mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-11 09:10:13 +01:00
94 lines
2.9 KiB
JavaScript
94 lines
2.9 KiB
JavaScript
|
const { toChunks, maximumChunkLength } = require("../../helpers");
|
||
|
|
||
|
class LiteLLMEmbedder {
|
||
|
constructor() {
|
||
|
const { OpenAI: OpenAIApi } = require("openai");
|
||
|
if (!process.env.LITE_LLM_BASE_PATH)
|
||
|
throw new Error(
|
||
|
"LiteLLM must have a valid base path to use for the api."
|
||
|
);
|
||
|
this.basePath = process.env.LITE_LLM_BASE_PATH;
|
||
|
this.openai = new OpenAIApi({
|
||
|
baseURL: this.basePath,
|
||
|
apiKey: process.env.LITE_LLM_API_KEY ?? null,
|
||
|
});
|
||
|
this.model = process.env.EMBEDDING_MODEL_PREF || "text-embedding-ada-002";
|
||
|
|
||
|
// Limit of how many strings we can process in a single pass to stay with resource or network limits
|
||
|
this.maxConcurrentChunks = 500;
|
||
|
this.embeddingMaxChunkLength = maximumChunkLength();
|
||
|
}
|
||
|
|
||
|
async embedTextInput(textInput) {
|
||
|
const result = await this.embedChunks(
|
||
|
Array.isArray(textInput) ? textInput : [textInput]
|
||
|
);
|
||
|
return result?.[0] || [];
|
||
|
}
|
||
|
|
||
|
async embedChunks(textChunks = []) {
|
||
|
// Because there is a hard POST limit on how many chunks can be sent at once to LiteLLM (~8mb)
|
||
|
// we concurrently execute each max batch of text chunks possible.
|
||
|
// Refer to constructor maxConcurrentChunks for more info.
|
||
|
const embeddingRequests = [];
|
||
|
for (const chunk of toChunks(textChunks, this.maxConcurrentChunks)) {
|
||
|
embeddingRequests.push(
|
||
|
new Promise((resolve) => {
|
||
|
this.openai.embeddings
|
||
|
.create({
|
||
|
model: this.model,
|
||
|
input: chunk,
|
||
|
})
|
||
|
.then((result) => {
|
||
|
resolve({ data: result?.data, error: null });
|
||
|
})
|
||
|
.catch((e) => {
|
||
|
e.type =
|
||
|
e?.response?.data?.error?.code ||
|
||
|
e?.response?.status ||
|
||
|
"failed_to_embed";
|
||
|
e.message = e?.response?.data?.error?.message || e.message;
|
||
|
resolve({ data: [], error: e });
|
||
|
});
|
||
|
})
|
||
|
);
|
||
|
}
|
||
|
|
||
|
const { data = [], error = null } = await Promise.all(
|
||
|
embeddingRequests
|
||
|
).then((results) => {
|
||
|
// If any errors were returned from LiteLLM abort the entire sequence because the embeddings
|
||
|
// will be incomplete.
|
||
|
const errors = results
|
||
|
.filter((res) => !!res.error)
|
||
|
.map((res) => res.error)
|
||
|
.flat();
|
||
|
if (errors.length > 0) {
|
||
|
let uniqueErrors = new Set();
|
||
|
errors.map((error) =>
|
||
|
uniqueErrors.add(`[${error.type}]: ${error.message}`)
|
||
|
);
|
||
|
|
||
|
return {
|
||
|
data: [],
|
||
|
error: Array.from(uniqueErrors).join(", "),
|
||
|
};
|
||
|
}
|
||
|
return {
|
||
|
data: results.map((res) => res?.data || []).flat(),
|
||
|
error: null,
|
||
|
};
|
||
|
});
|
||
|
|
||
|
if (!!error) throw new Error(`LiteLLM Failed to embed: ${error}`);
|
||
|
return data.length > 0 &&
|
||
|
data.every((embd) => embd.hasOwnProperty("embedding"))
|
||
|
? data.map((embd) => embd.embedding)
|
||
|
: null;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
module.exports = {
|
||
|
LiteLLMEmbedder,
|
||
|
};
|