2024-01-10 21:35:30 +01:00
const { chatPrompt } = require ( "../../chats" ) ;
2024-03-12 23:21:27 +01:00
const {
writeResponseChunk ,
clientAbortedHandler ,
} = require ( "../../helpers/chat/responses" ) ;
2024-01-10 21:35:30 +01:00
function togetherAiModels ( ) {
const { MODELS } = require ( "./models.js" ) ;
return MODELS || { } ;
}
class TogetherAiLLM {
2024-01-17 21:59:25 +01:00
constructor ( embedder = null , modelPreference = null ) {
2024-01-10 21:35:30 +01:00
const { Configuration , OpenAIApi } = require ( "openai" ) ;
if ( ! process . env . TOGETHER _AI _API _KEY )
throw new Error ( "No TogetherAI API key was set." ) ;
const config = new Configuration ( {
basePath : "https://api.together.xyz/v1" ,
apiKey : process . env . TOGETHER _AI _API _KEY ,
} ) ;
this . openai = new OpenAIApi ( config ) ;
2024-01-17 21:59:25 +01:00
this . model = modelPreference || process . env . TOGETHER _AI _MODEL _PREF ;
2024-01-10 21:35:30 +01:00
this . limits = {
history : this . promptWindowLimit ( ) * 0.15 ,
system : this . promptWindowLimit ( ) * 0.15 ,
user : this . promptWindowLimit ( ) * 0.7 ,
} ;
if ( ! embedder )
throw new Error (
"INVALID TOGETHER AI SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use Together AI as your LLM."
) ;
this . embedder = embedder ;
2024-01-17 23:42:05 +01:00
this . defaultTemp = 0.7 ;
2024-01-10 21:35:30 +01:00
}
# appendContext ( contextTexts = [ ] ) {
if ( ! contextTexts || ! contextTexts . length ) return "" ;
return (
"\nContext:\n" +
contextTexts
. map ( ( text , i ) => {
return ` [CONTEXT ${ i } ]: \n ${ text } \n [END CONTEXT ${ i } ] \n \n ` ;
} )
. join ( "" )
) ;
}
allModelInformation ( ) {
return togetherAiModels ( ) ;
}
streamingEnabled ( ) {
return "streamChat" in this && "streamGetChatCompletion" in this ;
}
// Ensure the user set a value for the token limit
// and if undefined - assume 4096 window.
promptWindowLimit ( ) {
const availableModels = this . allModelInformation ( ) ;
return availableModels [ this . model ] ? . maxLength || 4096 ;
}
async isValidChatCompletionModel ( model = "" ) {
const availableModels = this . allModelInformation ( ) ;
return availableModels . hasOwnProperty ( model ) ;
}
constructPrompt ( {
systemPrompt = "" ,
contextTexts = [ ] ,
chatHistory = [ ] ,
userPrompt = "" ,
} ) {
const prompt = {
role : "system" ,
content : ` ${ systemPrompt } ${ this . # appendContext ( contextTexts ) } ` ,
} ;
return [ prompt , ... chatHistory , { role : "user" , content : userPrompt } ] ;
}
async isSafe ( _input = "" ) {
// Not implemented so must be stubbed
return { safe : true , reasons : [ ] } ;
}
async sendChat ( chatHistory = [ ] , prompt , workspace = { } , rawHistory = [ ] ) {
if ( ! ( await this . isValidChatCompletionModel ( this . model ) ) )
throw new Error (
` Together AI chat: ${ this . model } is not valid for chat completion! `
) ;
const textResponse = await this . openai
. createChatCompletion ( {
model : this . model ,
2024-01-17 23:42:05 +01:00
temperature : Number ( workspace ? . openAiTemp ? ? this . defaultTemp ) ,
2024-01-10 21:35:30 +01:00
n : 1 ,
messages : await this . compressMessages (
{
systemPrompt : chatPrompt ( workspace ) ,
userPrompt : prompt ,
chatHistory ,
} ,
rawHistory
) ,
} )
. then ( ( json ) => {
const res = json . data ;
if ( ! res . hasOwnProperty ( "choices" ) )
throw new Error ( "Together AI chat: No results!" ) ;
if ( res . choices . length === 0 )
throw new Error ( "Together AI chat: No results length!" ) ;
return res . choices [ 0 ] . message . content ;
} )
. catch ( ( error ) => {
throw new Error (
` TogetherAI::createChatCompletion failed with: ${ error . message } `
) ;
} ) ;
return textResponse ;
}
async streamChat ( chatHistory = [ ] , prompt , workspace = { } , rawHistory = [ ] ) {
if ( ! ( await this . isValidChatCompletionModel ( this . model ) ) )
throw new Error (
` TogetherAI chat: ${ this . model } is not valid for chat completion! `
) ;
const streamRequest = await this . openai . createChatCompletion (
{
model : this . model ,
stream : true ,
2024-01-17 23:42:05 +01:00
temperature : Number ( workspace ? . openAiTemp ? ? this . defaultTemp ) ,
2024-01-10 21:35:30 +01:00
n : 1 ,
messages : await this . compressMessages (
{
systemPrompt : chatPrompt ( workspace ) ,
userPrompt : prompt ,
chatHistory ,
} ,
rawHistory
) ,
} ,
{ responseType : "stream" }
) ;
2024-02-07 17:15:14 +01:00
return streamRequest ;
2024-01-10 21:35:30 +01:00
}
async getChatCompletion ( messages = null , { temperature = 0.7 } ) {
if ( ! ( await this . isValidChatCompletionModel ( this . model ) ) )
throw new Error (
` TogetherAI chat: ${ this . model } is not valid for chat completion! `
) ;
const { data } = await this . openai . createChatCompletion ( {
model : this . model ,
messages ,
temperature ,
} ) ;
if ( ! data . hasOwnProperty ( "choices" ) ) return null ;
return data . choices [ 0 ] . message . content ;
}
async streamGetChatCompletion ( messages = null , { temperature = 0.7 } ) {
if ( ! ( await this . isValidChatCompletionModel ( this . model ) ) )
throw new Error (
` TogetherAI chat: ${ this . model } is not valid for chat completion! `
) ;
const streamRequest = await this . openai . createChatCompletion (
{
model : this . model ,
stream : true ,
messages ,
temperature ,
} ,
{ responseType : "stream" }
) ;
2024-02-07 17:15:14 +01:00
return streamRequest ;
}
handleStream ( response , stream , responseProps ) {
const { uuid = uuidv4 ( ) , sources = [ ] } = responseProps ;
return new Promise ( ( resolve ) => {
let fullText = "" ;
let chunk = "" ;
2024-03-12 23:21:27 +01:00
// Establish listener to early-abort a streaming response
// in case things go sideways or the user does not like the response.
// We preserve the generated text but continue as if chat was completed
// to preserve previously generated content.
const handleAbort = ( ) => clientAbortedHandler ( resolve , fullText ) ;
response . on ( "close" , handleAbort ) ;
2024-02-07 17:15:14 +01:00
stream . data . on ( "data" , ( data ) => {
const lines = data
? . toString ( )
? . split ( "\n" )
. filter ( ( line ) => line . trim ( ) !== "" ) ;
for ( const line of lines ) {
let validJSON = false ;
const message = chunk + line . replace ( /^data: / , "" ) ;
if ( message !== "[DONE]" ) {
// JSON chunk is incomplete and has not ended yet
// so we need to stitch it together. You would think JSON
// chunks would only come complete - but they don't!
try {
JSON . parse ( message ) ;
validJSON = true ;
} catch { }
if ( ! validJSON ) {
// It can be possible that the chunk decoding is running away
// and the message chunk fails to append due to string length.
// In this case abort the chunk and reset so we can continue.
// ref: https://github.com/Mintplex-Labs/anything-llm/issues/416
try {
chunk += message ;
} catch ( e ) {
console . error ( ` Chunk appending error ` , e ) ;
chunk = "" ;
}
continue ;
} else {
chunk = "" ;
}
}
if ( message == "[DONE]" ) {
writeResponseChunk ( response , {
uuid ,
sources ,
type : "textResponseChunk" ,
textResponse : "" ,
close : true ,
error : false ,
} ) ;
2024-03-12 23:21:27 +01:00
response . removeListener ( "close" , handleAbort ) ;
2024-02-07 17:15:14 +01:00
resolve ( fullText ) ;
} else {
let finishReason = null ;
let token = "" ;
try {
const json = JSON . parse ( message ) ;
token = json ? . choices ? . [ 0 ] ? . delta ? . content ;
finishReason = json ? . choices ? . [ 0 ] ? . finish _reason || null ;
} catch {
continue ;
}
if ( token ) {
fullText += token ;
writeResponseChunk ( response , {
uuid ,
sources : [ ] ,
type : "textResponseChunk" ,
textResponse : token ,
close : false ,
error : false ,
} ) ;
}
if ( finishReason !== null ) {
writeResponseChunk ( response , {
uuid ,
sources ,
type : "textResponseChunk" ,
textResponse : "" ,
close : true ,
error : false ,
} ) ;
2024-03-12 23:21:27 +01:00
response . removeListener ( "close" , handleAbort ) ;
2024-02-07 17:15:14 +01:00
resolve ( fullText ) ;
}
}
}
} ) ;
} ) ;
2024-01-10 21:35:30 +01:00
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput ( textInput ) {
return await this . embedder . embedTextInput ( textInput ) ;
}
async embedChunks ( textChunks = [ ] ) {
return await this . embedder . embedChunks ( textChunks ) ;
}
async compressMessages ( promptArgs = { } , rawHistory = [ ] ) {
const { messageArrayCompressor } = require ( "../../helpers/chat" ) ;
const messageArray = this . constructPrompt ( promptArgs ) ;
return await messageArrayCompressor ( this , messageArray , rawHistory ) ;
}
}
module . exports = {
TogetherAiLLM ,
togetherAiModels ,
} ;