Merge branch 'master' of github.com:Mintplex-Labs/anything-llm

This commit is contained in:
timothycarambat 2024-05-23 10:46:22 -07:00
commit 318025baee
9 changed files with 167 additions and 66 deletions

View File

@ -30,7 +30,11 @@ export default function GeminiLLMOptions({ settings }) {
required={true}
className="bg-zinc-900 border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
>
{["gemini-pro", "gemini-1.5-pro-latest"].map((model) => {
{[
"gemini-pro",
"gemini-1.5-pro-latest",
"gemini-1.5-flash-latest",
].map((model) => {
return (
<option key={model} value={model}>
{model}

View File

@ -10,7 +10,7 @@ export const DISABLED_PROVIDERS = [
];
const PROVIDER_DEFAULT_MODELS = {
openai: [],
gemini: ["gemini-pro", "gemini-1.5-pro-latest"],
gemini: ["gemini-pro", "gemini-1.5-pro-latest", "gemini-1.5-flash-latest"],
anthropic: [
"claude-instant-1.2",
"claude-2.0",

View File

@ -17,8 +17,12 @@ class GeminiLLM {
this.gemini = genAI.getGenerativeModel(
{ model: this.model },
{
// Gemini-1.5-pro is only available on the v1beta API.
apiVersion: this.model === "gemini-1.5-pro-latest" ? "v1beta" : "v1",
// Gemini-1.5-pro and Gemini-1.5-flash are only available on the v1beta API.
apiVersion:
this.model === "gemini-1.5-pro-latest" ||
this.model === "gemini-1.5-flash-latest"
? "v1beta"
: "v1",
}
);
this.limits = {
@ -95,7 +99,11 @@ class GeminiLLM {
}
isValidChatCompletionModel(modelName = "") {
const validModels = ["gemini-pro", "gemini-1.5-pro-latest"];
const validModels = [
"gemini-pro",
"gemini-1.5-pro-latest",
"gemini-1.5-flash-latest",
];
return validModels.includes(modelName);
}

View File

@ -1,7 +1,6 @@
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const {
writeResponseChunk,
clientAbortedHandler,
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
class LiteLLM {
@ -113,45 +112,7 @@ class LiteLLM {
}
handleStream(response, stream, responseProps) {
const { uuid = uuidv4(), sources = [] } = responseProps;
return new Promise(async (resolve) => {
let fullText = "";
const handleAbort = () => clientAbortedHandler(resolve, fullText);
response.on("close", handleAbort);
for await (const chunk of stream) {
const message = chunk?.choices?.[0];
const token = message?.delta?.content;
if (token) {
fullText += token;
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: token,
close: false,
error: false,
});
}
// LiteLLM does not give a finish reason in stream until the final chunk
if (message.finish_reason || message.finish_reason === "stop") {
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
response.removeListener("close", handleAbort);
resolve(fullText);
}
}
});
return handleDefaultStreamResponseV2(response, stream, responseProps);
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations

View File

@ -151,16 +151,27 @@ async function chatWithWorkspace(
};
}
contextTexts = [...contextTexts, ...vectorSearchResults.contextTexts];
const { fillSourceWindow } = require("../helpers/chat");
const filledSources = fillSourceWindow({
nDocs: workspace?.topN || 4,
searchResults: vectorSearchResults.sources,
history: rawHistory,
filterIdentifiers: pinnedDocIdentifiers,
});
// Why does contextTexts get all the info, but sources only get current search?
// This is to give the ability of the LLM to "comprehend" a contextual response without
// populating the Citations under a response with documents the user "thinks" are irrelevant
// due to how we manage backfilling of the context to keep chats with the LLM more correct in responses.
// If a past citation was used to answer the question - that is visible in the history so it logically makes sense
// and does not appear to the user that a new response used information that is otherwise irrelevant for a given prompt.
// TLDR; reduces GitHub issues for "LLM citing document that has no answer in it" while keep answers highly accurate.
contextTexts = [...contextTexts, ...filledSources.contextTexts];
sources = [...sources, ...vectorSearchResults.sources];
// If in query mode and no sources are found from the vector search and no pinned documents, do not
// If in query mode and no context chunks are found from search, backfill, or pins - do not
// let the LLM try to hallucinate a response or use general knowledge and exit early
if (
chatMode === "query" &&
vectorSearchResults.sources.length === 0 &&
pinnedDocIdentifiers.length === 0
) {
if (chatMode === "query" && contextTexts.length === 0) {
return {
id: uuid,
type: "textResponse",
@ -224,9 +235,7 @@ async function recentChatHistory({
workspace,
thread = null,
messageLimit = 20,
chatMode = null,
}) {
if (chatMode === "query") return { rawHistory: [], chatHistory: [] };
const rawHistory = (
await WorkspaceChats.where(
{

View File

@ -100,7 +100,6 @@ async function streamChatWithWorkspace(
workspace,
thread,
messageLimit,
chatMode,
});
// Look for pinned documents and see if the user decided to use this feature. We will also do a vector search
@ -157,16 +156,27 @@ async function streamChatWithWorkspace(
return;
}
contextTexts = [...contextTexts, ...vectorSearchResults.contextTexts];
const { fillSourceWindow } = require("../helpers/chat");
const filledSources = fillSourceWindow({
nDocs: workspace?.topN || 4,
searchResults: vectorSearchResults.sources,
history: rawHistory,
filterIdentifiers: pinnedDocIdentifiers,
});
// Why does contextTexts get all the info, but sources only get current search?
// This is to give the ability of the LLM to "comprehend" a contextual response without
// populating the Citations under a response with documents the user "thinks" are irrelevant
// due to how we manage backfilling of the context to keep chats with the LLM more correct in responses.
// If a past citation was used to answer the question - that is visible in the history so it logically makes sense
// and does not appear to the user that a new response used information that is otherwise irrelevant for a given prompt.
// TLDR; reduces GitHub issues for "LLM citing document that has no answer in it" while keep answers highly accurate.
contextTexts = [...contextTexts, ...filledSources.contextTexts];
sources = [...sources, ...vectorSearchResults.sources];
// If in query mode and no sources are found from the vector search and no pinned documents, do not
// If in query mode and no context chunks are found from search, backfill, or pins - do not
// let the LLM try to hallucinate a response or use general knowledge and exit early
if (
chatMode === "query" &&
sources.length === 0 &&
pinnedDocIdentifiers.length === 0
) {
if (chatMode === "query" && contextTexts.length === 0) {
writeResponseChunk(response, {
id: uuid,
type: "textResponse",

View File

@ -1,3 +1,5 @@
const { sourceIdentifier } = require("../../chats");
const { safeJsonParse } = require("../../http");
const { TokenManager } = require("../tiktoken");
const { convertToPromptHistory } = require("./responses");
@ -343,7 +345,104 @@ function cannonball({
return truncatedText;
}
/**
* Fill the sources window with the priority of
* 1. Pinned documents (handled prior to function)
* 2. VectorSearch results
* 3. prevSources in chat history - starting from most recent.
*
* Ensuring the window always has the desired amount of sources so that followup questions
* in any chat mode have relevant sources, but not infinite sources. This function is used during chatting
* and allows follow-up questions within a query chat that otherwise would have zero sources and would fail.
* The added benefit is that during regular RAG chat, we have better coherence of citations that otherwise would
* also yield no results with no need for a ReRanker to run and take much longer to return a response.
*
* The side effect of this is follow-up unrelated questions now have citations that would look totally irrelevant, however
* we would rather optimize on the correctness of a response vs showing extraneous sources during a response. Given search
* results always take a priority a good unrelated question that produces RAG results will still function as desired and due to previous
* history backfill sources "changing context" mid-chat is handled appropriately.
* example:
* ---previous implementation---
* prompt 1: "What is anythingllm?" -> possibly get 4 good sources
* prompt 2: "Tell me some features" -> possible get 0 - 1 maybe relevant source + previous answer response -> bad response due to bad context mgmt
* ---next implementation---
* prompt 1: "What is anythingllm?" -> possibly get 4 good sources
* prompt 2: "Tell me some features" -> possible get 0 - 1 maybe relevant source + previous answer response -> backfill with 3 good sources from previous -> much better response
*
* @param {Object} config - params to call
* @param {object} config.nDocs = fill size of the window
* @param {object} config.searchResults = vector similarityResponse results for .sources
* @param {object[]} config.history - rawHistory of chat containing sources
* @param {string[]} config.filterIdentifiers - Pinned document identifiers to prevent duplicate context
* @returns {{
* contextTexts: string[],
* sources: object[],
* }} - Array of sources that should be added to window
*/
function fillSourceWindow({
nDocs = 4, // Number of documents
searchResults = [], // Sources from similarity search
history = [], // Raw history
filterIdentifiers = [], // pinned document sources
} = config) {
const sources = [...searchResults];
if (sources.length >= nDocs || history.length === 0) {
return {
sources,
contextTexts: sources.map((src) => src.text),
};
}
const log = (text, ...args) => {
console.log(`\x1b[36m[fillSourceWindow]\x1b[0m ${text}`, ...args);
};
log(
`Need to backfill ${nDocs - searchResults.length} chunks to fill in the source window for RAG!`
);
const seenChunks = new Set(searchResults.map((source) => source.id));
// We need to reverse again because we need to iterate from bottom of array (most recent chats)
// Looking at this function by itself you may think that this loop could be extreme for long history chats,
// but this was already handled where `history` we derived. This comes from `recentChatHistory` which
// includes a limit for history (default: 20). So this loop does not look as extreme as on first glance.
for (const chat of history.reverse()) {
if (sources.length >= nDocs) {
log(
`Citations backfilled to ${nDocs} references from ${searchResults.length} original citations.`
);
break;
}
const chatSources =
safeJsonParse(chat.response, { sources: [] })?.sources || [];
if (!chatSources?.length || !Array.isArray(chatSources)) continue;
const validSources = chatSources.filter((source) => {
return (
filterIdentifiers.includes(sourceIdentifier(source)) == false && // source cannot be in current pins
source.hasOwnProperty("score") && // source cannot have come from a pinned document that was previously pinned
source.hasOwnProperty("text") && // source has a valid text property we can use
seenChunks.has(source.id) == false // is unique
);
});
for (const validSource of validSources) {
if (sources.length >= nDocs) break;
sources.push(validSource);
seenChunks.add(validSource.id);
}
}
return {
sources,
contextTexts: sources.map((src) => src.text),
};
}
module.exports = {
messageArrayCompressor,
messageStringCompressor,
fillSourceWindow,
};

View File

@ -38,8 +38,13 @@ function handleDefaultStreamResponseV2(response, stream, responseProps) {
});
}
// LocalAi returns '' and others return null.
if (message.finish_reason !== "" && message.finish_reason !== null) {
// LocalAi returns '' and others return null on chunks - the last chunk is not "" or null.
// Either way, the key `finish_reason` must be present to determine ending chunk.
if (
message?.hasOwnProperty("finish_reason") && // Got valid message and it is an object with finish_reason
message.finish_reason !== "" &&
message.finish_reason !== null
) {
writeResponseChunk(response, {
uuid,
sources,
@ -50,6 +55,7 @@ function handleDefaultStreamResponseV2(response, stream, responseProps) {
});
response.removeListener("close", handleAbort);
resolve(fullText);
break; // Break streaming when a valid finish_reason is first encountered
}
}
});

View File

@ -526,7 +526,11 @@ function supportedTranscriptionProvider(input = "") {
}
function validGeminiModel(input = "") {
const validModels = ["gemini-pro", "gemini-1.5-pro-latest"];
const validModels = [
"gemini-pro",
"gemini-1.5-pro-latest",
"gemini-1.5-flash-latest",
];
return validModels.includes(input)
? null
: `Invalid Model type. Must be one of ${validModels.join(", ")}.`;