anything-llm/server/utils/TextSplitter/index.js

188 lines
6.4 KiB
JavaScript
Raw Normal View History

/**
* @typedef {object} DocumentMetadata
* @property {string} id - eg; "123e4567-e89b-12d3-a456-426614174000"
* @property {string} url - eg; "file://example.com/index.html"
* @property {string} title - eg; "example.com/index.html"
* @property {string} docAuthor - eg; "no author found"
* @property {string} description - eg; "No description found."
* @property {string} docSource - eg; "URL link uploaded by the user."
* @property {string} chunkSource - eg; link://https://example.com
* @property {string} published - ISO 8601 date string
* @property {number} wordCount - Number of words in the document
* @property {string} pageContent - The raw text content of the document
* @property {number} token_count_estimate - Number of tokens in the document
*/
function isNullOrNaN(value) {
if (value === null) return true;
return isNaN(value);
}
class TextSplitter {
#splitter;
constructor(config = {}) {
/*
config can be a ton of things depending on what is required or optional by the specific splitter.
Non-splitter related keys
{
splitByFilename: string, // TODO
}
------
Default: "RecursiveCharacterTextSplitter"
Config: {
chunkSize: number,
chunkOverlap: number,
chunkHeaderMeta: object | null, // Gets appended to top of each chunk as metadata
}
------
*/
this.config = config;
this.#splitter = this.#setSplitter(config);
}
log(text, ...args) {
console.log(`\x1b[35m[TextSplitter]\x1b[0m ${text}`, ...args);
}
/**
* Does a quick check to determine the text chunk length limit.
* Embedder models have hard-set limits that cannot be exceeded, just like an LLM context
* so here we want to allow override of the default 1000, but up to the models maximum, which is
* sometimes user defined.
*/
static determineMaxChunkSize(preferred = null, embedderLimit = 1000) {
const prefValue = isNullOrNaN(preferred)
? Number(embedderLimit)
: Number(preferred);
const limit = Number(embedderLimit);
if (prefValue > limit)
console.log(
`\x1b[43m[WARN]\x1b[0m Text splitter chunk length of ${prefValue} exceeds embedder model max of ${embedderLimit}. Will use ${embedderLimit}.`
);
return prefValue > limit ? limit : prefValue;
}
/**
* Creates a string of metadata to be prepended to each chunk.
* @param {DocumentMetadata} metadata - Metadata to be prepended to each chunk.
* @returns {{[key: ('title' | 'published' | 'source')]: string}} Object of metadata that will be prepended to each chunk.
*/
static buildHeaderMeta(metadata = {}) {
if (!metadata || Object.keys(metadata).length === 0) return null;
const PLUCK_MAP = {
title: {
as: "sourceDocument",
pluck: (metadata) => {
return metadata?.title || null;
},
},
published: {
as: "published",
pluck: (metadata) => {
return metadata?.published || null;
},
},
chunkSource: {
as: "source",
pluck: (metadata) => {
const validPrefixes = ["link://", "youtube://"];
// If the chunkSource is a link or youtube link, we can add the URL
// as its source in the metadata so the LLM can use it for context.
// eg prompt: Where did you get this information? -> answer: "from https://example.com"
if (
!metadata?.chunkSource || // Exists
!metadata?.chunkSource.length || // Is not empty
typeof metadata.chunkSource !== "string" || // Is a string
!validPrefixes.some(
(prefix) => metadata.chunkSource.startsWith(prefix) // Has a valid prefix we respect
)
)
return null;
// We know a prefix is present, so we can split on it and return the rest.
// If nothing is found, return null and it will not be added to the metadata.
let source = null;
for (const prefix of validPrefixes) {
source = metadata.chunkSource.split(prefix)?.[1] || null;
if (source) break;
}
return source;
},
},
};
const pluckedData = {};
Object.entries(PLUCK_MAP).forEach(([key, value]) => {
if (!(key in metadata)) return; // Skip if the metadata key is not present.
const pluckedValue = value.pluck(metadata);
if (!pluckedValue) return; // Skip if the plucked value is null/empty.
pluckedData[value.as] = pluckedValue;
});
return pluckedData;
}
/**
* Creates a string of metadata to be prepended to each chunk.
*/
stringifyHeader() {
if (!this.config.chunkHeaderMeta) return null;
let content = "";
Object.entries(this.config.chunkHeaderMeta).map(([key, value]) => {
if (!key || !value) return;
content += `${key}: ${value}\n`;
});
if (!content) return null;
return `<document_metadata>\n${content}</document_metadata>\n\n`;
}
#setSplitter(config = {}) {
// if (!config?.splitByFilename) {// TODO do something when specific extension is present? }
return new RecursiveSplitter({
chunkSize: isNaN(config?.chunkSize) ? 1_000 : Number(config?.chunkSize),
chunkOverlap: isNaN(config?.chunkOverlap)
? 20
: Number(config?.chunkOverlap),
chunkHeader: this.stringifyHeader(),
});
}
async splitText(documentText) {
return this.#splitter._splitText(documentText);
}
}
// Wrapper for Langchain default RecursiveCharacterTextSplitter class.
class RecursiveSplitter {
constructor({ chunkSize, chunkOverlap, chunkHeader = null }) {
const {
RecursiveCharacterTextSplitter,
} = require("@langchain/textsplitters");
this.log(`Will split with`, { chunkSize, chunkOverlap });
this.chunkHeader = chunkHeader;
this.engine = new RecursiveCharacterTextSplitter({
chunkSize,
chunkOverlap,
});
}
log(text, ...args) {
console.log(`\x1b[35m[RecursiveSplitter]\x1b[0m ${text}`, ...args);
}
async _splitText(documentText) {
if (!this.chunkHeader) return this.engine.splitText(documentText);
const strings = await this.engine.splitText(documentText);
const documents = await this.engine.createDocuments(strings, [], {
chunkHeader: this.chunkHeader,
});
return documents
.filter((doc) => !!doc.pageContent)
.map((doc) => doc.pageContent);
}
}
module.exports.TextSplitter = TextSplitter;