Stirling-PDF/src/main/java/stirling/software/SPDF/controller/api/misc/FakeScanControllerWIP.java

325 lines
12 KiB
Java

package stirling.software.SPDF.controller.api.misc;
import java.awt.AlphaComposite;
import java.awt.BasicStroke;
import java.awt.Color;
import java.awt.GradientPaint;
import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.geom.AffineTransform;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Path2D;
import java.awt.image.AffineTransformOp;
import java.awt.image.BufferedImage;
import java.awt.image.BufferedImageOp;
import java.awt.image.ConvolveOp;
import java.awt.image.Kernel;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.security.SecureRandom;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import org.apache.pdfbox.Loader;
import org.apache.pdfbox.pdmodel.PDDocument;
import org.apache.pdfbox.pdmodel.graphics.image.JPEGFactory;
import org.apache.pdfbox.pdmodel.graphics.image.PDImageXObject;
import org.apache.pdfbox.rendering.ImageType;
import org.apache.pdfbox.rendering.PDFRenderer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.multipart.MultipartFile;
import io.github.pixee.security.Filenames;
import io.swagger.v3.oas.annotations.Hidden;
import io.swagger.v3.oas.annotations.Operation;
import io.swagger.v3.oas.annotations.tags.Tag;
import stirling.software.SPDF.model.api.PDFFile;
import stirling.software.SPDF.utils.PdfUtils;
import stirling.software.SPDF.utils.WebResponseUtils;
@RestController
@RequestMapping("/api/v1/misc")
@Tag(name = "Misc", description = "Miscellaneous APIs")
public class FakeScanControllerWIP {
private static final Logger logger = LoggerFactory.getLogger(FakeScanControllerWIP.class);
// TODO finish
@PostMapping(consumes = "multipart/form-data", value = "/fake-scan")
@Hidden
@Operation(
summary = "Repair a PDF file",
description =
"This endpoint repairs a given PDF file by running Ghostscript command. The PDF is first saved to a temporary location, repaired, read back, and then returned as a response.")
public ResponseEntity<byte[]> fakeScan(@ModelAttribute PDFFile request) throws IOException {
MultipartFile inputFile = request.getFileInput();
// Load the PDF document
PDDocument document = Loader.loadPDF(inputFile.getBytes());
PDFRenderer renderer = new PDFRenderer(document);
List<BufferedImage> images = new ArrayList<>();
// Convert each page to an image
for (int i = 0; i < document.getNumberOfPages(); i++) {
BufferedImage image = renderer.renderImageWithDPI(i, 150, ImageType.GRAY);
images.add(processImage(image));
}
document.close();
// Create a new PDF document with the processed images
ByteArrayOutputStream baos = new ByteArrayOutputStream();
PDDocument newDocument = new PDDocument();
for (BufferedImage img : images) {
// PDPageContentStream contentStream = new PDPageContentStream(newDocument, new
// PDPage());
PDImageXObject pdImage = JPEGFactory.createFromImage(newDocument, img);
PdfUtils.addImageToDocument(newDocument, pdImage, "maintainAspectRatio", false);
}
newDocument.save(baos);
newDocument.close();
// Return the optimized PDF as a response
String outputFilename =
Filenames.toSimpleFileName(inputFile.getOriginalFilename())
.replaceFirst("[.][^.]+$", "")
+ "_scanned.pdf";
return WebResponseUtils.boasToWebResponse(baos, outputFilename);
}
public BufferedImage processImage(BufferedImage image) {
// Rotation
image = softenEdges(image, 50);
image = rotate(image, 1);
image = applyGaussianBlur(image, 0.5);
addGaussianNoise(image, 0.5);
image = linearStretch(image);
addDustAndHairs(image, 3);
return image;
}
private BufferedImage rotate(BufferedImage image, double rotation) {
double rotationRequired = Math.toRadians(rotation);
double locationX = image.getWidth() / 2;
double locationY = image.getHeight() / 2;
AffineTransform tx =
AffineTransform.getRotateInstance(rotationRequired, locationX, locationY);
AffineTransformOp op = new AffineTransformOp(tx, AffineTransformOp.TYPE_BICUBIC);
return op.filter(image, null);
}
private BufferedImage applyGaussianBlur(BufferedImage image, double sigma) {
int radius = 3; // Fixed radius size for simplicity
int size = 2 * radius + 1;
float[] data = new float[size * size];
double sum = 0.0;
for (int i = -radius; i <= radius; i++) {
for (int j = -radius; j <= radius; j++) {
double xDistance = i * i;
double yDistance = j * j;
double g = Math.exp(-(xDistance + yDistance) / (2 * sigma * sigma));
data[(i + radius) * size + j + radius] = (float) g;
sum += g;
}
}
// Normalize the kernel
for (int i = 0; i < data.length; i++) {
data[i] /= sum;
}
Kernel kernel = new Kernel(size, size, data);
BufferedImageOp op = new ConvolveOp(kernel, ConvolveOp.EDGE_NO_OP, null);
return op.filter(image, null);
}
public BufferedImage softenEdges(BufferedImage image, int featherRadius) {
int width = image.getWidth();
int height = image.getHeight();
BufferedImage output = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
Graphics2D g2 = output.createGraphics();
g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
g2.setRenderingHint(RenderingHints.KEY_RENDERING, RenderingHints.VALUE_RENDER_QUALITY);
g2.setRenderingHint(
RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BICUBIC);
g2.drawImage(image, 0, 0, null);
g2.setComposite(AlphaComposite.DstIn);
// Top edge
g2.setPaint(
new GradientPaint(
0,
0,
new Color(0, 0, 0, 1f),
0,
featherRadius * 2,
new Color(0, 0, 0, 0f)));
g2.fillRect(0, 0, width, featherRadius);
// Bottom edge
g2.setPaint(
new GradientPaint(
0,
height - featherRadius * 2,
new Color(0, 0, 0, 0f),
0,
height,
new Color(0, 0, 0, 1f)));
g2.fillRect(0, height - featherRadius, width, featherRadius);
// Left edge
g2.setPaint(
new GradientPaint(
0,
0,
new Color(0, 0, 0, 1f),
featherRadius * 2,
0,
new Color(0, 0, 0, 0f)));
g2.fillRect(0, 0, featherRadius, height);
// Right edge
g2.setPaint(
new GradientPaint(
width - featherRadius * 2,
0,
new Color(0, 0, 0, 0f),
width,
0,
new Color(0, 0, 0, 1f)));
g2.fillRect(width - featherRadius, 0, featherRadius, height);
g2.dispose();
return output;
}
private void addDustAndHairs(BufferedImage image, float intensity) {
int width = image.getWidth();
int height = image.getHeight();
Graphics2D g2d = image.createGraphics();
Random random = new SecureRandom();
// Set rendering hints for better quality
g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
// Calculate the number of artifacts based on intensity
int numSpots = (int) (intensity * 10);
int numHairs = (int) (intensity * 20);
// Add spots with more variable sizes
g2d.setColor(new Color(100, 100, 100, 50)); // Semi-transparent gray
for (int i = 0; i < numSpots; i++) {
int x = random.nextInt(width);
int y = random.nextInt(height);
int ovalSize = 1 + random.nextInt(3); // Base size + variable component
if (random.nextFloat() > 0.9) {
// 10% chance to get a larger spot
ovalSize += random.nextInt(3);
}
g2d.fill(new Ellipse2D.Double(x, y, ovalSize, ovalSize));
}
// Add hairs
g2d.setStroke(new BasicStroke(0.5f)); // Thin stroke for hairs
g2d.setColor(new Color(80, 80, 80, 40)); // Slightly lighter and more transparent
for (int i = 0; i < numHairs; i++) {
int x1 = random.nextInt(width);
int y1 = random.nextInt(height);
int x2 = x1 + random.nextInt(20) - 10; // Random length and direction
int y2 = y1 + random.nextInt(20) - 10;
Path2D.Double hair = new Path2D.Double();
hair.moveTo(x1, y1);
hair.curveTo(x1, y1, (x1 + x2) / 2, (y1 + y2) / 2, x2, y2);
g2d.draw(hair);
}
g2d.dispose();
}
private void addGaussianNoise(BufferedImage image, double strength) {
Random rand = new SecureRandom();
int width = image.getWidth();
int height = image.getHeight();
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
int rgba = image.getRGB(i, j);
int alpha = (rgba >> 24) & 0xff;
int red = (rgba >> 16) & 0xff;
int green = (rgba >> 8) & 0xff;
int blue = rgba & 0xff;
// Apply Gaussian noise
red = (int) (red + rand.nextGaussian() * strength);
green = (int) (green + rand.nextGaussian() * strength);
blue = (int) (blue + rand.nextGaussian() * strength);
// Clamping values to the 0-255 range
red = Math.min(Math.max(0, red), 255);
green = Math.min(Math.max(0, green), 255);
blue = Math.min(Math.max(0, blue), 255);
image.setRGB(i, j, (alpha << 24) | (red << 16) | (green << 8) | blue);
}
}
}
public BufferedImage linearStretch(BufferedImage image) {
int width = image.getWidth();
int height = image.getHeight();
int min = 255;
int max = 0;
// First pass: find the min and max grayscale values
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int rgb = image.getRGB(x, y);
int gray =
(int)
(((rgb >> 16) & 0xff) * 0.299
+ ((rgb >> 8) & 0xff) * 0.587
+ (rgb & 0xff) * 0.114); // Convert to grayscale
if (gray < min) min = gray;
if (gray > max) max = gray;
}
}
// Second pass: stretch the histogram
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int rgb = image.getRGB(x, y);
int alpha = (rgb >> 24) & 0xff;
int red = (rgb >> 16) & 0xff;
int green = (rgb >> 8) & 0xff;
int blue = rgb & 0xff;
// Apply linear stretch to each channel
red = (int) (((red - min) / (float) (max - min)) * 255);
green = (int) (((green - min) / (float) (max - min)) * 255);
blue = (int) (((blue - min) / (float) (max - min)) * 255);
// Set new RGB value maintaining the alpha channel
rgb = (alpha << 24) | (red << 16) | (green << 8) | blue;
image.setRGB(x, y, rgb);
}
}
return image;
}
}