2024-02-24 02:18:58 +01:00
|
|
|
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
|
|
|
const { v4: uuidv4 } = require("uuid");
|
2024-03-12 23:21:27 +01:00
|
|
|
const {
|
|
|
|
writeResponseChunk,
|
|
|
|
clientAbortedHandler,
|
|
|
|
} = require("../../helpers/chat/responses");
|
2024-04-23 20:10:54 +02:00
|
|
|
const fs = require("fs");
|
|
|
|
const path = require("path");
|
|
|
|
const { safeJsonParse } = require("../../http");
|
2024-04-27 00:58:30 +02:00
|
|
|
const cacheFolder = path.resolve(
|
|
|
|
process.env.STORAGE_DIR
|
|
|
|
? path.resolve(process.env.STORAGE_DIR, "models", "openrouter")
|
|
|
|
: path.resolve(__dirname, `../../../storage/models/openrouter`)
|
|
|
|
);
|
2024-02-24 02:18:58 +01:00
|
|
|
|
|
|
|
class OpenRouterLLM {
|
|
|
|
constructor(embedder = null, modelPreference = null) {
|
|
|
|
if (!process.env.OPENROUTER_API_KEY)
|
|
|
|
throw new Error("No OpenRouter API key was set.");
|
|
|
|
|
2024-04-30 21:33:42 +02:00
|
|
|
const { OpenAI: OpenAIApi } = require("openai");
|
2024-04-23 20:10:54 +02:00
|
|
|
this.basePath = "https://openrouter.ai/api/v1";
|
2024-04-30 21:33:42 +02:00
|
|
|
this.openai = new OpenAIApi({
|
|
|
|
baseURL: this.basePath,
|
|
|
|
apiKey: process.env.OPENROUTER_API_KEY ?? null,
|
|
|
|
defaultHeaders: {
|
|
|
|
"HTTP-Referer": "https://useanything.com",
|
|
|
|
"X-Title": "AnythingLLM",
|
2024-02-24 02:18:58 +01:00
|
|
|
},
|
|
|
|
});
|
|
|
|
this.model =
|
|
|
|
modelPreference || process.env.OPENROUTER_MODEL_PREF || "openrouter/auto";
|
|
|
|
this.limits = {
|
|
|
|
history: this.promptWindowLimit() * 0.15,
|
|
|
|
system: this.promptWindowLimit() * 0.15,
|
|
|
|
user: this.promptWindowLimit() * 0.7,
|
|
|
|
};
|
|
|
|
|
2024-05-17 02:25:05 +02:00
|
|
|
this.embedder = embedder ?? new NativeEmbedder();
|
2024-02-24 02:18:58 +01:00
|
|
|
this.defaultTemp = 0.7;
|
2024-04-23 20:10:54 +02:00
|
|
|
|
2024-04-27 00:58:30 +02:00
|
|
|
if (!fs.existsSync(cacheFolder))
|
|
|
|
fs.mkdirSync(cacheFolder, { recursive: true });
|
2024-04-23 20:10:54 +02:00
|
|
|
this.cacheModelPath = path.resolve(cacheFolder, "models.json");
|
|
|
|
this.cacheAtPath = path.resolve(cacheFolder, ".cached_at");
|
|
|
|
}
|
|
|
|
|
|
|
|
log(text, ...args) {
|
|
|
|
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
|
|
|
}
|
|
|
|
|
|
|
|
// This checks if the .cached_at file has a timestamp that is more than 1Week (in millis)
|
|
|
|
// from the current date. If it is, then we will refetch the API so that all the models are up
|
|
|
|
// to date.
|
|
|
|
#cacheIsStale() {
|
|
|
|
const MAX_STALE = 6.048e8; // 1 Week in MS
|
|
|
|
if (!fs.existsSync(this.cacheAtPath)) return true;
|
|
|
|
const now = Number(new Date());
|
|
|
|
const timestampMs = Number(fs.readFileSync(this.cacheAtPath));
|
|
|
|
return now - timestampMs > MAX_STALE;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The OpenRouter model API has a lot of models, so we cache this locally in the directory
|
|
|
|
// as if the cache directory JSON file is stale or does not exist we will fetch from API and store it.
|
|
|
|
// This might slow down the first request, but we need the proper token context window
|
|
|
|
// for each model and this is a constructor property - so we can really only get it if this cache exists.
|
|
|
|
// We used to have this as a chore, but given there is an API to get the info - this makes little sense.
|
|
|
|
async #syncModels() {
|
|
|
|
if (fs.existsSync(this.cacheModelPath) && !this.#cacheIsStale())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
this.log(
|
|
|
|
"Model cache is not present or stale. Fetching from OpenRouter API."
|
|
|
|
);
|
2024-04-27 00:58:30 +02:00
|
|
|
await fetchOpenRouterModels();
|
2024-04-23 20:10:54 +02:00
|
|
|
return;
|
2024-02-24 02:18:58 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
#appendContext(contextTexts = []) {
|
|
|
|
if (!contextTexts || !contextTexts.length) return "";
|
|
|
|
return (
|
|
|
|
"\nContext:\n" +
|
|
|
|
contextTexts
|
|
|
|
.map((text, i) => {
|
|
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
|
|
})
|
|
|
|
.join("")
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
2024-04-23 20:10:54 +02:00
|
|
|
models() {
|
|
|
|
if (!fs.existsSync(this.cacheModelPath)) return {};
|
|
|
|
return safeJsonParse(
|
|
|
|
fs.readFileSync(this.cacheModelPath, { encoding: "utf-8" }),
|
|
|
|
{}
|
|
|
|
);
|
2024-02-24 02:18:58 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
streamingEnabled() {
|
2024-05-02 01:52:28 +02:00
|
|
|
return "streamGetChatCompletion" in this;
|
2024-02-24 02:18:58 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
promptWindowLimit() {
|
2024-04-23 20:10:54 +02:00
|
|
|
const availableModels = this.models();
|
2024-02-24 02:18:58 +01:00
|
|
|
return availableModels[this.model]?.maxLength || 4096;
|
|
|
|
}
|
|
|
|
|
|
|
|
async isValidChatCompletionModel(model = "") {
|
2024-04-23 20:10:54 +02:00
|
|
|
await this.#syncModels();
|
|
|
|
const availableModels = this.models();
|
2024-02-24 02:18:58 +01:00
|
|
|
return availableModels.hasOwnProperty(model);
|
|
|
|
}
|
|
|
|
|
|
|
|
constructPrompt({
|
|
|
|
systemPrompt = "",
|
|
|
|
contextTexts = [],
|
|
|
|
chatHistory = [],
|
|
|
|
userPrompt = "",
|
|
|
|
}) {
|
|
|
|
const prompt = {
|
|
|
|
role: "system",
|
|
|
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
|
|
|
};
|
|
|
|
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
|
|
|
|
}
|
|
|
|
|
|
|
|
async isSafe(_input = "") {
|
|
|
|
// Not implemented so must be stubbed
|
|
|
|
return { safe: true, reasons: [] };
|
|
|
|
}
|
|
|
|
|
|
|
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
|
|
throw new Error(
|
|
|
|
`OpenRouter chat: ${this.model} is not valid for chat completion!`
|
|
|
|
);
|
|
|
|
|
2024-04-30 21:33:42 +02:00
|
|
|
const result = await this.openai.chat.completions
|
|
|
|
.create({
|
2024-02-24 02:18:58 +01:00
|
|
|
model: this.model,
|
|
|
|
messages,
|
|
|
|
temperature,
|
|
|
|
})
|
|
|
|
.catch((e) => {
|
|
|
|
throw new Error(e.response.data.error.message);
|
|
|
|
});
|
|
|
|
|
2024-04-30 21:33:42 +02:00
|
|
|
if (!result.hasOwnProperty("choices") || result.choices.length === 0)
|
|
|
|
return null;
|
|
|
|
return result.choices[0].message.content;
|
2024-02-24 02:18:58 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
|
|
throw new Error(
|
|
|
|
`OpenRouter chat: ${this.model} is not valid for chat completion!`
|
|
|
|
);
|
|
|
|
|
2024-04-30 21:33:42 +02:00
|
|
|
const streamRequest = await this.openai.chat.completions.create({
|
|
|
|
model: this.model,
|
|
|
|
stream: true,
|
|
|
|
messages,
|
|
|
|
temperature,
|
|
|
|
});
|
2024-02-24 02:18:58 +01:00
|
|
|
return streamRequest;
|
|
|
|
}
|
|
|
|
|
|
|
|
handleStream(response, stream, responseProps) {
|
|
|
|
const timeoutThresholdMs = 500;
|
|
|
|
const { uuid = uuidv4(), sources = [] } = responseProps;
|
|
|
|
|
2024-04-30 21:33:42 +02:00
|
|
|
return new Promise(async (resolve) => {
|
2024-02-24 02:18:58 +01:00
|
|
|
let fullText = "";
|
|
|
|
let lastChunkTime = null; // null when first token is still not received.
|
|
|
|
|
2024-03-12 23:21:27 +01:00
|
|
|
// Establish listener to early-abort a streaming response
|
|
|
|
// in case things go sideways or the user does not like the response.
|
|
|
|
// We preserve the generated text but continue as if chat was completed
|
|
|
|
// to preserve previously generated content.
|
|
|
|
const handleAbort = () => clientAbortedHandler(resolve, fullText);
|
|
|
|
response.on("close", handleAbort);
|
|
|
|
|
2024-02-24 02:18:58 +01:00
|
|
|
// NOTICE: Not all OpenRouter models will return a stop reason
|
|
|
|
// which keeps the connection open and so the model never finalizes the stream
|
|
|
|
// like the traditional OpenAI response schema does. So in the case the response stream
|
|
|
|
// never reaches a formal close state we maintain an interval timer that if we go >=timeoutThresholdMs with
|
|
|
|
// no new chunks then we kill the stream and assume it to be complete. OpenRouter is quite fast
|
|
|
|
// so this threshold should permit most responses, but we can adjust `timeoutThresholdMs` if
|
|
|
|
// we find it is too aggressive.
|
|
|
|
const timeoutCheck = setInterval(() => {
|
|
|
|
if (lastChunkTime === null) return;
|
|
|
|
|
|
|
|
const now = Number(new Date());
|
|
|
|
const diffMs = now - lastChunkTime;
|
|
|
|
if (diffMs >= timeoutThresholdMs) {
|
|
|
|
console.log(
|
|
|
|
`OpenRouter stream did not self-close and has been stale for >${timeoutThresholdMs}ms. Closing response stream.`
|
|
|
|
);
|
|
|
|
writeResponseChunk(response, {
|
|
|
|
uuid,
|
|
|
|
sources,
|
|
|
|
type: "textResponseChunk",
|
|
|
|
textResponse: "",
|
|
|
|
close: true,
|
|
|
|
error: false,
|
|
|
|
});
|
|
|
|
clearInterval(timeoutCheck);
|
2024-03-12 23:21:27 +01:00
|
|
|
response.removeListener("close", handleAbort);
|
2024-02-24 02:18:58 +01:00
|
|
|
resolve(fullText);
|
|
|
|
}
|
|
|
|
}, 500);
|
|
|
|
|
2024-04-30 21:33:42 +02:00
|
|
|
for await (const chunk of stream) {
|
|
|
|
const message = chunk?.choices?.[0];
|
|
|
|
const token = message?.delta?.content;
|
|
|
|
lastChunkTime = Number(new Date());
|
|
|
|
|
|
|
|
if (token) {
|
|
|
|
fullText += token;
|
|
|
|
writeResponseChunk(response, {
|
|
|
|
uuid,
|
|
|
|
sources: [],
|
|
|
|
type: "textResponseChunk",
|
|
|
|
textResponse: token,
|
|
|
|
close: false,
|
|
|
|
error: false,
|
|
|
|
});
|
2024-02-24 02:18:58 +01:00
|
|
|
}
|
2024-04-30 21:33:42 +02:00
|
|
|
|
|
|
|
if (message.finish_reason !== null) {
|
|
|
|
writeResponseChunk(response, {
|
|
|
|
uuid,
|
|
|
|
sources,
|
|
|
|
type: "textResponseChunk",
|
|
|
|
textResponse: "",
|
|
|
|
close: true,
|
|
|
|
error: false,
|
|
|
|
});
|
|
|
|
response.removeListener("close", handleAbort);
|
|
|
|
resolve(fullText);
|
|
|
|
}
|
|
|
|
}
|
2024-02-24 02:18:58 +01:00
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
|
|
|
async embedTextInput(textInput) {
|
|
|
|
return await this.embedder.embedTextInput(textInput);
|
|
|
|
}
|
|
|
|
async embedChunks(textChunks = []) {
|
|
|
|
return await this.embedder.embedChunks(textChunks);
|
|
|
|
}
|
|
|
|
|
|
|
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
|
|
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
|
|
|
const messageArray = this.constructPrompt(promptArgs);
|
|
|
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-04-27 00:58:30 +02:00
|
|
|
async function fetchOpenRouterModels() {
|
|
|
|
return await fetch(`https://openrouter.ai/api/v1/models`, {
|
|
|
|
method: "GET",
|
|
|
|
headers: {
|
|
|
|
"Content-Type": "application/json",
|
|
|
|
},
|
|
|
|
})
|
|
|
|
.then((res) => res.json())
|
|
|
|
.then(({ data = [] }) => {
|
|
|
|
const models = {};
|
|
|
|
data.forEach((model) => {
|
|
|
|
models[model.id] = {
|
|
|
|
id: model.id,
|
|
|
|
name: model.name,
|
|
|
|
organization:
|
|
|
|
model.id.split("/")[0].charAt(0).toUpperCase() +
|
|
|
|
model.id.split("/")[0].slice(1),
|
|
|
|
maxLength: model.context_length,
|
|
|
|
};
|
|
|
|
});
|
|
|
|
|
|
|
|
// Cache all response information
|
|
|
|
if (!fs.existsSync(cacheFolder))
|
|
|
|
fs.mkdirSync(cacheFolder, { recursive: true });
|
|
|
|
fs.writeFileSync(
|
|
|
|
path.resolve(cacheFolder, "models.json"),
|
|
|
|
JSON.stringify(models),
|
|
|
|
{
|
|
|
|
encoding: "utf-8",
|
|
|
|
}
|
|
|
|
);
|
|
|
|
fs.writeFileSync(
|
|
|
|
path.resolve(cacheFolder, ".cached_at"),
|
|
|
|
String(Number(new Date())),
|
|
|
|
{
|
|
|
|
encoding: "utf-8",
|
|
|
|
}
|
|
|
|
);
|
|
|
|
|
|
|
|
return models;
|
|
|
|
})
|
|
|
|
.catch((e) => {
|
|
|
|
console.error(e);
|
|
|
|
return {};
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
2024-02-24 02:18:58 +01:00
|
|
|
module.exports = {
|
|
|
|
OpenRouterLLM,
|
2024-04-27 00:58:30 +02:00
|
|
|
fetchOpenRouterModels,
|
2024-02-24 02:18:58 +01:00
|
|
|
};
|