anything-llm/server/utils/chats/embed.js

213 lines
6.4 KiB
JavaScript
Raw Normal View History

const { v4: uuidv4 } = require("uuid");
const { getVectorDbClass, getLLMProvider } = require("../helpers");
const { chatPrompt, sourceIdentifier } = require("./index");
const { EmbedChats } = require("../../models/embedChats");
const {
convertToPromptHistory,
writeResponseChunk,
} = require("../helpers/chat/responses");
const { DocumentManager } = require("../DocumentManager");
async function streamChatWithForEmbed(
response,
/** @type {import("@prisma/client").embed_configs & {workspace?: import("@prisma/client").workspaces}} */
embed,
/** @type {String} */
message,
/** @type {String} */
sessionId,
{ promptOverride, modelOverride, temperatureOverride, username }
) {
const chatMode = embed.chat_mode;
const chatModel = embed.allow_model_override ? modelOverride : null;
// If there are overrides in request & they are permitted, override the default workspace ref information.
if (embed.allow_prompt_override)
embed.workspace.openAiPrompt = promptOverride;
if (embed.allow_temperature_override)
embed.workspace.openAiTemp = parseFloat(temperatureOverride);
const uuid = uuidv4();
const LLMConnector = getLLMProvider({
provider: embed?.workspace?.chatProvider,
model: chatModel ?? embed.workspace?.chatModel,
});
const VectorDb = getVectorDbClass();
const messageLimit = 20;
const hasVectorizedSpace = await VectorDb.hasNamespace(embed.workspace.slug);
const embeddingsCount = await VectorDb.namespaceCount(embed.workspace.slug);
// User is trying to query-mode chat a workspace that has no data in it - so
// we should exit early as no information can be found under these conditions.
if ((!hasVectorizedSpace || embeddingsCount === 0) && chatMode === "query") {
writeResponseChunk(response, {
id: uuid,
type: "textResponse",
textResponse:
"I do not have enough information to answer that. Try another question.",
sources: [],
close: true,
error: null,
});
return;
}
let completeText;
let contextTexts = [];
let sources = [];
let pinnedDocIdentifiers = [];
const { rawHistory, chatHistory } = await recentEmbedChatHistory(
sessionId,
embed,
messageLimit,
chatMode
);
// See stream.js comment for more information on this implementation.
await new DocumentManager({
workspace: embed.workspace,
maxTokens: LLMConnector.promptWindowLimit(),
})
.pinnedDocs()
.then((pinnedDocs) => {
pinnedDocs.forEach((doc) => {
const { pageContent, ...metadata } = doc;
pinnedDocIdentifiers.push(sourceIdentifier(doc));
contextTexts.push(doc.pageContent);
sources.push({
text:
pageContent.slice(0, 1_000) +
"...continued on in source document...",
...metadata,
});
});
});
const vectorSearchResults =
embeddingsCount !== 0
? await VectorDb.performSimilaritySearch({
namespace: embed.workspace.slug,
input: message,
LLMConnector,
similarityThreshold: embed.workspace?.similarityThreshold,
topN: embed.workspace?.topN,
filterIdentifiers: pinnedDocIdentifiers,
})
: {
contextTexts: [],
sources: [],
message: null,
};
// Failed similarity search if it was run at all and failed.
if (!!vectorSearchResults.message) {
writeResponseChunk(response, {
id: uuid,
type: "abort",
textResponse: null,
sources: [],
close: true,
error: "Failed to connect to vector database provider.",
});
return;
}
contextTexts = [...contextTexts, ...vectorSearchResults.contextTexts];
sources = [...sources, ...vectorSearchResults.sources];
// If in query mode and no sources are found, do not
// let the LLM try to hallucinate a response or use general knowledge
if (
chatMode === "query" &&
sources.length === 0 &&
pinnedDocIdentifiers.length === 0
) {
writeResponseChunk(response, {
id: uuid,
type: "textResponse",
textResponse:
embed.workspace?.queryRefusalResponse ??
"There is no relevant information in this workspace to answer your query.",
sources: [],
close: true,
error: null,
});
return;
}
// Compress message to ensure prompt passes token limit with room for response
// and build system messages based on inputs and history.
const messages = await LLMConnector.compressMessages(
{
systemPrompt: chatPrompt(embed.workspace),
userPrompt: message,
contextTexts,
chatHistory,
},
rawHistory
);
// If streaming is not explicitly enabled for connector
// we do regular waiting of a response and send a single chunk.
if (LLMConnector.streamingEnabled() !== true) {
console.log(
`\x1b[31m[STREAMING DISABLED]\x1b[0m Streaming is not available for ${LLMConnector.constructor.name}. Will use regular chat method.`
);
completeText = await LLMConnector.getChatCompletion(messages, {
temperature: embed.workspace?.openAiTemp ?? LLMConnector.defaultTemp,
});
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: completeText,
close: true,
error: false,
});
} else {
const stream = await LLMConnector.streamGetChatCompletion(messages, {
temperature: embed.workspace?.openAiTemp ?? LLMConnector.defaultTemp,
});
completeText = await LLMConnector.handleStream(response, stream, {
uuid,
sources: [],
});
}
await EmbedChats.new({
embedId: embed.id,
prompt: message,
response: { text: completeText, type: chatMode },
connection_information: response.locals.connection
? {
...response.locals.connection,
username: !!username ? String(username) : null,
}
: { username: !!username ? String(username) : null },
sessionId,
});
return;
}
// On query we don't return message history. All other chat modes and when chatting
// with no embeddings we return history.
async function recentEmbedChatHistory(
sessionId,
embed,
messageLimit = 20,
chatMode = null
) {
if (chatMode === "query") return { rawHistory: [], chatHistory: [] };
const rawHistory = (
await EmbedChats.forEmbedByUser(embed.id, sessionId, messageLimit, {
id: "desc",
})
).reverse();
return { rawHistory, chatHistory: convertToPromptHistory(rawHistory) };
}
module.exports = {
streamChatWithForEmbed,
};