mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-16 03:10:31 +01:00
218 lines
6.6 KiB
JavaScript
218 lines
6.6 KiB
JavaScript
|
const { StringOutputParser } = require("@langchain/core/output_parsers");
|
||
|
const {
|
||
|
writeResponseChunk,
|
||
|
clientAbortedHandler,
|
||
|
} = require("../../helpers/chat/responses");
|
||
|
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
||
|
|
||
|
// Docs: https://js.langchain.com/v0.2/docs/integrations/chat/bedrock_converse
|
||
|
class AWSBedrockLLM {
|
||
|
constructor(embedder = null, modelPreference = null) {
|
||
|
if (!process.env.AWS_BEDROCK_LLM_ACCESS_KEY_ID)
|
||
|
throw new Error("No AWS Bedrock LLM profile id was set.");
|
||
|
|
||
|
if (!process.env.AWS_BEDROCK_LLM_ACCESS_KEY)
|
||
|
throw new Error("No AWS Bedrock LLM access key was set.");
|
||
|
|
||
|
if (!process.env.AWS_BEDROCK_LLM_REGION)
|
||
|
throw new Error("No AWS Bedrock LLM region was set.");
|
||
|
|
||
|
this.model =
|
||
|
modelPreference || process.env.AWS_BEDROCK_LLM_MODEL_PREFERENCE;
|
||
|
this.limits = {
|
||
|
history: this.promptWindowLimit() * 0.15,
|
||
|
system: this.promptWindowLimit() * 0.15,
|
||
|
user: this.promptWindowLimit() * 0.7,
|
||
|
};
|
||
|
|
||
|
this.embedder = embedder ?? new NativeEmbedder();
|
||
|
this.defaultTemp = 0.7;
|
||
|
}
|
||
|
|
||
|
#bedrockClient({ temperature = 0.7 }) {
|
||
|
const { ChatBedrockConverse } = require("@langchain/aws");
|
||
|
return new ChatBedrockConverse({
|
||
|
model: process.env.AWS_BEDROCK_LLM_MODEL_PREFERENCE,
|
||
|
region: process.env.AWS_BEDROCK_LLM_REGION,
|
||
|
credentials: {
|
||
|
accessKeyId: process.env.AWS_BEDROCK_LLM_ACCESS_KEY_ID,
|
||
|
secretAccessKey: process.env.AWS_BEDROCK_LLM_ACCESS_KEY,
|
||
|
},
|
||
|
temperature,
|
||
|
});
|
||
|
}
|
||
|
|
||
|
// For streaming we use Langchain's wrapper to handle weird chunks
|
||
|
// or otherwise absorb headaches that can arise from Ollama models
|
||
|
#convertToLangchainPrototypes(chats = []) {
|
||
|
const {
|
||
|
HumanMessage,
|
||
|
SystemMessage,
|
||
|
AIMessage,
|
||
|
} = require("@langchain/core/messages");
|
||
|
const langchainChats = [];
|
||
|
const roleToMessageMap = {
|
||
|
system: SystemMessage,
|
||
|
user: HumanMessage,
|
||
|
assistant: AIMessage,
|
||
|
};
|
||
|
|
||
|
for (const chat of chats) {
|
||
|
if (!roleToMessageMap.hasOwnProperty(chat.role)) continue;
|
||
|
const MessageClass = roleToMessageMap[chat.role];
|
||
|
langchainChats.push(new MessageClass({ content: chat.content }));
|
||
|
}
|
||
|
|
||
|
return langchainChats;
|
||
|
}
|
||
|
|
||
|
#appendContext(contextTexts = []) {
|
||
|
if (!contextTexts || !contextTexts.length) return "";
|
||
|
return (
|
||
|
"\nContext:\n" +
|
||
|
contextTexts
|
||
|
.map((text, i) => {
|
||
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
||
|
})
|
||
|
.join("")
|
||
|
);
|
||
|
}
|
||
|
|
||
|
streamingEnabled() {
|
||
|
return "streamGetChatCompletion" in this;
|
||
|
}
|
||
|
|
||
|
// Ensure the user set a value for the token limit
|
||
|
// and if undefined - assume 4096 window.
|
||
|
promptWindowLimit() {
|
||
|
const limit = process.env.AWS_BEDROCK_LLM_MODEL_TOKEN_LIMIT || 8191;
|
||
|
if (!limit || isNaN(Number(limit)))
|
||
|
throw new Error("No valid token context limit was set.");
|
||
|
return Number(limit);
|
||
|
}
|
||
|
|
||
|
async isValidChatCompletionModel(_ = "") {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
constructPrompt({
|
||
|
systemPrompt = "",
|
||
|
contextTexts = [],
|
||
|
chatHistory = [],
|
||
|
userPrompt = "",
|
||
|
}) {
|
||
|
// AWS Mistral models do not support system prompts
|
||
|
if (this.model.startsWith("mistral"))
|
||
|
return [...chatHistory, { role: "user", content: userPrompt }];
|
||
|
|
||
|
const prompt = {
|
||
|
role: "system",
|
||
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
||
|
};
|
||
|
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
|
||
|
}
|
||
|
|
||
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
||
|
const model = this.#bedrockClient({ temperature });
|
||
|
const textResponse = await model
|
||
|
.pipe(new StringOutputParser())
|
||
|
.invoke(this.#convertToLangchainPrototypes(messages))
|
||
|
.catch((e) => {
|
||
|
throw new Error(
|
||
|
`AWSBedrock::getChatCompletion failed to communicate with Ollama. ${e.message}`
|
||
|
);
|
||
|
});
|
||
|
|
||
|
if (!textResponse || !textResponse.length)
|
||
|
throw new Error(`AWSBedrock::getChatCompletion text response was empty.`);
|
||
|
|
||
|
return textResponse;
|
||
|
}
|
||
|
|
||
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
||
|
const model = this.#bedrockClient({ temperature });
|
||
|
const stream = await model
|
||
|
.pipe(new StringOutputParser())
|
||
|
.stream(this.#convertToLangchainPrototypes(messages));
|
||
|
return stream;
|
||
|
}
|
||
|
|
||
|
handleStream(response, stream, responseProps) {
|
||
|
const { uuid = uuidv4(), sources = [] } = responseProps;
|
||
|
|
||
|
return new Promise(async (resolve) => {
|
||
|
let fullText = "";
|
||
|
|
||
|
// Establish listener to early-abort a streaming response
|
||
|
// in case things go sideways or the user does not like the response.
|
||
|
// We preserve the generated text but continue as if chat was completed
|
||
|
// to preserve previously generated content.
|
||
|
const handleAbort = () => clientAbortedHandler(resolve, fullText);
|
||
|
response.on("close", handleAbort);
|
||
|
|
||
|
try {
|
||
|
for await (const chunk of stream) {
|
||
|
if (chunk === undefined)
|
||
|
throw new Error(
|
||
|
"Stream returned undefined chunk. Aborting reply - check model provider logs."
|
||
|
);
|
||
|
|
||
|
const content = chunk.hasOwnProperty("content")
|
||
|
? chunk.content
|
||
|
: chunk;
|
||
|
fullText += content;
|
||
|
writeResponseChunk(response, {
|
||
|
uuid,
|
||
|
sources: [],
|
||
|
type: "textResponseChunk",
|
||
|
textResponse: content,
|
||
|
close: false,
|
||
|
error: false,
|
||
|
});
|
||
|
}
|
||
|
|
||
|
writeResponseChunk(response, {
|
||
|
uuid,
|
||
|
sources,
|
||
|
type: "textResponseChunk",
|
||
|
textResponse: "",
|
||
|
close: true,
|
||
|
error: false,
|
||
|
});
|
||
|
response.removeListener("close", handleAbort);
|
||
|
resolve(fullText);
|
||
|
} catch (error) {
|
||
|
writeResponseChunk(response, {
|
||
|
uuid,
|
||
|
sources: [],
|
||
|
type: "textResponseChunk",
|
||
|
textResponse: "",
|
||
|
close: true,
|
||
|
error: `AWSBedrock:streaming - could not stream chat. ${
|
||
|
error?.cause ?? error.message
|
||
|
}`,
|
||
|
});
|
||
|
response.removeListener("close", handleAbort);
|
||
|
}
|
||
|
});
|
||
|
}
|
||
|
|
||
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
||
|
async embedTextInput(textInput) {
|
||
|
return await this.embedder.embedTextInput(textInput);
|
||
|
}
|
||
|
async embedChunks(textChunks = []) {
|
||
|
return await this.embedder.embedChunks(textChunks);
|
||
|
}
|
||
|
|
||
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
||
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
||
|
const messageArray = this.constructPrompt(promptArgs);
|
||
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
module.exports = {
|
||
|
AWSBedrockLLM,
|
||
|
};
|