anything-llm/server/utils/helpers/customModels.js

292 lines
7.9 KiB
JavaScript
Raw Normal View History

const { openRouterModels } = require("../AiProviders/openRouter");
const { perplexityModels } = require("../AiProviders/perplexity");
const { togetherAiModels } = require("../AiProviders/togetherAi");
const SUPPORT_CUSTOM_MODELS = [
"openai",
"localai",
"ollama",
"native-llm",
"togetherai",
"mistral",
"perplexity",
"openrouter",
"lmstudio",
];
async function getCustomModels(provider = "", apiKey = null, basePath = null) {
if (!SUPPORT_CUSTOM_MODELS.includes(provider))
return { models: [], error: "Invalid provider for custom models" };
switch (provider) {
case "openai":
return await openAiModels(apiKey);
case "localai":
return await localAIModels(basePath, apiKey);
case "ollama":
return await ollamaAIModels(basePath);
case "togetherai":
return await getTogetherAiModels();
case "mistral":
return await getMistralModels(apiKey);
case "native-llm":
return nativeLLMModels();
case "perplexity":
return await getPerplexityModels();
case "openrouter":
return await getOpenRouterModels();
case "lmstudio":
return await getLMStudioModels(basePath);
default:
return { models: [], error: "Invalid provider for custom models" };
}
}
async function openAiModels(apiKey = null) {
const { Configuration, OpenAIApi } = require("openai");
const config = new Configuration({
apiKey: apiKey || process.env.OPEN_AI_KEY,
});
const openai = new OpenAIApi(config);
const allModels = await openai
.listModels()
.then((res) => res.data.data)
.catch((e) => {
console.error(`OpenAI:listModels`, e.message);
return [
{
name: "gpt-3.5-turbo",
id: "gpt-3.5-turbo",
object: "model",
created: 1677610602,
owned_by: "openai",
organization: "OpenAi",
},
{
name: "gpt-4",
id: "gpt-4",
object: "model",
created: 1687882411,
owned_by: "openai",
organization: "OpenAi",
},
{
name: "gpt-4-turbo",
id: "gpt-4-turbo",
object: "model",
created: 1712361441,
owned_by: "system",
organization: "OpenAi",
},
{
name: "gpt-4-32k",
id: "gpt-4-32k",
object: "model",
created: 1687979321,
owned_by: "openai",
organization: "OpenAi",
},
{
name: "gpt-3.5-turbo-16k",
id: "gpt-3.5-turbo-16k",
object: "model",
created: 1683758102,
owned_by: "openai-internal",
organization: "OpenAi",
},
];
});
const gpts = allModels
.filter((model) => model.id.startsWith("gpt"))
.filter(
(model) => !model.id.includes("vision") && !model.id.includes("instruct")
)
.map((model) => {
return {
...model,
name: model.id,
organization: "OpenAi",
};
});
const customModels = allModels
.filter(
(model) =>
!model.owned_by.includes("openai") && model.owned_by !== "system"
)
.map((model) => {
return {
...model,
name: model.id,
organization: "Your Fine-Tunes",
};
});
// Api Key was successful so lets save it for future uses
if ((gpts.length > 0 || customModels.length > 0) && !!apiKey)
process.env.OPEN_AI_KEY = apiKey;
return { models: [...gpts, ...customModels], error: null };
}
async function localAIModels(basePath = null, apiKey = null) {
const { Configuration, OpenAIApi } = require("openai");
const config = new Configuration({
basePath: basePath || process.env.LOCAL_AI_BASE_PATH,
apiKey: apiKey || process.env.LOCAL_AI_API_KEY,
});
const openai = new OpenAIApi(config);
const models = await openai
.listModels()
.then((res) => res.data.data)
.catch((e) => {
console.error(`LocalAI:listModels`, e.message);
return [];
});
// Api Key was successful so lets save it for future uses
if (models.length > 0 && !!apiKey) process.env.LOCAL_AI_API_KEY = apiKey;
return { models, error: null };
}
async function getLMStudioModels(basePath = null) {
try {
const { Configuration, OpenAIApi } = require("openai");
const config = new Configuration({
basePath: basePath || process.env.LMSTUDIO_BASE_PATH,
});
const openai = new OpenAIApi(config);
const models = await openai
.listModels()
.then((res) => res.data.data)
.catch((e) => {
console.error(`LMStudio:listModels`, e.message);
return [];
});
return { models, error: null };
} catch (e) {
console.error(`LMStudio:getLMStudioModels`, e.message);
return { models: [], error: "Could not fetch LMStudio Models" };
}
}
async function ollamaAIModels(basePath = null) {
let url;
try {
let urlPath = basePath ?? process.env.OLLAMA_BASE_PATH;
new URL(urlPath);
if (urlPath.split("").slice(-1)?.[0] === "/")
throw new Error("BasePath Cannot end in /!");
url = urlPath;
} catch {
return { models: [], error: "Not a valid URL." };
}
const models = await fetch(`${url}/api/tags`)
.then((res) => {
if (!res.ok)
throw new Error(`Could not reach Ollama server! ${res.status}`);
return res.json();
})
.then((data) => data?.models || [])
.then((models) =>
models.map((model) => {
return { id: model.name };
})
)
.catch((e) => {
console.error(e);
return [];
});
return { models, error: null };
}
async function getTogetherAiModels() {
const knownModels = togetherAiModels();
if (!Object.keys(knownModels).length === 0)
return { models: [], error: null };
const models = Object.values(knownModels).map((model) => {
return {
id: model.id,
organization: model.organization,
name: model.name,
};
});
return { models, error: null };
}
async function getPerplexityModels() {
const knownModels = perplexityModels();
if (!Object.keys(knownModels).length === 0)
return { models: [], error: null };
const models = Object.values(knownModels).map((model) => {
return {
id: model.id,
name: model.name,
};
});
return { models, error: null };
}
async function getOpenRouterModels() {
const knownModels = await openRouterModels();
if (!Object.keys(knownModels).length === 0)
return { models: [], error: null };
const models = Object.values(knownModels).map((model) => {
return {
id: model.id,
organization: model.organization,
name: model.name,
};
});
return { models, error: null };
}
async function getMistralModels(apiKey = null) {
const { Configuration, OpenAIApi } = require("openai");
const config = new Configuration({
apiKey: apiKey || process.env.MISTRAL_API_KEY,
basePath: "https://api.mistral.ai/v1",
});
const openai = new OpenAIApi(config);
const models = await openai
.listModels()
.then((res) => res.data.data.filter((model) => !model.id.includes("embed")))
.catch((e) => {
console.error(`Mistral:listModels`, e.message);
return [];
});
// Api Key was successful so lets save it for future uses
if (models.length > 0 && !!apiKey) process.env.MISTRAL_API_KEY = apiKey;
return { models, error: null };
}
function nativeLLMModels() {
const fs = require("fs");
const path = require("path");
const storageDir = path.resolve(
process.env.STORAGE_DIR
? path.resolve(process.env.STORAGE_DIR, "models", "downloaded")
: path.resolve(__dirname, `../../storage/models/downloaded`)
);
if (!fs.existsSync(storageDir))
return { models: [], error: "No model/downloaded storage folder found." };
const files = fs
.readdirSync(storageDir)
.filter((file) => file.toLowerCase().includes(".gguf"))
.map((file) => {
return { id: file, name: file };
});
return { models: files, error: null };
}
module.exports = {
getCustomModels,
};