mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-05 06:20:10 +01:00
parent
26549df6a9
commit
24227e48a7
@ -58,6 +58,7 @@ Some cool features of AnythingLLM
|
||||
- [OpenAI](https://openai.com)
|
||||
- [Azure OpenAI](https://azure.microsoft.com/en-us/products/ai-services/openai-service)
|
||||
- [Anthropic ClaudeV2](https://www.anthropic.com/)
|
||||
- [Google Gemini Pro](https://ai.google.dev/)
|
||||
- [LM Studio (all models)](https://lmstudio.ai)
|
||||
- [LocalAi (all models)](https://localai.io/)
|
||||
|
||||
|
@ -11,6 +11,10 @@ GID='1000'
|
||||
# OPEN_AI_KEY=
|
||||
# OPEN_MODEL_PREF='gpt-3.5-turbo'
|
||||
|
||||
# LLM_PROVIDER='gemini'
|
||||
# GEMINI_API_KEY=
|
||||
# GEMINI_LLM_MODEL_PREF='gemini-pro'
|
||||
|
||||
# LLM_PROVIDER='azure'
|
||||
# AZURE_OPENAI_ENDPOINT=
|
||||
# AZURE_OPENAI_KEY=
|
||||
|
@ -0,0 +1,43 @@
|
||||
export default function GeminiLLMOptions({ settings }) {
|
||||
return (
|
||||
<div className="w-full flex flex-col">
|
||||
<div className="w-full flex items-center gap-4">
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-4">
|
||||
Google AI API Key
|
||||
</label>
|
||||
<input
|
||||
type="password"
|
||||
name="GeminiLLMApiKey"
|
||||
className="bg-zinc-900 text-white placeholder-white placeholder-opacity-60 text-sm rounded-lg focus:border-white block w-full p-2.5"
|
||||
placeholder="Google Gemini API Key"
|
||||
defaultValue={settings?.GeminiLLMApiKey ? "*".repeat(20) : ""}
|
||||
required={true}
|
||||
autoComplete="off"
|
||||
spellCheck={false}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-4">
|
||||
Chat Model Selection
|
||||
</label>
|
||||
<select
|
||||
name="GeminiLLMModelPref"
|
||||
defaultValue={settings?.GeminiLLMModelPref || "gemini-pro"}
|
||||
required={true}
|
||||
className="bg-zinc-900 border border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
|
||||
>
|
||||
{["gemini-pro"].map((model) => {
|
||||
return (
|
||||
<option key={model} value={model}>
|
||||
{model}
|
||||
</option>
|
||||
);
|
||||
})}
|
||||
</select>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
BIN
frontend/src/media/llmprovider/gemini.png
Normal file
BIN
frontend/src/media/llmprovider/gemini.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 26 KiB |
@ -46,10 +46,10 @@ export default function GeneralEmbeddingPreference() {
|
||||
|
||||
const { error } = await System.updateSystem(settingsData);
|
||||
if (error) {
|
||||
showToast(`Failed to save LLM settings: ${error}`, "error");
|
||||
showToast(`Failed to save embedding settings: ${error}`, "error");
|
||||
setHasChanges(true);
|
||||
} else {
|
||||
showToast("LLM preferences saved successfully.", "success");
|
||||
showToast("Embedding preferences saved successfully.", "success");
|
||||
setHasChanges(false);
|
||||
}
|
||||
setSaving(false);
|
||||
@ -132,7 +132,7 @@ export default function GeneralEmbeddingPreference() {
|
||||
<div className="text-white text-sm font-medium py-4">
|
||||
Embedding Providers
|
||||
</div>
|
||||
<div className="w-full flex md:flex-wrap overflow-x-scroll gap-4 max-w-[900px]">
|
||||
<div className="w-full flex md:flex-wrap overflow-x-scroll gap-4">
|
||||
<input
|
||||
hidden={true}
|
||||
name="EmbeddingEngine"
|
||||
@ -174,7 +174,7 @@ export default function GeneralEmbeddingPreference() {
|
||||
onClick={updateChoice}
|
||||
/>
|
||||
</div>
|
||||
<div className="mt-10 flex flex-wrap gap-4 max-w-[800px]">
|
||||
<div className="mt-10 flex flex-wrap gap-4">
|
||||
{embeddingChoice === "native" && <NativeEmbeddingOptions />}
|
||||
{embeddingChoice === "openai" && (
|
||||
<OpenAiOptions settings={settings} />
|
||||
|
@ -7,6 +7,7 @@ import AnythingLLMIcon from "@/media/logo/anything-llm-icon.png";
|
||||
import OpenAiLogo from "@/media/llmprovider/openai.png";
|
||||
import AzureOpenAiLogo from "@/media/llmprovider/azure.png";
|
||||
import AnthropicLogo from "@/media/llmprovider/anthropic.png";
|
||||
import GeminiLogo from "@/media/llmprovider/gemini.png";
|
||||
import LMStudioLogo from "@/media/llmprovider/lmstudio.png";
|
||||
import LocalAiLogo from "@/media/llmprovider/localai.png";
|
||||
import PreLoader from "@/components/Preloader";
|
||||
@ -17,6 +18,7 @@ import AnthropicAiOptions from "@/components/LLMSelection/AnthropicAiOptions";
|
||||
import LMStudioOptions from "@/components/LLMSelection/LMStudioOptions";
|
||||
import LocalAiOptions from "@/components/LLMSelection/LocalAiOptions";
|
||||
import NativeLLMOptions from "@/components/LLMSelection/NativeLLMOptions";
|
||||
import GeminiLLMOptions from "@/components/LLMSelection/GeminiLLMOptions";
|
||||
|
||||
export default function GeneralLLMPreference() {
|
||||
const [saving, setSaving] = useState(false);
|
||||
@ -105,13 +107,13 @@ export default function GeneralLLMPreference() {
|
||||
<div className="text-white text-sm font-medium py-4">
|
||||
LLM Providers
|
||||
</div>
|
||||
<div className="w-full flex md:flex-wrap overflow-x-scroll gap-4 max-w-[900px]">
|
||||
<div className="w-full flex md:flex-wrap overflow-x-scroll gap-4">
|
||||
<input hidden={true} name="LLMProvider" value={llmChoice} />
|
||||
<LLMProviderOption
|
||||
name="OpenAI"
|
||||
value="openai"
|
||||
link="openai.com"
|
||||
description="The standard option for most non-commercial use. Provides both chat and embedding."
|
||||
description="The standard option for most non-commercial use."
|
||||
checked={llmChoice === "openai"}
|
||||
image={OpenAiLogo}
|
||||
onClick={updateLLMChoice}
|
||||
@ -120,7 +122,7 @@ export default function GeneralLLMPreference() {
|
||||
name="Azure OpenAI"
|
||||
value="azure"
|
||||
link="azure.microsoft.com"
|
||||
description="The enterprise option of OpenAI hosted on Azure services. Provides both chat and embedding."
|
||||
description="The enterprise option of OpenAI hosted on Azure services."
|
||||
checked={llmChoice === "azure"}
|
||||
image={AzureOpenAiLogo}
|
||||
onClick={updateLLMChoice}
|
||||
@ -129,11 +131,20 @@ export default function GeneralLLMPreference() {
|
||||
name="Anthropic Claude 2"
|
||||
value="anthropic"
|
||||
link="anthropic.com"
|
||||
description="A friendly AI Assistant hosted by Anthropic. Provides chat services only!"
|
||||
description="A friendly AI Assistant hosted by Anthropic."
|
||||
checked={llmChoice === "anthropic"}
|
||||
image={AnthropicLogo}
|
||||
onClick={updateLLMChoice}
|
||||
/>
|
||||
<LLMProviderOption
|
||||
name="Google Gemini"
|
||||
value="gemini"
|
||||
link="ai.google.dev"
|
||||
description="Google's largest and most capable AI model"
|
||||
checked={llmChoice === "gemini"}
|
||||
image={GeminiLogo}
|
||||
onClick={updateLLMChoice}
|
||||
/>
|
||||
<LLMProviderOption
|
||||
name="LM Studio"
|
||||
value="lmstudio"
|
||||
@ -173,6 +184,9 @@ export default function GeneralLLMPreference() {
|
||||
{llmChoice === "anthropic" && (
|
||||
<AnthropicAiOptions settings={settings} showAlert={true} />
|
||||
)}
|
||||
{llmChoice === "gemini" && (
|
||||
<GeminiLLMOptions settings={settings} />
|
||||
)}
|
||||
{llmChoice === "lmstudio" && (
|
||||
<LMStudioOptions settings={settings} showAlert={true} />
|
||||
)}
|
||||
|
@ -55,10 +55,10 @@ export default function GeneralVectorDatabase() {
|
||||
|
||||
const { error } = await System.updateSystem(settingsData);
|
||||
if (error) {
|
||||
showToast(`Failed to save LLM settings: ${error}`, "error");
|
||||
showToast(`Failed to save vector database settings: ${error}`, "error");
|
||||
setHasChanges(true);
|
||||
} else {
|
||||
showToast("LLM preferences saved successfully.", "success");
|
||||
showToast("Vector database preferences saved successfully.", "success");
|
||||
setHasChanges(false);
|
||||
}
|
||||
setSaving(false);
|
||||
|
@ -4,6 +4,7 @@ import AnythingLLMIcon from "@/media/logo/anything-llm-icon.png";
|
||||
import OpenAiLogo from "@/media/llmprovider/openai.png";
|
||||
import AzureOpenAiLogo from "@/media/llmprovider/azure.png";
|
||||
import AnthropicLogo from "@/media/llmprovider/anthropic.png";
|
||||
import GeminiLogo from "@/media/llmprovider/gemini.png";
|
||||
import LMStudioLogo from "@/media/llmprovider/lmstudio.png";
|
||||
import LocalAiLogo from "@/media/llmprovider/localai.png";
|
||||
import ChromaLogo from "@/media/vectordbs/chroma.png";
|
||||
@ -38,6 +39,14 @@ const LLM_SELECTION_PRIVACY = {
|
||||
],
|
||||
logo: AnthropicLogo,
|
||||
},
|
||||
gemini: {
|
||||
name: "Google Gemini",
|
||||
description: [
|
||||
"Your chats are de-identified and used in training",
|
||||
"Your prompts and document text are visible in responses to Google",
|
||||
],
|
||||
logo: GeminiLogo,
|
||||
},
|
||||
lmstudio: {
|
||||
name: "LMStudio",
|
||||
description: [
|
||||
|
@ -76,7 +76,7 @@ function EmbeddingSelection({ nextStep, prevStep, currentStep }) {
|
||||
name="OpenAI"
|
||||
value="openai"
|
||||
link="openai.com"
|
||||
description="The standard option for most non-commercial use. Provides both chat and embedding."
|
||||
description="The standard option for most non-commercial use."
|
||||
checked={embeddingChoice === "openai"}
|
||||
image={OpenAiLogo}
|
||||
onClick={updateChoice}
|
||||
@ -85,7 +85,7 @@ function EmbeddingSelection({ nextStep, prevStep, currentStep }) {
|
||||
name="Azure OpenAI"
|
||||
value="azure"
|
||||
link="azure.microsoft.com"
|
||||
description="The enterprise option of OpenAI hosted on Azure services. Provides both chat and embedding."
|
||||
description="The enterprise option of OpenAI hosted on Azure services."
|
||||
checked={embeddingChoice === "azure"}
|
||||
image={AzureOpenAiLogo}
|
||||
onClick={updateChoice}
|
||||
|
@ -3,6 +3,7 @@ import AnythingLLMIcon from "@/media/logo/anything-llm-icon.png";
|
||||
import OpenAiLogo from "@/media/llmprovider/openai.png";
|
||||
import AzureOpenAiLogo from "@/media/llmprovider/azure.png";
|
||||
import AnthropicLogo from "@/media/llmprovider/anthropic.png";
|
||||
import GeminiLogo from "@/media/llmprovider/gemini.png";
|
||||
import LMStudioLogo from "@/media/llmprovider/lmstudio.png";
|
||||
import LocalAiLogo from "@/media/llmprovider/localai.png";
|
||||
import System from "@/models/system";
|
||||
@ -14,6 +15,7 @@ import AnthropicAiOptions from "@/components/LLMSelection/AnthropicAiOptions";
|
||||
import LMStudioOptions from "@/components/LLMSelection/LMStudioOptions";
|
||||
import LocalAiOptions from "@/components/LLMSelection/LocalAiOptions";
|
||||
import NativeLLMOptions from "@/components/LLMSelection/NativeLLMOptions";
|
||||
import GeminiLLMOptions from "@/components/LLMSelection/GeminiLLMOptions";
|
||||
|
||||
function LLMSelection({ nextStep, prevStep, currentStep }) {
|
||||
const [llmChoice, setLLMChoice] = useState("openai");
|
||||
@ -71,7 +73,7 @@ function LLMSelection({ nextStep, prevStep, currentStep }) {
|
||||
name="OpenAI"
|
||||
value="openai"
|
||||
link="openai.com"
|
||||
description="The standard option for most non-commercial use. Provides both chat and embedding."
|
||||
description="The standard option for most non-commercial use."
|
||||
checked={llmChoice === "openai"}
|
||||
image={OpenAiLogo}
|
||||
onClick={updateLLMChoice}
|
||||
@ -80,7 +82,7 @@ function LLMSelection({ nextStep, prevStep, currentStep }) {
|
||||
name="Azure OpenAI"
|
||||
value="azure"
|
||||
link="azure.microsoft.com"
|
||||
description="The enterprise option of OpenAI hosted on Azure services. Provides both chat and embedding."
|
||||
description="The enterprise option of OpenAI hosted on Azure services."
|
||||
checked={llmChoice === "azure"}
|
||||
image={AzureOpenAiLogo}
|
||||
onClick={updateLLMChoice}
|
||||
@ -94,6 +96,15 @@ function LLMSelection({ nextStep, prevStep, currentStep }) {
|
||||
image={AnthropicLogo}
|
||||
onClick={updateLLMChoice}
|
||||
/>
|
||||
<LLMProviderOption
|
||||
name="Google Gemini"
|
||||
value="gemini"
|
||||
link="ai.google.dev"
|
||||
description="Google's largest and most capable AI model"
|
||||
checked={llmChoice === "gemini"}
|
||||
image={GeminiLogo}
|
||||
onClick={updateLLMChoice}
|
||||
/>
|
||||
<LLMProviderOption
|
||||
name="LM Studio"
|
||||
value="lmstudio"
|
||||
@ -127,6 +138,7 @@ function LLMSelection({ nextStep, prevStep, currentStep }) {
|
||||
{llmChoice === "anthropic" && (
|
||||
<AnthropicAiOptions settings={settings} />
|
||||
)}
|
||||
{llmChoice === "gemini" && <GeminiLLMOptions settings={settings} />}
|
||||
{llmChoice === "lmstudio" && (
|
||||
<LMStudioOptions settings={settings} />
|
||||
)}
|
||||
|
@ -8,6 +8,10 @@ JWT_SECRET="my-random-string-for-seeding" # Please generate random string at lea
|
||||
# OPEN_AI_KEY=
|
||||
# OPEN_MODEL_PREF='gpt-3.5-turbo'
|
||||
|
||||
# LLM_PROVIDER='gemini'
|
||||
# GEMINI_API_KEY=
|
||||
# GEMINI_LLM_MODEL_PREF='gemini-pro'
|
||||
|
||||
# LLM_PROVIDER='azure'
|
||||
# AZURE_OPENAI_ENDPOINT=
|
||||
# AZURE_OPENAI_KEY=
|
||||
|
@ -87,6 +87,20 @@ const SystemSettings = {
|
||||
}
|
||||
: {}),
|
||||
|
||||
...(llmProvider === "gemini"
|
||||
? {
|
||||
GeminiLLMApiKey: !!process.env.GEMINI_API_KEY,
|
||||
GeminiLLMModelPref:
|
||||
process.env.GEMINI_LLM_MODEL_PREF || "gemini-pro",
|
||||
|
||||
// For embedding credentials when Gemini is selected.
|
||||
OpenAiKey: !!process.env.OPEN_AI_KEY,
|
||||
AzureOpenAiEndpoint: process.env.AZURE_OPENAI_ENDPOINT,
|
||||
AzureOpenAiKey: !!process.env.AZURE_OPENAI_KEY,
|
||||
AzureOpenAiEmbeddingModelPref: process.env.EMBEDDING_MODEL_PREF,
|
||||
}
|
||||
: {}),
|
||||
|
||||
...(llmProvider === "lmstudio"
|
||||
? {
|
||||
LMStudioBasePath: process.env.LMSTUDIO_BASE_PATH,
|
||||
|
@ -22,6 +22,7 @@
|
||||
"dependencies": {
|
||||
"@anthropic-ai/sdk": "^0.8.1",
|
||||
"@azure/openai": "^1.0.0-beta.3",
|
||||
"@google/generative-ai": "^0.1.3",
|
||||
"@googleapis/youtube": "^9.0.0",
|
||||
"@pinecone-database/pinecone": "^0.1.6",
|
||||
"@prisma/client": "5.3.0",
|
||||
@ -65,4 +66,4 @@
|
||||
"nodemon": "^2.0.22",
|
||||
"prettier": "^2.4.1"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
200
server/utils/AiProviders/gemini/index.js
Normal file
200
server/utils/AiProviders/gemini/index.js
Normal file
@ -0,0 +1,200 @@
|
||||
const { v4 } = require("uuid");
|
||||
const { chatPrompt } = require("../../chats");
|
||||
|
||||
class GeminiLLM {
|
||||
constructor(embedder = null) {
|
||||
if (!process.env.GEMINI_API_KEY)
|
||||
throw new Error("No Gemini API key was set.");
|
||||
|
||||
// Docs: https://ai.google.dev/tutorials/node_quickstart
|
||||
const { GoogleGenerativeAI } = require("@google/generative-ai");
|
||||
const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY);
|
||||
this.model = process.env.GEMINI_LLM_MODEL_PREF || "gemini-pro";
|
||||
this.gemini = genAI.getGenerativeModel({ model: this.model });
|
||||
this.limits = {
|
||||
history: this.promptWindowLimit() * 0.15,
|
||||
system: this.promptWindowLimit() * 0.15,
|
||||
user: this.promptWindowLimit() * 0.7,
|
||||
};
|
||||
|
||||
if (!embedder)
|
||||
throw new Error(
|
||||
"INVALID GEMINI LLM SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use Gemini as your LLM."
|
||||
);
|
||||
this.embedder = embedder;
|
||||
this.answerKey = v4().split("-")[0];
|
||||
}
|
||||
|
||||
streamingEnabled() {
|
||||
return "streamChat" in this && "streamGetChatCompletion" in this;
|
||||
}
|
||||
|
||||
promptWindowLimit() {
|
||||
switch (this.model) {
|
||||
case "gemini-pro":
|
||||
return 30_720;
|
||||
default:
|
||||
return 30_720; // assume a gemini-pro model
|
||||
}
|
||||
}
|
||||
|
||||
isValidChatCompletionModel(modelName = "") {
|
||||
const validModels = ["gemini-pro"];
|
||||
return validModels.includes(modelName);
|
||||
}
|
||||
|
||||
// Moderation cannot be done with Gemini.
|
||||
// Not implemented so must be stubbed
|
||||
async isSafe(_input = "") {
|
||||
return { safe: true, reasons: [] };
|
||||
}
|
||||
|
||||
constructPrompt({
|
||||
systemPrompt = "",
|
||||
contextTexts = [],
|
||||
chatHistory = [],
|
||||
userPrompt = "",
|
||||
}) {
|
||||
const prompt = {
|
||||
role: "system",
|
||||
content: `${systemPrompt}
|
||||
Context:
|
||||
${contextTexts
|
||||
.map((text, i) => {
|
||||
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
||||
})
|
||||
.join("")}`,
|
||||
};
|
||||
return [
|
||||
prompt,
|
||||
{ role: "assistant", content: "Okay." },
|
||||
...chatHistory,
|
||||
{ role: "USER_PROMPT", content: userPrompt },
|
||||
];
|
||||
}
|
||||
|
||||
// This will take an OpenAi format message array and only pluck valid roles from it.
|
||||
formatMessages(messages = []) {
|
||||
// Gemini roles are either user || model.
|
||||
// and all "content" is relabeled to "parts"
|
||||
return messages
|
||||
.map((message) => {
|
||||
if (message.role === "system")
|
||||
return { role: "user", parts: message.content };
|
||||
if (message.role === "user")
|
||||
return { role: "user", parts: message.content };
|
||||
if (message.role === "assistant")
|
||||
return { role: "model", parts: message.content };
|
||||
return null;
|
||||
})
|
||||
.filter((msg) => !!msg);
|
||||
}
|
||||
|
||||
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
|
||||
if (!this.isValidChatCompletionModel(this.model))
|
||||
throw new Error(
|
||||
`Gemini chat: ${this.model} is not valid for chat completion!`
|
||||
);
|
||||
|
||||
const compressedHistory = await this.compressMessages(
|
||||
{
|
||||
systemPrompt: chatPrompt(workspace),
|
||||
chatHistory,
|
||||
},
|
||||
rawHistory
|
||||
);
|
||||
|
||||
const chatThread = this.gemini.startChat({
|
||||
history: this.formatMessages(compressedHistory),
|
||||
});
|
||||
const result = await chatThread.sendMessage(prompt);
|
||||
const response = result.response;
|
||||
const responseText = response.text();
|
||||
|
||||
if (!responseText) throw new Error("Gemini: No response could be parsed.");
|
||||
|
||||
return responseText;
|
||||
}
|
||||
|
||||
async getChatCompletion(messages = [], _opts = {}) {
|
||||
if (!this.isValidChatCompletionModel(this.model))
|
||||
throw new Error(
|
||||
`Gemini chat: ${this.model} is not valid for chat completion!`
|
||||
);
|
||||
|
||||
const prompt = messages.find(
|
||||
(chat) => chat.role === "USER_PROMPT"
|
||||
)?.content;
|
||||
const chatThread = this.gemini.startChat({
|
||||
history: this.formatMessages(messages),
|
||||
});
|
||||
const result = await chatThread.sendMessage(prompt);
|
||||
const response = result.response;
|
||||
const responseText = response.text();
|
||||
|
||||
if (!responseText) throw new Error("Gemini: No response could be parsed.");
|
||||
|
||||
return responseText;
|
||||
}
|
||||
|
||||
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
|
||||
if (!this.isValidChatCompletionModel(this.model))
|
||||
throw new Error(
|
||||
`Gemini chat: ${this.model} is not valid for chat completion!`
|
||||
);
|
||||
|
||||
const compressedHistory = await this.compressMessages(
|
||||
{
|
||||
systemPrompt: chatPrompt(workspace),
|
||||
chatHistory,
|
||||
},
|
||||
rawHistory
|
||||
);
|
||||
|
||||
const chatThread = this.gemini.startChat({
|
||||
history: this.formatMessages(compressedHistory),
|
||||
});
|
||||
const responseStream = await chatThread.sendMessageStream(prompt);
|
||||
if (!responseStream.stream)
|
||||
throw new Error("Could not stream response stream from Gemini.");
|
||||
|
||||
return { type: "geminiStream", ...responseStream };
|
||||
}
|
||||
|
||||
async streamGetChatCompletion(messages = [], _opts = {}) {
|
||||
if (!this.isValidChatCompletionModel(this.model))
|
||||
throw new Error(
|
||||
`Gemini chat: ${this.model} is not valid for chat completion!`
|
||||
);
|
||||
|
||||
const prompt = messages.find(
|
||||
(chat) => chat.role === "USER_PROMPT"
|
||||
)?.content;
|
||||
const chatThread = this.gemini.startChat({
|
||||
history: this.formatMessages(messages),
|
||||
});
|
||||
const responseStream = await chatThread.sendMessageStream(prompt);
|
||||
if (!responseStream.stream)
|
||||
throw new Error("Could not stream response stream from Gemini.");
|
||||
|
||||
return { type: "geminiStream", ...responseStream };
|
||||
}
|
||||
|
||||
async compressMessages(promptArgs = {}, rawHistory = []) {
|
||||
const { messageArrayCompressor } = require("../../helpers/chat");
|
||||
const messageArray = this.constructPrompt(promptArgs);
|
||||
return await messageArrayCompressor(this, messageArray, rawHistory);
|
||||
}
|
||||
|
||||
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
||||
async embedTextInput(textInput) {
|
||||
return await this.embedder.embedTextInput(textInput);
|
||||
}
|
||||
async embedChunks(textChunks = []) {
|
||||
return await this.embedder.embedChunks(textChunks);
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
GeminiLLM,
|
||||
};
|
@ -202,6 +202,35 @@ async function streamEmptyEmbeddingChat({
|
||||
function handleStreamResponses(response, stream, responseProps) {
|
||||
const { uuid = uuidv4(), sources = [] } = responseProps;
|
||||
|
||||
// Gemini likes to return a stream asyncIterator which will
|
||||
// be a totally different object than other models.
|
||||
if (stream?.type === "geminiStream") {
|
||||
return new Promise(async (resolve) => {
|
||||
let fullText = "";
|
||||
for await (const chunk of stream.stream) {
|
||||
fullText += chunk.text();
|
||||
writeResponseChunk(response, {
|
||||
uuid,
|
||||
sources: [],
|
||||
type: "textResponseChunk",
|
||||
textResponse: chunk.text(),
|
||||
close: false,
|
||||
error: false,
|
||||
});
|
||||
}
|
||||
|
||||
writeResponseChunk(response, {
|
||||
uuid,
|
||||
sources,
|
||||
type: "textResponseChunk",
|
||||
textResponse: "",
|
||||
close: true,
|
||||
error: false,
|
||||
});
|
||||
resolve(fullText);
|
||||
});
|
||||
}
|
||||
|
||||
// If stream is not a regular OpenAI Stream (like if using native model)
|
||||
// we can just iterate the stream content instead.
|
||||
if (!stream.hasOwnProperty("data")) {
|
||||
|
@ -34,6 +34,9 @@ function getLLMProvider() {
|
||||
case "anthropic":
|
||||
const { AnthropicLLM } = require("../AiProviders/anthropic");
|
||||
return new AnthropicLLM(embedder);
|
||||
case "gemini":
|
||||
const { GeminiLLM } = require("../AiProviders/gemini");
|
||||
return new GeminiLLM(embedder);
|
||||
case "lmstudio":
|
||||
const { LMStudioLLM } = require("../AiProviders/lmStudio");
|
||||
return new LMStudioLLM(embedder);
|
||||
|
@ -44,6 +44,15 @@ const KEY_MAPPING = {
|
||||
checks: [isNotEmpty, validAnthropicModel],
|
||||
},
|
||||
|
||||
GeminiLLMApiKey: {
|
||||
envKey: "GEMINI_API_KEY",
|
||||
checks: [isNotEmpty],
|
||||
},
|
||||
GeminiLLMModelPref: {
|
||||
envKey: "GEMINI_LLM_MODEL_PREF",
|
||||
checks: [isNotEmpty, validGeminiModel],
|
||||
},
|
||||
|
||||
// LMStudio Settings
|
||||
LMStudioBasePath: {
|
||||
envKey: "LMSTUDIO_BASE_PATH",
|
||||
@ -204,12 +213,20 @@ function supportedLLM(input = "") {
|
||||
"openai",
|
||||
"azure",
|
||||
"anthropic",
|
||||
"gemini",
|
||||
"lmstudio",
|
||||
"localai",
|
||||
"native",
|
||||
].includes(input);
|
||||
}
|
||||
|
||||
function validGeminiModel(input = "") {
|
||||
const validModels = ["gemini-pro"];
|
||||
return validModels.includes(input)
|
||||
? null
|
||||
: `Invalid Model type. Must be one of ${validModels.join(", ")}.`;
|
||||
}
|
||||
|
||||
function validAnthropicModel(input = "") {
|
||||
const validModels = ["claude-2", "claude-instant-1"];
|
||||
return validModels.includes(input)
|
||||
|
@ -140,6 +140,11 @@
|
||||
resolved "https://registry.yarnpkg.com/@gar/promisify/-/promisify-1.1.3.tgz#555193ab2e3bb3b6adc3d551c9c030d9e860daf6"
|
||||
integrity sha512-k2Ty1JcVojjJFwrg/ThKi2ujJ7XNLYaFGNB/bWT9wGR+oSMJHMa5w+CUq6p/pVrKeNNgA7pCqEcjSnHVoqJQFw==
|
||||
|
||||
"@google/generative-ai@^0.1.3":
|
||||
version "0.1.3"
|
||||
resolved "https://registry.yarnpkg.com/@google/generative-ai/-/generative-ai-0.1.3.tgz#8e529d4d86c85b64d297b4abf1a653d613a09a9f"
|
||||
integrity sha512-Cm4uJX1sKarpm1mje/MiOIinM7zdUUrQp/5/qGPAgznbdd/B9zup5ehT6c1qGqycFcSopTA1J1HpqHS5kJR8hQ==
|
||||
|
||||
"@googleapis/youtube@^9.0.0":
|
||||
version "9.0.0"
|
||||
resolved "https://registry.yarnpkg.com/@googleapis/youtube/-/youtube-9.0.0.tgz#e45f6f5f7eac198c6391782b94b3ca54bacf0b63"
|
||||
|
Loading…
Reference in New Issue
Block a user