mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-14 18:40:11 +01:00
208 lines
5.9 KiB
JavaScript
208 lines
5.9 KiB
JavaScript
|
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
||
|
const { chatPrompt } = require("../../chats");
|
||
|
const { handleDefaultStreamResponse } = require("../../helpers/chat/responses");
|
||
|
|
||
|
class GroqLLM {
|
||
|
constructor(embedder = null, modelPreference = null) {
|
||
|
const { Configuration, OpenAIApi } = require("openai");
|
||
|
if (!process.env.GROQ_API_KEY) throw new Error("No Groq API key was set.");
|
||
|
|
||
|
const config = new Configuration({
|
||
|
basePath: "https://api.groq.com/openai/v1",
|
||
|
apiKey: process.env.GROQ_API_KEY,
|
||
|
});
|
||
|
|
||
|
this.openai = new OpenAIApi(config);
|
||
|
this.model =
|
||
|
modelPreference || process.env.GROQ_MODEL_PREF || "llama2-70b-4096";
|
||
|
this.limits = {
|
||
|
history: this.promptWindowLimit() * 0.15,
|
||
|
system: this.promptWindowLimit() * 0.15,
|
||
|
user: this.promptWindowLimit() * 0.7,
|
||
|
};
|
||
|
|
||
|
this.embedder = !embedder ? new NativeEmbedder() : embedder;
|
||
|
this.defaultTemp = 0.7;
|
||
|
}
|
||
|
|
||
|
#appendContext(contextTexts = []) {
|
||
|
if (!contextTexts || !contextTexts.length) return "";
|
||
|
return (
|
||
|
"\nContext:\n" +
|
||
|
contextTexts
|
||
|
.map((text, i) => {
|
||
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
||
|
})
|
||
|
.join("")
|
||
|
);
|
||
|
}
|
||
|
|
||
|
streamingEnabled() {
|
||
|
return "streamChat" in this && "streamGetChatCompletion" in this;
|
||
|
}
|
||
|
|
||
|
promptWindowLimit() {
|
||
|
switch (this.model) {
|
||
|
case "llama2-70b-4096":
|
||
|
return 4096;
|
||
|
case "mixtral-8x7b-32768":
|
||
|
return 32_768;
|
||
|
default:
|
||
|
return 4096;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
async isValidChatCompletionModel(modelName = "") {
|
||
|
const validModels = ["llama2-70b-4096", "mixtral-8x7b-32768"];
|
||
|
const isPreset = validModels.some((model) => modelName === model);
|
||
|
if (isPreset) return true;
|
||
|
|
||
|
const model = await this.openai
|
||
|
.retrieveModel(modelName)
|
||
|
.then((res) => res.data)
|
||
|
.catch(() => null);
|
||
|
return !!model;
|
||
|
}
|
||
|
|
||
|
constructPrompt({
|
||
|
systemPrompt = "",
|
||
|
contextTexts = [],
|
||
|
chatHistory = [],
|
||
|
userPrompt = "",
|
||
|
}) {
|
||
|
const prompt = {
|
||
|
role: "system",
|
||
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
||
|
};
|
||
|
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
|
||
|
}
|
||
|
|
||
|
async isSafe(_input = "") {
|
||
|
// Not implemented so must be stubbed
|
||
|
return { safe: true, reasons: [] };
|
||
|
}
|
||
|
|
||
|
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
|
||
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
||
|
throw new Error(
|
||
|
`Groq chat: ${this.model} is not valid for chat completion!`
|
||
|
);
|
||
|
|
||
|
const textResponse = await this.openai
|
||
|
.createChatCompletion({
|
||
|
model: this.model,
|
||
|
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
|
||
|
n: 1,
|
||
|
messages: await this.compressMessages(
|
||
|
{
|
||
|
systemPrompt: chatPrompt(workspace),
|
||
|
userPrompt: prompt,
|
||
|
chatHistory,
|
||
|
},
|
||
|
rawHistory
|
||
|
),
|
||
|
})
|
||
|
.then((json) => {
|
||
|
const res = json.data;
|
||
|
if (!res.hasOwnProperty("choices"))
|
||
|
throw new Error("GroqAI chat: No results!");
|
||
|
if (res.choices.length === 0)
|
||
|
throw new Error("GroqAI chat: No results length!");
|
||
|
return res.choices[0].message.content;
|
||
|
})
|
||
|
.catch((error) => {
|
||
|
throw new Error(
|
||
|
`GroqAI::createChatCompletion failed with: ${error.message}`
|
||
|
);
|
||
|
});
|
||
|
|
||
|
return textResponse;
|
||
|
}
|
||
|
|
||
|
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
|
||
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
||
|
throw new Error(
|
||
|
`GroqAI:streamChat: ${this.model} is not valid for chat completion!`
|
||
|
);
|
||
|
|
||
|
const streamRequest = await this.openai.createChatCompletion(
|
||
|
{
|
||
|
model: this.model,
|
||
|
stream: true,
|
||
|
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
|
||
|
n: 1,
|
||
|
messages: await this.compressMessages(
|
||
|
{
|
||
|
systemPrompt: chatPrompt(workspace),
|
||
|
userPrompt: prompt,
|
||
|
chatHistory,
|
||
|
},
|
||
|
rawHistory
|
||
|
),
|
||
|
},
|
||
|
{ responseType: "stream" }
|
||
|
);
|
||
|
return streamRequest;
|
||
|
}
|
||
|
|
||
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
||
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
||
|
throw new Error(
|
||
|
`GroqAI:chatCompletion: ${this.model} is not valid for chat completion!`
|
||
|
);
|
||
|
|
||
|
const { data } = await this.openai
|
||
|
.createChatCompletion({
|
||
|
model: this.model,
|
||
|
messages,
|
||
|
temperature,
|
||
|
})
|
||
|
.catch((e) => {
|
||
|
throw new Error(e.response.data.error.message);
|
||
|
});
|
||
|
|
||
|
if (!data.hasOwnProperty("choices")) return null;
|
||
|
return data.choices[0].message.content;
|
||
|
}
|
||
|
|
||
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
||
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
||
|
throw new Error(
|
||
|
`GroqAI:streamChatCompletion: ${this.model} is not valid for chat completion!`
|
||
|
);
|
||
|
|
||
|
const streamRequest = await this.openai.createChatCompletion(
|
||
|
{
|
||
|
model: this.model,
|
||
|
stream: true,
|
||
|
messages,
|
||
|
temperature,
|
||
|
},
|
||
|
{ responseType: "stream" }
|
||
|
);
|
||
|
return streamRequest;
|
||
|
}
|
||
|
|
||
|
handleStream(response, stream, responseProps) {
|
||
|
return handleDefaultStreamResponse(response, stream, responseProps);
|
||
|
}
|
||
|
|
||
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
||
|
async embedTextInput(textInput) {
|
||
|
return await this.embedder.embedTextInput(textInput);
|
||
|
}
|
||
|
async embedChunks(textChunks = []) {
|
||
|
return await this.embedder.embedChunks(textChunks);
|
||
|
}
|
||
|
|
||
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
||
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
||
|
const messageArray = this.constructPrompt(promptArgs);
|
||
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
module.exports = {
|
||
|
GroqLLM,
|
||
|
};
|