2024-01-26 22:07:53 +01:00
|
|
|
const { AstraDB: AstraClient } = require("@datastax/astra-db-ts");
|
2024-04-07 01:38:07 +02:00
|
|
|
const { TextSplitter } = require("../../TextSplitter");
|
2024-04-07 23:40:23 +02:00
|
|
|
const { SystemSettings } = require("../../../models/systemSettings");
|
2024-01-26 22:07:53 +01:00
|
|
|
const { storeVectorResult, cachedVectorInformation } = require("../../files");
|
|
|
|
const { v4: uuidv4 } = require("uuid");
|
2024-05-17 02:51:04 +02:00
|
|
|
const { toChunks, getEmbeddingEngineSelection } = require("../../helpers");
|
2024-04-18 03:04:39 +02:00
|
|
|
const { sourceIdentifier } = require("../../chats");
|
2024-01-26 22:07:53 +01:00
|
|
|
|
|
|
|
const AstraDB = {
|
|
|
|
name: "AstraDB",
|
|
|
|
connect: async function () {
|
|
|
|
if (process.env.VECTOR_DB !== "astra")
|
|
|
|
throw new Error("AstraDB::Invalid ENV settings");
|
|
|
|
|
|
|
|
const client = new AstraClient(
|
|
|
|
process?.env?.ASTRA_DB_APPLICATION_TOKEN,
|
|
|
|
process?.env?.ASTRA_DB_ENDPOINT
|
|
|
|
);
|
|
|
|
return { client };
|
|
|
|
},
|
|
|
|
heartbeat: async function () {
|
|
|
|
return { heartbeat: Number(new Date()) };
|
|
|
|
},
|
|
|
|
// Astra interface will return a valid collection object even if the collection
|
|
|
|
// does not actually exist. So we run a simple check which will always throw
|
|
|
|
// when the table truly does not exist. Faster than iterating all collections.
|
|
|
|
isRealCollection: async function (astraCollection = null) {
|
|
|
|
if (!astraCollection) return false;
|
|
|
|
return await astraCollection
|
|
|
|
.countDocuments()
|
|
|
|
.then(() => true)
|
|
|
|
.catch(() => false);
|
|
|
|
},
|
|
|
|
totalVectors: async function () {
|
|
|
|
const { client } = await this.connect();
|
|
|
|
const collectionNames = await this.allNamespaces(client);
|
|
|
|
var totalVectors = 0;
|
|
|
|
for (const name of collectionNames) {
|
|
|
|
const collection = await client.collection(name).catch(() => null);
|
|
|
|
const count = await collection.countDocuments().catch(() => 0);
|
|
|
|
totalVectors += count ? count : 0;
|
|
|
|
}
|
|
|
|
return totalVectors;
|
|
|
|
},
|
|
|
|
namespaceCount: async function (_namespace = null) {
|
|
|
|
const { client } = await this.connect();
|
|
|
|
const namespace = await this.namespace(client, _namespace);
|
|
|
|
return namespace?.vectorCount || 0;
|
|
|
|
},
|
|
|
|
namespace: async function (client, namespace = null) {
|
|
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
|
|
const collection = await client.collection(namespace).catch(() => null);
|
|
|
|
if (!(await this.isRealCollection(collection))) return null;
|
|
|
|
|
|
|
|
const count = await collection.countDocuments().catch((e) => {
|
|
|
|
console.error("Astra::namespaceExists", e.message);
|
|
|
|
return null;
|
|
|
|
});
|
|
|
|
|
|
|
|
return {
|
|
|
|
name: namespace,
|
|
|
|
...collection,
|
|
|
|
vectorCount: typeof count === "number" ? count : 0,
|
|
|
|
};
|
|
|
|
},
|
|
|
|
hasNamespace: async function (namespace = null) {
|
|
|
|
if (!namespace) return false;
|
|
|
|
const { client } = await this.connect();
|
|
|
|
return await this.namespaceExists(client, namespace);
|
|
|
|
},
|
|
|
|
namespaceExists: async function (client, namespace = null) {
|
|
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
|
|
const collection = await client.collection(namespace);
|
|
|
|
return await this.isRealCollection(collection);
|
|
|
|
},
|
|
|
|
deleteVectorsInNamespace: async function (client, namespace = null) {
|
|
|
|
await client.dropCollection(namespace);
|
|
|
|
return true;
|
|
|
|
},
|
|
|
|
// AstraDB requires a dimension aspect for collection creation
|
|
|
|
// we pass this in from the first chunk to infer the dimensions like other
|
|
|
|
// providers do.
|
|
|
|
getOrCreateCollection: async function (client, namespace, dimensions = null) {
|
|
|
|
const isExists = await this.namespaceExists(client, namespace);
|
|
|
|
if (!isExists) {
|
|
|
|
if (!dimensions)
|
|
|
|
throw new Error(
|
|
|
|
`AstraDB:getOrCreateCollection Unable to infer vector dimension from input. Open an issue on Github for support.`
|
|
|
|
);
|
|
|
|
|
|
|
|
await client.createCollection(namespace, {
|
|
|
|
vector: {
|
|
|
|
dimension: dimensions,
|
|
|
|
metric: "cosine",
|
|
|
|
},
|
|
|
|
});
|
|
|
|
}
|
|
|
|
return await client.collection(namespace);
|
|
|
|
},
|
|
|
|
addDocumentToNamespace: async function (
|
|
|
|
namespace,
|
|
|
|
documentData = {},
|
2024-06-21 22:38:50 +02:00
|
|
|
fullFilePath = null,
|
|
|
|
skipCache = false
|
2024-01-26 22:07:53 +01:00
|
|
|
) {
|
|
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
|
|
try {
|
|
|
|
let vectorDimension = null;
|
|
|
|
const { pageContent, docId, ...metadata } = documentData;
|
|
|
|
if (!pageContent || pageContent.length == 0) return false;
|
|
|
|
|
|
|
|
console.log("Adding new vectorized document into namespace", namespace);
|
2024-06-21 22:38:50 +02:00
|
|
|
if (!skipCache) {
|
|
|
|
const cacheResult = await cachedVectorInformation(fullFilePath);
|
|
|
|
if (cacheResult.exists) {
|
|
|
|
const { client } = await this.connect();
|
|
|
|
const { chunks } = cacheResult;
|
|
|
|
const documentVectors = [];
|
|
|
|
vectorDimension = chunks[0][0].values.length || null;
|
2024-01-26 22:07:53 +01:00
|
|
|
|
2024-06-21 22:38:50 +02:00
|
|
|
const collection = await this.getOrCreateCollection(
|
|
|
|
client,
|
2024-01-26 22:07:53 +01:00
|
|
|
namespace,
|
2024-06-21 22:38:50 +02:00
|
|
|
vectorDimension
|
|
|
|
);
|
|
|
|
if (!(await this.isRealCollection(collection)))
|
|
|
|
throw new Error("Failed to create new AstraDB collection!", {
|
|
|
|
namespace,
|
|
|
|
});
|
2024-01-26 22:07:53 +01:00
|
|
|
|
2024-06-21 22:38:50 +02:00
|
|
|
for (const chunk of chunks) {
|
|
|
|
// Before sending to Astra and saving the records to our db
|
|
|
|
// we need to assign the id of each chunk that is stored in the cached file.
|
|
|
|
const newChunks = chunk.map((chunk) => {
|
|
|
|
const _id = uuidv4();
|
|
|
|
documentVectors.push({ docId, vectorId: _id });
|
|
|
|
return {
|
|
|
|
_id: _id,
|
|
|
|
$vector: chunk.values,
|
|
|
|
metadata: chunk.metadata || {},
|
|
|
|
};
|
|
|
|
});
|
2024-01-26 22:07:53 +01:00
|
|
|
|
2024-06-21 22:38:50 +02:00
|
|
|
await collection.insertMany(newChunks);
|
|
|
|
}
|
|
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
|
|
return { vectorized: true, error: null };
|
2024-01-26 22:07:53 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-05-17 02:51:04 +02:00
|
|
|
const EmbedderEngine = getEmbeddingEngineSelection();
|
2024-04-07 01:38:07 +02:00
|
|
|
const textSplitter = new TextSplitter({
|
|
|
|
chunkSize: TextSplitter.determineMaxChunkSize(
|
|
|
|
await SystemSettings.getValueOrFallback({
|
|
|
|
label: "text_splitter_chunk_size",
|
|
|
|
}),
|
2024-05-17 02:51:04 +02:00
|
|
|
EmbedderEngine?.embeddingMaxChunkLength
|
2024-04-07 01:38:07 +02:00
|
|
|
),
|
|
|
|
chunkOverlap: await SystemSettings.getValueOrFallback(
|
|
|
|
{ label: "text_splitter_chunk_overlap" },
|
|
|
|
20
|
|
|
|
),
|
2024-11-04 20:47:46 +01:00
|
|
|
chunkHeaderMeta: TextSplitter.buildHeaderMeta(metadata),
|
2024-01-26 22:07:53 +01:00
|
|
|
});
|
|
|
|
const textChunks = await textSplitter.splitText(pageContent);
|
|
|
|
|
|
|
|
console.log("Chunks created from document:", textChunks.length);
|
|
|
|
const documentVectors = [];
|
|
|
|
const vectors = [];
|
2024-05-17 02:51:04 +02:00
|
|
|
const vectorValues = await EmbedderEngine.embedChunks(textChunks);
|
2024-01-26 22:07:53 +01:00
|
|
|
|
|
|
|
if (!!vectorValues && vectorValues.length > 0) {
|
|
|
|
for (const [i, vector] of vectorValues.entries()) {
|
|
|
|
if (!vectorDimension) vectorDimension = vector.length;
|
|
|
|
const vectorRecord = {
|
|
|
|
_id: uuidv4(),
|
|
|
|
$vector: vector,
|
|
|
|
metadata: { ...metadata, text: textChunks[i] },
|
|
|
|
};
|
|
|
|
|
|
|
|
vectors.push(vectorRecord);
|
|
|
|
documentVectors.push({ docId, vectorId: vectorRecord._id });
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
throw new Error(
|
|
|
|
"Could not embed document chunks! This document will not be recorded."
|
|
|
|
);
|
|
|
|
}
|
|
|
|
const { client } = await this.connect();
|
|
|
|
const collection = await this.getOrCreateCollection(
|
|
|
|
client,
|
|
|
|
namespace,
|
|
|
|
vectorDimension
|
|
|
|
);
|
|
|
|
if (!(await this.isRealCollection(collection)))
|
|
|
|
throw new Error("Failed to create new AstraDB collection!", {
|
|
|
|
namespace,
|
|
|
|
});
|
|
|
|
|
|
|
|
if (vectors.length > 0) {
|
|
|
|
const chunks = [];
|
|
|
|
|
|
|
|
console.log("Inserting vectorized chunks into Astra DB.");
|
|
|
|
|
|
|
|
// AstraDB has maximum upsert size of 20 records per-request so we have to use a lower chunk size here
|
|
|
|
// in order to do the queries - this takes a lot more time than other providers but there
|
|
|
|
// is no way around it. This will save the vector-cache with the same layout, so we don't
|
|
|
|
// have to chunk again for cached files.
|
|
|
|
for (const chunk of toChunks(vectors, 20)) {
|
|
|
|
chunks.push(
|
|
|
|
chunk.map((c) => {
|
|
|
|
return { id: c._id, values: c.$vector, metadata: c.metadata };
|
|
|
|
})
|
|
|
|
);
|
|
|
|
await collection.insertMany(chunk);
|
|
|
|
}
|
|
|
|
await storeVectorResult(chunks, fullFilePath);
|
|
|
|
}
|
|
|
|
|
|
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
|
|
return { vectorized: true, error: null };
|
|
|
|
} catch (e) {
|
|
|
|
console.error("addDocumentToNamespace", e.message);
|
|
|
|
return { vectorized: false, error: e.message };
|
|
|
|
}
|
|
|
|
},
|
|
|
|
deleteDocumentFromNamespace: async function (namespace, docId) {
|
|
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
|
|
const { client } = await this.connect();
|
|
|
|
if (!(await this.namespaceExists(client, namespace)))
|
|
|
|
throw new Error(
|
|
|
|
"Invalid namespace - has it been collected and populated yet?"
|
|
|
|
);
|
|
|
|
const collection = await client.collection(namespace);
|
|
|
|
|
|
|
|
const knownDocuments = await DocumentVectors.where({ docId });
|
|
|
|
if (knownDocuments.length === 0) return;
|
|
|
|
|
|
|
|
const vectorIds = knownDocuments.map((doc) => doc.vectorId);
|
|
|
|
for (const id of vectorIds) {
|
|
|
|
await collection.deleteMany({
|
|
|
|
_id: id,
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
const indexes = knownDocuments.map((doc) => doc.id);
|
|
|
|
await DocumentVectors.deleteIds(indexes);
|
|
|
|
return true;
|
|
|
|
},
|
|
|
|
performSimilaritySearch: async function ({
|
|
|
|
namespace = null,
|
|
|
|
input = "",
|
|
|
|
LLMConnector = null,
|
|
|
|
similarityThreshold = 0.25,
|
|
|
|
topN = 4,
|
2024-04-18 03:04:39 +02:00
|
|
|
filterIdentifiers = [],
|
2024-01-26 22:07:53 +01:00
|
|
|
}) {
|
|
|
|
if (!namespace || !input || !LLMConnector)
|
|
|
|
throw new Error("Invalid request to performSimilaritySearch.");
|
|
|
|
|
|
|
|
const { client } = await this.connect();
|
|
|
|
if (!(await this.namespaceExists(client, namespace))) {
|
|
|
|
return {
|
|
|
|
contextTexts: [],
|
|
|
|
sources: [],
|
|
|
|
message:
|
|
|
|
"Invalid query - no namespace found for workspace in vector db!",
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
const queryVector = await LLMConnector.embedTextInput(input);
|
|
|
|
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
|
|
|
client,
|
|
|
|
namespace,
|
|
|
|
queryVector,
|
|
|
|
similarityThreshold,
|
2024-04-18 03:04:39 +02:00
|
|
|
topN,
|
|
|
|
filterIdentifiers
|
2024-01-26 22:07:53 +01:00
|
|
|
);
|
|
|
|
|
|
|
|
const sources = sourceDocuments.map((metadata, i) => {
|
|
|
|
return { ...metadata, text: contextTexts[i] };
|
|
|
|
});
|
|
|
|
return {
|
|
|
|
contextTexts,
|
|
|
|
sources: this.curateSources(sources),
|
|
|
|
message: false,
|
|
|
|
};
|
|
|
|
},
|
|
|
|
similarityResponse: async function (
|
|
|
|
client,
|
|
|
|
namespace,
|
|
|
|
queryVector,
|
|
|
|
similarityThreshold = 0.25,
|
2024-04-18 03:04:39 +02:00
|
|
|
topN = 4,
|
|
|
|
filterIdentifiers = []
|
2024-01-26 22:07:53 +01:00
|
|
|
) {
|
|
|
|
const result = {
|
|
|
|
contextTexts: [],
|
|
|
|
sourceDocuments: [],
|
|
|
|
scores: [],
|
|
|
|
};
|
|
|
|
|
|
|
|
const collection = await client.collection(namespace);
|
|
|
|
const responses = await collection
|
|
|
|
.find(
|
|
|
|
{},
|
|
|
|
{
|
|
|
|
sort: { $vector: queryVector },
|
|
|
|
limit: topN,
|
|
|
|
includeSimilarity: true,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
.toArray();
|
|
|
|
|
|
|
|
responses.forEach((response) => {
|
|
|
|
if (response.$similarity < similarityThreshold) return;
|
2024-04-18 03:04:39 +02:00
|
|
|
if (filterIdentifiers.includes(sourceIdentifier(response.metadata))) {
|
|
|
|
console.log(
|
|
|
|
"AstraDB: A source was filtered from context as it's parent document is pinned."
|
|
|
|
);
|
|
|
|
return;
|
|
|
|
}
|
2024-01-26 22:07:53 +01:00
|
|
|
result.contextTexts.push(response.metadata.text);
|
|
|
|
result.sourceDocuments.push(response);
|
|
|
|
result.scores.push(response.$similarity);
|
|
|
|
});
|
|
|
|
return result;
|
|
|
|
},
|
|
|
|
allNamespaces: async function (client) {
|
|
|
|
try {
|
|
|
|
let header = new Headers();
|
|
|
|
header.append("Token", client?.httpClient?.applicationToken);
|
|
|
|
header.append("Content-Type", "application/json");
|
|
|
|
|
|
|
|
let raw = JSON.stringify({
|
|
|
|
findCollections: {},
|
|
|
|
});
|
|
|
|
|
|
|
|
let requestOptions = {
|
|
|
|
method: "POST",
|
|
|
|
headers: header,
|
|
|
|
body: raw,
|
|
|
|
redirect: "follow",
|
|
|
|
};
|
|
|
|
|
|
|
|
const call = await fetch(client?.httpClient?.baseUrl, requestOptions);
|
|
|
|
const resp = await call?.text();
|
|
|
|
const collections = resp ? JSON.parse(resp)?.status?.collections : [];
|
|
|
|
return collections;
|
|
|
|
} catch (e) {
|
|
|
|
console.error("Astra::AllNamespace", e);
|
|
|
|
return [];
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"namespace-stats": async function (reqBody = {}) {
|
|
|
|
const { namespace = null } = reqBody;
|
|
|
|
if (!namespace) throw new Error("namespace required");
|
|
|
|
const { client } = await this.connect();
|
|
|
|
if (!(await this.namespaceExists(client, namespace)))
|
|
|
|
throw new Error("Namespace by that name does not exist.");
|
|
|
|
const stats = await this.namespace(client, namespace);
|
|
|
|
return stats
|
|
|
|
? stats
|
|
|
|
: { message: "No stats were able to be fetched from DB for namespace" };
|
|
|
|
},
|
|
|
|
"delete-namespace": async function (reqBody = {}) {
|
|
|
|
const { namespace = null } = reqBody;
|
|
|
|
const { client } = await this.connect();
|
|
|
|
if (!(await this.namespaceExists(client, namespace)))
|
|
|
|
throw new Error("Namespace by that name does not exist.");
|
|
|
|
|
|
|
|
const details = await this.namespace(client, namespace);
|
|
|
|
await this.deleteVectorsInNamespace(client, namespace);
|
|
|
|
return {
|
|
|
|
message: `Namespace ${namespace} was deleted along with ${
|
|
|
|
details?.vectorCount || "all"
|
|
|
|
} vectors.`,
|
|
|
|
};
|
|
|
|
},
|
|
|
|
curateSources: function (sources = []) {
|
|
|
|
const documents = [];
|
|
|
|
for (const source of sources) {
|
|
|
|
if (Object.keys(source).length > 0) {
|
|
|
|
const metadata = source.hasOwnProperty("metadata")
|
|
|
|
? source.metadata
|
|
|
|
: source;
|
|
|
|
documents.push({
|
|
|
|
...metadata,
|
|
|
|
});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return documents;
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
|
|
|
module.exports.AstraDB = AstraDB;
|