mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-19 20:50:09 +01:00
169 lines
4.4 KiB
JavaScript
169 lines
4.4 KiB
JavaScript
|
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
||
|
const {
|
||
|
handleDefaultStreamResponseV2,
|
||
|
} = require("../../helpers/chat/responses");
|
||
|
const { MODEL_MAP } = require("../modelMap");
|
||
|
|
||
|
class XAiLLM {
|
||
|
constructor(embedder = null, modelPreference = null) {
|
||
|
if (!process.env.XAI_LLM_API_KEY)
|
||
|
throw new Error("No xAI API key was set.");
|
||
|
const { OpenAI: OpenAIApi } = require("openai");
|
||
|
|
||
|
this.openai = new OpenAIApi({
|
||
|
baseURL: "https://api.x.ai/v1",
|
||
|
apiKey: process.env.XAI_LLM_API_KEY,
|
||
|
});
|
||
|
this.model =
|
||
|
modelPreference || process.env.XAI_LLM_MODEL_PREF || "grok-beta";
|
||
|
this.limits = {
|
||
|
history: this.promptWindowLimit() * 0.15,
|
||
|
system: this.promptWindowLimit() * 0.15,
|
||
|
user: this.promptWindowLimit() * 0.7,
|
||
|
};
|
||
|
|
||
|
this.embedder = embedder ?? new NativeEmbedder();
|
||
|
this.defaultTemp = 0.7;
|
||
|
}
|
||
|
|
||
|
#appendContext(contextTexts = []) {
|
||
|
if (!contextTexts || !contextTexts.length) return "";
|
||
|
return (
|
||
|
"\nContext:\n" +
|
||
|
contextTexts
|
||
|
.map((text, i) => {
|
||
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
||
|
})
|
||
|
.join("")
|
||
|
);
|
||
|
}
|
||
|
|
||
|
streamingEnabled() {
|
||
|
return "streamGetChatCompletion" in this;
|
||
|
}
|
||
|
|
||
|
static promptWindowLimit(modelName) {
|
||
|
return MODEL_MAP.xai[modelName] ?? 131_072;
|
||
|
}
|
||
|
|
||
|
promptWindowLimit() {
|
||
|
return MODEL_MAP.xai[this.model] ?? 131_072;
|
||
|
}
|
||
|
|
||
|
isValidChatCompletionModel(modelName = "") {
|
||
|
switch (modelName) {
|
||
|
case "grok-beta":
|
||
|
return true;
|
||
|
default:
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generates appropriate content array for a message + attachments.
|
||
|
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
|
||
|
* @returns {string|object[]}
|
||
|
*/
|
||
|
#generateContent({ userPrompt, attachments = [] }) {
|
||
|
if (!attachments.length) {
|
||
|
return userPrompt;
|
||
|
}
|
||
|
|
||
|
const content = [{ type: "text", text: userPrompt }];
|
||
|
for (let attachment of attachments) {
|
||
|
content.push({
|
||
|
type: "image_url",
|
||
|
image_url: {
|
||
|
url: attachment.contentString,
|
||
|
detail: "high",
|
||
|
},
|
||
|
});
|
||
|
}
|
||
|
return content.flat();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Construct the user prompt for this model.
|
||
|
* @param {{attachments: import("../../helpers").Attachment[]}} param0
|
||
|
* @returns
|
||
|
*/
|
||
|
constructPrompt({
|
||
|
systemPrompt = "",
|
||
|
contextTexts = [],
|
||
|
chatHistory = [],
|
||
|
userPrompt = "",
|
||
|
attachments = [], // This is the specific attachment for only this prompt
|
||
|
}) {
|
||
|
const prompt = {
|
||
|
role: "system",
|
||
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
||
|
};
|
||
|
return [
|
||
|
prompt,
|
||
|
...chatHistory,
|
||
|
{
|
||
|
role: "user",
|
||
|
content: this.#generateContent({ userPrompt, attachments }),
|
||
|
},
|
||
|
];
|
||
|
}
|
||
|
|
||
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
||
|
if (!this.isValidChatCompletionModel(this.model))
|
||
|
throw new Error(
|
||
|
`xAI chat: ${this.model} is not valid for chat completion!`
|
||
|
);
|
||
|
|
||
|
const result = await this.openai.chat.completions
|
||
|
.create({
|
||
|
model: this.model,
|
||
|
messages,
|
||
|
temperature,
|
||
|
})
|
||
|
.catch((e) => {
|
||
|
throw new Error(e.message);
|
||
|
});
|
||
|
|
||
|
if (!result.hasOwnProperty("choices") || result.choices.length === 0)
|
||
|
return null;
|
||
|
return result.choices[0].message.content;
|
||
|
}
|
||
|
|
||
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
||
|
if (!this.isValidChatCompletionModel(this.model))
|
||
|
throw new Error(
|
||
|
`xAI chat: ${this.model} is not valid for chat completion!`
|
||
|
);
|
||
|
|
||
|
const streamRequest = await this.openai.chat.completions.create({
|
||
|
model: this.model,
|
||
|
stream: true,
|
||
|
messages,
|
||
|
temperature,
|
||
|
});
|
||
|
return streamRequest;
|
||
|
}
|
||
|
|
||
|
handleStream(response, stream, responseProps) {
|
||
|
return handleDefaultStreamResponseV2(response, stream, responseProps);
|
||
|
}
|
||
|
|
||
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
||
|
async embedTextInput(textInput) {
|
||
|
return await this.embedder.embedTextInput(textInput);
|
||
|
}
|
||
|
async embedChunks(textChunks = []) {
|
||
|
return await this.embedder.embedChunks(textChunks);
|
||
|
}
|
||
|
|
||
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
||
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
||
|
const messageArray = this.constructPrompt(promptArgs);
|
||
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
module.exports = {
|
||
|
XAiLLM,
|
||
|
};
|