inc;
nn -= 2;
while( nn-- > 0 ) {
NSSUTF8 *u;
for( ; '.' != *t; t++ ) {
;
}
t++;
for( u = t; ('\0' != *u) && ('.' != *u); u++ ) {
;
}
if( (u-t > 9) ) {
/* In the billions. Rats. */
inc = oid_encode_huge(t, u, dp, nb);
} else {
b = atoi(t);
inc = oid_encode_number(b, dp, nb);
}
if( inc > nb ) {
goto loser;
}
dp += inc;
nb -= inc;
}
}
return rv;
loser:
nss_SetError(NSS_ERROR_INTERNAL_ERROR);
return (NSSOID *)NULL;
}
/*
* nssOID_CreateFromUTF8
*
* This routine creates an NSSOID by decoding a UTF8 string
* representation of an OID in dotted-number format. The string may
* optionally begin with an octothorpe. It may return NULL
* upon error, in which case it will have set an error on the error
* stack.
*
* The error may be one of the following values:
* NSS_ERROR_INVALID_STRING
* NSS_ERROR_NO_MEMORY
*
* Return value:
* NULL upon error
* An NSSOID upon success
*/
NSS_EXTERN NSSOID *
nssOID_CreateFromUTF8
(
NSSUTF8 *stringOid
)
{
NSSOID *rv = (NSSOID *)NULL;
NSSOID *candidate = (NSSOID *)NULL;
PLHashEntry *e;
if( PR_SUCCESS != oid_init() ) {
return (NSSOID *)NULL;
}
if( PR_SUCCESS != oid_sanity_check_utf8(stringOid) ) {
nss_SetError(NSS_ERROR_INVALID_STRING);
return (NSSOID *)NULL;
}
candidate = oid_encode_string(stringOid);
if( (NSSOID *)NULL == candidate ) {
/* Internal error only */
return rv;
}
/*
* Does it exist?
*/
PZ_Lock(oid_hash_lock);
rv = (NSSOID *)PL_HashTableLookup(oid_hash_table, &candidate->data);
(void)PZ_Unlock(oid_hash_lock);
if( (NSSOID *)NULL != rv ) {
/* Already exists. Delete my copy and return the original. */
(void)nss_ZFreeIf(candidate->data.data);
(void)nss_ZFreeIf(candidate);
return rv;
}
/*
* Nope. Add it. Remember to allocate it out of the oid arena.
*/
rv = nss_ZNEW(oid_arena, NSSOID);
if( (NSSOID *)NULL == rv ) {
goto loser;
}
rv->data.data = nss_ZAlloc(oid_arena, candidate->data.size);
if( (void *)NULL == rv->data.data ) {
goto loser;
}
rv->data.size = candidate->data.size;
nsslibc_memcpy(rv->data.data, candidate->data.data, rv->data.size);
(void)nss_ZFreeIf(candidate->data.data);
(void)nss_ZFreeIf(candidate);
#ifdef DEBUG
rv->tag = "<runtime>";
rv->expl = "(OID registered at runtime)";
#endif /* DEBUG */
PZ_Lock(oid_hash_lock);
e = PL_HashTableAdd(oid_hash_table, &rv->data, rv);
(void)PZ_Unlock(oid_hash_lock);
if( (PLHashEntry *)NULL == e ) {
nss_SetError(NSS_ERROR_NO_MEMORY);
goto loser;
}
#ifdef DEBUG
{
PRStatus st;
st = oid_add_pointer(rv);
if( PR_SUCCESS != st ) {
PZ_Lock(oid_hash_lock);
(void)PL_HashTableRemove(oid_hash_table, &rv->data);
(void)PZ_Unlock(oid_hash_lock);
goto loser;
}
}
#endif /* DEBUG */
return rv;
loser:
if( (NSSOID *)NULL != candidate ) {
(void)nss_ZFreeIf(candidate->data.data);
}
(void)nss_ZFreeIf(candidate);
if( (NSSOID *)NULL != rv ) {
(void)nss_ZFreeIf(rv->data.data);
}
(void)nss_ZFreeIf(rv);
return (NSSOID *)NULL;
}
/*
* nssOID_GetDEREncoding
*
* This routine returns the DER encoding of the specified NSSOID.
* If the optional arena argument is non-null, the memory used will
* be obtained from that arena; otherwise, the memory will be obtained
* from the heap. This routine may return return null upon error, in
* which case it will have set an error on the error stack.
*
* The error may be one of the following values:
* NSS_ERROR_INVALID_OID
* NSS_ERROR_NO_MEMORY
*
* Return value:
* NULL upon error
* The DER encoding of this NSSOID
*/
NSS_EXTERN NSSDER *
nssOID_GetDEREncoding
(
const NSSOID *oid,
NSSDER *rvOpt,
NSSArena *arenaOpt
)
{
const NSSItem *it;
NSSDER *rv;
if( PR_SUCCESS != oid_init() ) {
return (NSSDER *)NULL;
}
#ifdef NSSDEBUG
if( PR_SUCCESS != nssOID_verifyPointer(oid) ) {
return (NSSDER *)NULL;
}
if( (NSSArena *)NULL != arenaOpt ) {
if( PR_SUCCESS != nssArena_verifyPointer(arenaOpt) ) {
return (NSSDER *)NULL;
}
}
#endif /* NSSDEBUG */
it = &oid->data;
if( (NSSDER *)NULL == rvOpt ) {
rv = nss_ZNEW(arenaOpt, NSSDER);
if( (NSSDER *)NULL == rv ) {
return (NSSDER *)NULL;
}
} else {
rv = rvOpt;
}
rv->data = nss_ZAlloc(arenaOpt, it->size);
if( (void *)NULL == rv->data ) {
if( rv != rvOpt ) {
(void)nss_ZFreeIf(rv);
}
return (NSSDER *)NULL;
}
rv->size = it->size;
nsslibc_memcpy(rv->data, it->data, it->size);
return rv;
}
/*
* nssOID_GetUTF8Encoding
*
* This routine returns a UTF8 string containing the dotted-number
* encoding of the specified NSSOID. If the optional arena argument
* is non-null, the memory used will be obtained from that arena;
* otherwise, the memory will be obtained from the heap. This routine
* may return null upon error, in which case it will have set an error
* on the error stack.
*
* The error may be one of the following values:
* NSS_ERROR_INVALID_OID
* NSS_ERROR_NO_MEMORY
*
* Return value:
* NULL upon error
* A pointer to a UTF8 string containing the dotted-digit encoding of
* this NSSOID
*/
NSS_EXTERN NSSUTF8 *
nssOID_GetUTF8Encoding
(
const NSSOID *oid,
NSSArena *arenaOpt
)
{
NSSUTF8 *rv;
PRUint8 *end;
PRUint8 *d;
PRUint8 *e;
char *a;
char *b;
PRUint32 len;
if( PR_SUCCESS != oid_init() ) {
return (NSSUTF8 *)NULL;
}
#ifdef NSSDEBUG
if( PR_SUCCESS != nssOID_verifyPointer(oid) ) {
return (NSSUTF8 *)NULL;
}
if( (NSSArena *)NULL != arenaOpt ) {
if( PR_SUCCESS != nssArena_verifyPointer(arenaOpt) ) {
return (NSSUTF8 *)NULL;
}
}
#endif /* NSSDEBUG */
a = (char *)NULL;
/* d will point to the next sequence of bytes to decode */
d = (PRUint8 *)oid->data.data;
/* end points to one past the legitimate data */
end = &d[ oid->data.size ];
#ifdef NSSDEBUG
/*
* Guarantee that the for(e=d;e<end;e++) loop below will
* terminate. Our BER sanity-checking code above will prevent
* such a BER from being registered, so the only other way one
* might show up is if our dotted-decimal encoder above screws
* up or our generated list is wrong. So I'll wrap it with
* #ifdef NSSDEBUG and #endif.
*/
if( end[-1] & 0x80 ) {
nss_SetError(NSS_ERROR_INTERNAL_ERROR);
return (NSSUTF8 *)NULL;
}
#endif /* NSSDEBUG */
/*
* Check for our pseudo-encoded single-digit OIDs
*/
if( (*d == 0x80) && (2 == oid->data.size) ) {
/* Funky encoding. The second byte is the number */
a = PR_smprintf("%lu", (PRUint32)d[1]);
if( (char *)NULL == a ) {
nss_SetError(NSS_ERROR_NO_MEMORY);
return (NSSUTF8 *)NULL;
}
goto done;
}
for( ; d < end; d = &e[1] ) {
for( e = d; e < end; e++ ) {
if( 0 == (*e & 0x80) ) {
break;
}
}
if( ((e-d) > 4) || (((e-d) == 4) && (*d & 0x70)) ) {
/* More than a 32-bit number */
} else {
PRUint32 n = 0;
switch( e-d ) {
case 4:
n |= ((PRUint32)(e[-4] & 0x0f)) << 28;
case 3:
n |= ((PRUint32)(e[-3] & 0x7f)) << 21;
case 2:
n |= ((PRUint32)(e[-2] & 0x7f)) << 14;
case 1:
n |= ((PRUint32)(e[-1] & 0x7f)) << 7;
case 0:
n |= ((PRUint32)(e[-0] & 0x7f)) ;
}
if( (char *)NULL == a ) {
/* This is the first number.. decompose it */
PRUint32 one = (n/40), two = (n%40);
a = PR_smprintf("%lu.%lu", one, two);
if( (char *)NULL == a ) {
nss_SetError(NSS_ERROR_NO_MEMORY);
return (NSSUTF8 *)NULL;
}
} else {
b = PR_smprintf("%s.%lu", a, n);
if( (char *)NULL == b ) {
PR_smprintf_free(a);
nss_SetError(NSS_ERROR_NO_MEMORY);
return (NSSUTF8 *)NULL;
}
PR_smprintf_free(a);
a = b;
}
}
}
done:
/*
* Even if arenaOpt is NULL, we have to copy the data so that
* it'll be freed with the right version of free: ours, not
* PR_smprintf_free's.
*/
len = PL_strlen(a);
rv = (NSSUTF8 *)nss_ZAlloc(arenaOpt, len);
if( (NSSUTF8 *)NULL == rv ) {
PR_smprintf_free(a);
return (NSSUTF8 *)NULL;
}
nsslibc_memcpy(rv, a, len);
PR_smprintf_free(a);
return rv;
}
/*
* nssOID_getExplanation
*
* This method is only present in debug builds.
*
* This routine will return a static pointer to a UTF8-encoded string
* describing (in English) the specified OID. The memory pointed to
* by the return value is not owned by the caller, and should not be
* freed or modified. Note that explanations are only provided for
* the OIDs built into the NSS library; there is no way to specify an
* explanation for dynamically created OIDs. This routine is intended
* only for use in debugging tools such as "derdump." This routine
* may return null upon error, in which case it will have placed an
* error on the error stack.
*
* The error may be one of the following values:
* NSS_ERROR_INVALID_NSSOID
*
* Return value:
* NULL upon error
* A static pointer to a readonly, non-caller-owned UTF8-encoded
* string explaining the specified OID.
*/
#ifdef DEBUG
NSS_EXTERN const NSSUTF8 *
nssOID_getExplanation
(
NSSOID *oid
)
{
if( PR_SUCCESS != oid_init() ) {
return (const NSSUTF8 *)NULL;
}
#ifdef NSSDEBUG
if( PR_SUCCESS != nssOID_verifyPointer(oid) ) {
return (NSSUTF8 *)NULL;
}
#endif /* NSSDEBUG */
return oid->expl;
}
extern const NSSError NSS_ERROR_INVALID_NSSOID;
#endif /* DEBUG */
/*
* nssOID_getTaggedUTF8
*
* This method is only present in debug builds.
*
* This routine will return a pointer to a caller-owned UTF8-encoded
* string containing a tagged encoding of the specified OID. Note
* that OID (component) tags are only provided for the OIDs built
* into the NSS library; there is no way to specify tags for
* dynamically created OIDs. This routine is intended for use in
* debugging tools such as "derdump." If the optional arena argument
* is non-null, the memory used will be obtained from that arena;
* otherwise, the memory will be obtained from the heap. This routine
* may return return null upon error, in which case it will have set
* an error on the error stack.
*
* The error may be one of the following values
* NSS_ERROR_INVALID_NSSOID
* NSS_ERROR_NO_MEMORY
*
* Return value:
* NULL upon error
* A pointer to a UTF8 string containing the tagged encoding of
* this NSSOID
*/
#ifdef DEBUG
NSS_EXTERN NSSUTF8 *
nssOID_getTaggedUTF8
(
NSSOID *oid,
NSSArena *arenaOpt
)
{
NSSUTF8 *rv;
char *raw;
char *c;
char *a = (char *)NULL;
char *b;
PRBool done = PR_FALSE;
PRUint32 len;
if( PR_SUCCESS != oid_init() ) {
return (NSSUTF8 *)NULL;
}
#ifdef NSSDEBUG
if( PR_SUCCESS != nssOID_verifyPointer(oid) ) {
return (NSSUTF8 *)NULL;
}
if( (NSSArena *)NULL != arenaOpt ) {
if( PR_SUCCESS != nssArena_verifyPointer(arenaOpt) ) {
return (NSSUTF8 *)NULL;
}
}
#endif /* NSSDEBUG */
a = PR_smprintf("{");
if( (char *)NULL == a ) {
nss_SetError(NSS_ERROR_NO_MEMORY);
return (NSSUTF8 *)NULL;
}
/*
* What I'm doing here is getting the text version of the OID,
* e.g. 1.2.12.92, then looking up each set of leading numbers
* as oids.. e.g. "1," then "1.2," then "1.2.12," etc. Each of
* those will have the leaf tag, and I just build up the string.
* I never said this was the most efficient way of doing it,
* but hey it's a debug-build thing, and I'm getting really tired
* of writing this stupid low-level PKI code.
*/
/* I know it's all ASCII, so I can use char */
raw = (char *)nssOID_GetUTF8Encoding(oid, (NSSArena *)NULL);
if( (char *)NULL == raw ) {
return (NSSUTF8 *)NULL;
}
for( c = raw; !done; c++ ) {
NSSOID *lead;
char *lastdot;
for( ; '.' != *c; c++ ) {
if( '\0' == *c ) {
done = PR_TRUE;
break;
}
}
*c = '\0';
lead = nssOID_CreateFromUTF8((NSSUTF8 *)raw);
if( (NSSOID *)NULL == lead ) {
PR_smprintf_free(a);
nss_ZFreeIf(raw);
nss_SetError(NSS_ERROR_NO_MEMORY);
return (NSSUTF8 *)NULL;
}
lastdot = PL_strrchr(raw, '.');
if( (char *)NULL == lastdot ) {
lastdot = raw;
}
b = PR_smprintf("%s %s(%s) ", a, lead->tag, &lastdot[1]);
if( (char *)NULL == b ) {
PR_smprintf_free(a);
nss_ZFreeIf(raw);
/* drop the OID reference on the floor */
nss_SetError(NSS_ERROR_NO_MEMORY);
return (NSSUTF8 *)NULL;
}
PR_smprintf_free(a);
a = b;
if( !done ) {
*c = '.';
}
}
nss_ZFreeIf(raw);
b = PR_smprintf("%s }", a);
if( (char *)NULL == b ) {
PR_smprintf_free(a);
nss_SetError(NSS_ERROR_NO_MEMORY);
return (NSSUTF8 *)NULL;
}
len = PL_strlen(b);
rv = (NSSUTF8 *)nss_ZAlloc(arenaOpt, len+1);
if( (NSSUTF8 *)NULL == rv ) {
PR_smprintf_free(b);
return (NSSUTF8 *)NULL;
}
nsslibc_memcpy(rv, b, len);
PR_smprintf_free(b);
return rv;
}
extern const NSSError NSS_ERROR_INVALID_NSSOID;
extern const NSSError NSS_ERROR_NO_MEMORY;
#endif /* DEBUG */