mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-19 04:30:10 +01:00
Merge branch 'master' into vertex
This commit is contained in:
commit
452a47a636
1
.vscode/settings.json
vendored
1
.vscode/settings.json
vendored
@ -33,6 +33,7 @@
|
||||
"Mintplex",
|
||||
"mixtral",
|
||||
"moderations",
|
||||
"novita",
|
||||
"numpages",
|
||||
"Ollama",
|
||||
"Oobabooga",
|
||||
|
@ -97,6 +97,7 @@ AnythingLLM divides your documents into objects called `workspaces`. A Workspace
|
||||
- [Apipie](https://apipie.ai/)
|
||||
- [xAI](https://x.ai/)
|
||||
- [Google Vertex](https://cloud.google.com/vertex-ai)
|
||||
- [Novita AI (chat models)](https://novita.ai/model-api/product/llm-api?utm_source=github_anything-llm&utm_medium=github_readme&utm_campaign=link)
|
||||
|
||||
**Embedder models:**
|
||||
|
||||
|
@ -90,6 +90,10 @@ GID='1000'
|
||||
# LITE_LLM_BASE_PATH='http://127.0.0.1:4000'
|
||||
# LITE_LLM_API_KEY='sk-123abc'
|
||||
|
||||
# LLM_PROVIDER='novita'
|
||||
# NOVITA_LLM_API_KEY='your-novita-api-key-here' check on https://novita.ai/settings#key-management
|
||||
# NOVITA_LLM_MODEL_PREF='gryphe/mythomax-l2-13b'
|
||||
|
||||
# LLM_PROVIDER='cohere'
|
||||
# COHERE_API_KEY=
|
||||
# COHERE_MODEL_PREF='command-r'
|
||||
|
142
frontend/src/components/LLMSelection/NovitaLLMOptions/index.jsx
Normal file
142
frontend/src/components/LLMSelection/NovitaLLMOptions/index.jsx
Normal file
@ -0,0 +1,142 @@
|
||||
import System from "@/models/system";
|
||||
import { CaretDown, CaretUp } from "@phosphor-icons/react";
|
||||
import { useState, useEffect } from "react";
|
||||
|
||||
export default function NovitaLLMOptions({ settings }) {
|
||||
return (
|
||||
<div className="flex flex-col gap-y-4 mt-1.5">
|
||||
<div className="flex gap-[36px]">
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-3">
|
||||
Novita API Key
|
||||
</label>
|
||||
<input
|
||||
type="password"
|
||||
name="NovitaLLMApiKey"
|
||||
className="bg-zinc-900 text-white placeholder:text-white/20 text-sm rounded-lg focus:outline-primary-button active:outline-primary-button outline-none block w-full p-2.5"
|
||||
placeholder="Novita API Key"
|
||||
defaultValue={settings?.NovitaLLMApiKey ? "*".repeat(20) : ""}
|
||||
required={true}
|
||||
autoComplete="off"
|
||||
spellCheck={false}
|
||||
/>
|
||||
</div>
|
||||
{!settings?.credentialsOnly && (
|
||||
<NovitaModelSelection settings={settings} />
|
||||
)}
|
||||
</div>
|
||||
<AdvancedControls settings={settings} />
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
function AdvancedControls({ settings }) {
|
||||
const [showAdvancedControls, setShowAdvancedControls] = useState(false);
|
||||
|
||||
return (
|
||||
<div className="flex flex-col gap-y-4">
|
||||
<button
|
||||
type="button"
|
||||
onClick={() => setShowAdvancedControls(!showAdvancedControls)}
|
||||
className="text-white hover:text-white/70 flex items-center text-sm"
|
||||
>
|
||||
{showAdvancedControls ? "Hide" : "Show"} advanced controls
|
||||
{showAdvancedControls ? (
|
||||
<CaretUp size={14} className="ml-1" />
|
||||
) : (
|
||||
<CaretDown size={14} className="ml-1" />
|
||||
)}
|
||||
</button>
|
||||
<div hidden={!showAdvancedControls}>
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-3">
|
||||
Stream Timeout (ms)
|
||||
</label>
|
||||
<input
|
||||
type="number"
|
||||
name="NovitaLLMTimeout"
|
||||
className="bg-zinc-900 text-white placeholder:text-white/20 text-sm rounded-lg focus:outline-primary-button active:outline-primary-button outline-none block w-full p-2.5"
|
||||
placeholder="Timeout value between token responses to auto-timeout the stream"
|
||||
defaultValue={settings?.NovitaLLMTimeout ?? 500}
|
||||
autoComplete="off"
|
||||
onScroll={(e) => e.target.blur()}
|
||||
min={500}
|
||||
step={1}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
function NovitaModelSelection({ settings }) {
|
||||
const [groupedModels, setGroupedModels] = useState({});
|
||||
const [loading, setLoading] = useState(true);
|
||||
|
||||
useEffect(() => {
|
||||
async function findCustomModels() {
|
||||
setLoading(true);
|
||||
const { models } = await System.customModels("novita");
|
||||
if (models?.length > 0) {
|
||||
const modelsByOrganization = models.reduce((acc, model) => {
|
||||
acc[model.organization] = acc[model.organization] || [];
|
||||
acc[model.organization].push(model);
|
||||
return acc;
|
||||
}, {});
|
||||
|
||||
setGroupedModels(modelsByOrganization);
|
||||
}
|
||||
|
||||
setLoading(false);
|
||||
}
|
||||
findCustomModels();
|
||||
}, []);
|
||||
|
||||
if (loading || Object.keys(groupedModels).length === 0) {
|
||||
return (
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-3">
|
||||
Chat Model Selection
|
||||
</label>
|
||||
<select
|
||||
name="NovitaLLMModelPref"
|
||||
disabled={true}
|
||||
className="bg-zinc-900 border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
|
||||
>
|
||||
<option disabled={true} selected={true}>
|
||||
-- loading available models --
|
||||
</option>
|
||||
</select>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
return (
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-3">
|
||||
Chat Model Selection
|
||||
</label>
|
||||
<select
|
||||
name="NovitaLLMModelPref"
|
||||
required={true}
|
||||
className="bg-zinc-900 border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
|
||||
>
|
||||
{Object.keys(groupedModels)
|
||||
.sort()
|
||||
.map((organization) => (
|
||||
<optgroup key={organization} label={organization}>
|
||||
{groupedModels[organization].map((model) => (
|
||||
<option
|
||||
key={model.id}
|
||||
value={model.id}
|
||||
selected={settings?.NovitaLLMModelPref === model.id}
|
||||
>
|
||||
{model.name}
|
||||
</option>
|
||||
))}
|
||||
</optgroup>
|
||||
))}
|
||||
</select>
|
||||
</div>
|
||||
);
|
||||
}
|
@ -71,7 +71,13 @@ function groupModels(models) {
|
||||
}, {});
|
||||
}
|
||||
|
||||
const groupedProviders = ["togetherai", "fireworksai", "openai", "openrouter"];
|
||||
const groupedProviders = [
|
||||
"togetherai",
|
||||
"fireworksai",
|
||||
"openai",
|
||||
"novita",
|
||||
"openrouter",
|
||||
];
|
||||
export default function useGetProviderModels(provider = null) {
|
||||
const [defaultModels, setDefaultModels] = useState([]);
|
||||
const [customModels, setCustomModels] = useState([]);
|
||||
|
BIN
frontend/src/media/llmprovider/novita.png
Normal file
BIN
frontend/src/media/llmprovider/novita.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 38 KiB |
@ -12,6 +12,7 @@ import AnthropicLogo from "@/media/llmprovider/anthropic.png";
|
||||
import GeminiLogo from "@/media/llmprovider/gemini.png";
|
||||
import VertexLogo from "@/media/llmprovider/vertex.png";
|
||||
import OllamaLogo from "@/media/llmprovider/ollama.png";
|
||||
import NovitaLogo from "@/media/llmprovider/novita.png";
|
||||
import LMStudioLogo from "@/media/llmprovider/lmstudio.png";
|
||||
import LocalAiLogo from "@/media/llmprovider/localai.png";
|
||||
import TogetherAILogo from "@/media/llmprovider/togetherai.png";
|
||||
@ -41,6 +42,7 @@ import NativeLLMOptions from "@/components/LLMSelection/NativeLLMOptions";
|
||||
import GeminiLLMOptions from "@/components/LLMSelection/GeminiLLMOptions";
|
||||
import VertexLLMOptions from "@/components/LLMSelection/VertexLLMOptions";
|
||||
import OllamaLLMOptions from "@/components/LLMSelection/OllamaLLMOptions";
|
||||
import NovitaLLMOptions from "@/components/LLMSelection/NovitaLLMOptions";
|
||||
import TogetherAiOptions from "@/components/LLMSelection/TogetherAiOptions";
|
||||
import FireworksAiOptions from "@/components/LLMSelection/FireworksAiOptions";
|
||||
import MistralOptions from "@/components/LLMSelection/MistralOptions";
|
||||
@ -123,6 +125,15 @@ export const AVAILABLE_LLM_PROVIDERS = [
|
||||
description: "Run LLMs locally on your own machine.",
|
||||
requiredConfig: ["OllamaLLMBasePath"],
|
||||
},
|
||||
{
|
||||
name: "Novita AI",
|
||||
value: "novita",
|
||||
logo: NovitaLogo,
|
||||
options: (settings) => <NovitaLLMOptions settings={settings} />,
|
||||
description:
|
||||
"Reliable, Scalable, and Cost-Effective for LLMs from Novita AI",
|
||||
requiredConfig: ["NovitaLLMApiKey"],
|
||||
},
|
||||
{
|
||||
name: "LM Studio",
|
||||
value: "lmstudio",
|
||||
|
@ -16,6 +16,7 @@ import MistralLogo from "@/media/llmprovider/mistral.jpeg";
|
||||
import HuggingFaceLogo from "@/media/llmprovider/huggingface.png";
|
||||
import PerplexityLogo from "@/media/llmprovider/perplexity.png";
|
||||
import OpenRouterLogo from "@/media/llmprovider/openrouter.jpeg";
|
||||
import NovitaLogo from "@/media/llmprovider/novita.png";
|
||||
import GroqLogo from "@/media/llmprovider/groq.png";
|
||||
import KoboldCPPLogo from "@/media/llmprovider/koboldcpp.png";
|
||||
import TextGenWebUILogo from "@/media/llmprovider/text-generation-webui.png";
|
||||
@ -158,6 +159,14 @@ export const LLM_SELECTION_PRIVACY = {
|
||||
],
|
||||
logo: OpenRouterLogo,
|
||||
},
|
||||
novita: {
|
||||
name: "Novita AI",
|
||||
description: [
|
||||
"Your chats will not be used for training",
|
||||
"Your prompts and document text used in response creation are visible to Novita AI",
|
||||
],
|
||||
logo: NovitaLogo,
|
||||
},
|
||||
groq: {
|
||||
name: "Groq",
|
||||
description: [
|
||||
|
@ -23,6 +23,7 @@ import LiteLLMLogo from "@/media/llmprovider/litellm.png";
|
||||
import AWSBedrockLogo from "@/media/llmprovider/bedrock.png";
|
||||
import DeepSeekLogo from "@/media/llmprovider/deepseek.png";
|
||||
import APIPieLogo from "@/media/llmprovider/apipie.png";
|
||||
import NovitaLogo from "@/media/llmprovider/novita.png";
|
||||
import XAILogo from "@/media/llmprovider/xai.png";
|
||||
|
||||
import CohereLogo from "@/media/llmprovider/cohere.png";
|
||||
@ -50,6 +51,7 @@ import LiteLLMOptions from "@/components/LLMSelection/LiteLLMOptions";
|
||||
import AWSBedrockLLMOptions from "@/components/LLMSelection/AwsBedrockLLMOptions";
|
||||
import DeepSeekOptions from "@/components/LLMSelection/DeepSeekOptions";
|
||||
import ApiPieLLMOptions from "@/components/LLMSelection/ApiPieOptions";
|
||||
import NovitaLLMOptions from "@/components/LLMSelection/NovitaLLMOptions";
|
||||
import XAILLMOptions from "@/components/LLMSelection/XAiLLMOptions";
|
||||
|
||||
import LLMItem from "@/components/LLMSelection/LLMItem";
|
||||
@ -113,6 +115,14 @@ const LLMS = [
|
||||
options: (settings) => <OllamaLLMOptions settings={settings} />,
|
||||
description: "Run LLMs locally on your own machine.",
|
||||
},
|
||||
{
|
||||
name: "Novita AI",
|
||||
value: "novita",
|
||||
logo: NovitaLogo,
|
||||
options: (settings) => <NovitaLLMOptions settings={settings} />,
|
||||
description:
|
||||
"Reliable, Scalable, and Cost-Effective for LLMs from Novita AI",
|
||||
},
|
||||
{
|
||||
name: "LM Studio",
|
||||
value: "lmstudio",
|
||||
|
@ -17,6 +17,7 @@ const ENABLED_PROVIDERS = [
|
||||
"koboldcpp",
|
||||
"togetherai",
|
||||
"openrouter",
|
||||
"novita",
|
||||
"mistral",
|
||||
"perplexity",
|
||||
"textgenwebui",
|
||||
@ -40,6 +41,7 @@ const WARN_PERFORMANCE = [
|
||||
"ollama",
|
||||
"localai",
|
||||
"openrouter",
|
||||
"novita",
|
||||
"generic-openai",
|
||||
"textgenwebui",
|
||||
];
|
||||
|
@ -85,6 +85,7 @@ AnythingLLMのいくつかのクールな機能
|
||||
- [Fireworks AI (チャットモデル)](https://fireworks.ai/)
|
||||
- [Perplexity (チャットモデル)](https://www.perplexity.ai/)
|
||||
- [OpenRouter (チャットモデル)](https://openrouter.ai/)
|
||||
- [Novita AI (チャットモデル)](https://novita.ai/model-api/product/llm-api?utm_source=github_anything-llm&utm_medium=github_readme&utm_campaign=link)
|
||||
- [Mistral](https://mistral.ai/)
|
||||
- [Groq](https://groq.com/)
|
||||
- [Cohere](https://cohere.com/)
|
||||
|
@ -81,6 +81,7 @@ AnythingLLM的一些酷炫特性
|
||||
- [Fireworks AI (聊天模型)](https://fireworks.ai/)
|
||||
- [Perplexity (聊天模型)](https://www.perplexity.ai/)
|
||||
- [OpenRouter (聊天模型)](https://openrouter.ai/)
|
||||
- [Novita AI (聊天模型)](https://novita.ai/model-api/product/llm-api?utm_source=github_anything-llm&utm_medium=github_readme&utm_campaign=link)
|
||||
- [Mistral](https://mistral.ai/)
|
||||
- [Groq](https://groq.com/)
|
||||
- [Cohere](https://cohere.com/)
|
||||
|
@ -91,6 +91,10 @@ SIG_SALT='salt' # Please generate random string at least 32 chars long.
|
||||
# LITE_LLM_BASE_PATH='http://127.0.0.1:4000'
|
||||
# LITE_LLM_API_KEY='sk-123abc'
|
||||
|
||||
# LLM_PROVIDER='novita'
|
||||
# NOVITA_LLM_API_KEY='your-novita-api-key-here' check on https://novita.ai/settings#key-management
|
||||
# NOVITA_LLM_MODEL_PREF='gryphe/mythomax-l2-13b'
|
||||
|
||||
# LLM_PROVIDER='cohere'
|
||||
# COHERE_API_KEY=
|
||||
# COHERE_MODEL_PREF='command-r'
|
||||
|
@ -456,6 +456,11 @@ const SystemSettings = {
|
||||
OllamaLLMKeepAliveSeconds: process.env.OLLAMA_KEEP_ALIVE_TIMEOUT ?? 300,
|
||||
OllamaLLMPerformanceMode: process.env.OLLAMA_PERFORMANCE_MODE ?? "base",
|
||||
|
||||
// Novita LLM Keys
|
||||
NovitaLLMApiKey: !!process.env.NOVITA_LLM_API_KEY,
|
||||
NovitaLLMModelPref: process.env.NOVITA_LLM_MODEL_PREF,
|
||||
NovitaLLMTimeout: process.env.NOVITA_LLM_TIMEOUT_MS,
|
||||
|
||||
// TogetherAI Keys
|
||||
TogetherAiApiKey: !!process.env.TOGETHER_AI_API_KEY,
|
||||
TogetherAiModelPref: process.env.TOGETHER_AI_MODEL_PREF,
|
||||
|
3
server/storage/models/.gitignore
vendored
3
server/storage/models/.gitignore
vendored
@ -2,4 +2,5 @@ Xenova
|
||||
downloaded/*
|
||||
!downloaded/.placeholder
|
||||
openrouter
|
||||
apipie
|
||||
apipie
|
||||
novita
|
376
server/utils/AiProviders/novita/index.js
Normal file
376
server/utils/AiProviders/novita/index.js
Normal file
@ -0,0 +1,376 @@
|
||||
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
||||
const { v4: uuidv4 } = require("uuid");
|
||||
const {
|
||||
writeResponseChunk,
|
||||
clientAbortedHandler,
|
||||
} = require("../../helpers/chat/responses");
|
||||
const fs = require("fs");
|
||||
const path = require("path");
|
||||
const { safeJsonParse } = require("../../http");
|
||||
const cacheFolder = path.resolve(
|
||||
process.env.STORAGE_DIR
|
||||
? path.resolve(process.env.STORAGE_DIR, "models", "novita")
|
||||
: path.resolve(__dirname, `../../../storage/models/novita`)
|
||||
);
|
||||
|
||||
class NovitaLLM {
|
||||
constructor(embedder = null, modelPreference = null) {
|
||||
if (!process.env.NOVITA_LLM_API_KEY)
|
||||
throw new Error("No Novita API key was set.");
|
||||
|
||||
const { OpenAI: OpenAIApi } = require("openai");
|
||||
this.basePath = "https://api.novita.ai/v3/openai";
|
||||
this.openai = new OpenAIApi({
|
||||
baseURL: this.basePath,
|
||||
apiKey: process.env.NOVITA_LLM_API_KEY ?? null,
|
||||
defaultHeaders: {
|
||||
"HTTP-Referer": "https://anythingllm.com",
|
||||
"X-Novita-Source": "anythingllm",
|
||||
},
|
||||
});
|
||||
this.model =
|
||||
modelPreference ||
|
||||
process.env.NOVITA_LLM_MODEL_PREF ||
|
||||
"gryphe/mythomax-l2-13b";
|
||||
this.limits = {
|
||||
history: this.promptWindowLimit() * 0.15,
|
||||
system: this.promptWindowLimit() * 0.15,
|
||||
user: this.promptWindowLimit() * 0.7,
|
||||
};
|
||||
|
||||
this.embedder = embedder ?? new NativeEmbedder();
|
||||
this.defaultTemp = 0.7;
|
||||
this.timeout = this.#parseTimeout();
|
||||
|
||||
if (!fs.existsSync(cacheFolder))
|
||||
fs.mkdirSync(cacheFolder, { recursive: true });
|
||||
this.cacheModelPath = path.resolve(cacheFolder, "models.json");
|
||||
this.cacheAtPath = path.resolve(cacheFolder, ".cached_at");
|
||||
|
||||
this.log(`Loaded with model: ${this.model}`);
|
||||
}
|
||||
|
||||
log(text, ...args) {
|
||||
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
||||
}
|
||||
|
||||
/**
|
||||
* Novita has various models that never return `finish_reasons` and thus leave the stream open
|
||||
* which causes issues in subsequent messages. This timeout value forces us to close the stream after
|
||||
* x milliseconds. This is a configurable value via the NOVITA_LLM_TIMEOUT_MS value
|
||||
* @returns {number} The timeout value in milliseconds (default: 500)
|
||||
*/
|
||||
#parseTimeout() {
|
||||
if (isNaN(Number(process.env.NOVITA_LLM_TIMEOUT_MS))) return 500;
|
||||
const setValue = Number(process.env.NOVITA_LLM_TIMEOUT_MS);
|
||||
if (setValue < 500) return 500;
|
||||
return setValue;
|
||||
}
|
||||
|
||||
// This checks if the .cached_at file has a timestamp that is more than 1Week (in millis)
|
||||
// from the current date. If it is, then we will refetch the API so that all the models are up
|
||||
// to date.
|
||||
#cacheIsStale() {
|
||||
const MAX_STALE = 6.048e8; // 1 Week in MS
|
||||
if (!fs.existsSync(this.cacheAtPath)) return true;
|
||||
const now = Number(new Date());
|
||||
const timestampMs = Number(fs.readFileSync(this.cacheAtPath));
|
||||
return now - timestampMs > MAX_STALE;
|
||||
}
|
||||
|
||||
// The Novita model API has a lot of models, so we cache this locally in the directory
|
||||
// as if the cache directory JSON file is stale or does not exist we will fetch from API and store it.
|
||||
// This might slow down the first request, but we need the proper token context window
|
||||
// for each model and this is a constructor property - so we can really only get it if this cache exists.
|
||||
// We used to have this as a chore, but given there is an API to get the info - this makes little sense.
|
||||
async #syncModels() {
|
||||
if (fs.existsSync(this.cacheModelPath) && !this.#cacheIsStale())
|
||||
return false;
|
||||
|
||||
this.log("Model cache is not present or stale. Fetching from Novita API.");
|
||||
await fetchNovitaModels();
|
||||
return;
|
||||
}
|
||||
|
||||
#appendContext(contextTexts = []) {
|
||||
if (!contextTexts || !contextTexts.length) return "";
|
||||
return (
|
||||
"\nContext:\n" +
|
||||
contextTexts
|
||||
.map((text, i) => {
|
||||
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
||||
})
|
||||
.join("")
|
||||
);
|
||||
}
|
||||
|
||||
models() {
|
||||
if (!fs.existsSync(this.cacheModelPath)) return {};
|
||||
return safeJsonParse(
|
||||
fs.readFileSync(this.cacheModelPath, { encoding: "utf-8" }),
|
||||
{}
|
||||
);
|
||||
}
|
||||
|
||||
streamingEnabled() {
|
||||
return "streamGetChatCompletion" in this;
|
||||
}
|
||||
|
||||
static promptWindowLimit(modelName) {
|
||||
const cacheModelPath = path.resolve(cacheFolder, "models.json");
|
||||
const availableModels = fs.existsSync(cacheModelPath)
|
||||
? safeJsonParse(
|
||||
fs.readFileSync(cacheModelPath, { encoding: "utf-8" }),
|
||||
{}
|
||||
)
|
||||
: {};
|
||||
return availableModels[modelName]?.maxLength || 4096;
|
||||
}
|
||||
|
||||
promptWindowLimit() {
|
||||
const availableModels = this.models();
|
||||
return availableModels[this.model]?.maxLength || 4096;
|
||||
}
|
||||
|
||||
async isValidChatCompletionModel(model = "") {
|
||||
await this.#syncModels();
|
||||
const availableModels = this.models();
|
||||
return availableModels.hasOwnProperty(model);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates appropriate content array for a message + attachments.
|
||||
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
|
||||
* @returns {string|object[]}
|
||||
*/
|
||||
#generateContent({ userPrompt, attachments = [] }) {
|
||||
if (!attachments.length) {
|
||||
return userPrompt;
|
||||
}
|
||||
|
||||
const content = [{ type: "text", text: userPrompt }];
|
||||
for (let attachment of attachments) {
|
||||
content.push({
|
||||
type: "image_url",
|
||||
image_url: {
|
||||
url: attachment.contentString,
|
||||
detail: "auto",
|
||||
},
|
||||
});
|
||||
}
|
||||
return content.flat();
|
||||
}
|
||||
|
||||
constructPrompt({
|
||||
systemPrompt = "",
|
||||
contextTexts = [],
|
||||
chatHistory = [],
|
||||
userPrompt = "",
|
||||
attachments = [],
|
||||
}) {
|
||||
const prompt = {
|
||||
role: "system",
|
||||
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
||||
};
|
||||
return [
|
||||
prompt,
|
||||
...chatHistory,
|
||||
{
|
||||
role: "user",
|
||||
content: this.#generateContent({ userPrompt, attachments }),
|
||||
},
|
||||
];
|
||||
}
|
||||
|
||||
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
||||
if (!(await this.isValidChatCompletionModel(this.model)))
|
||||
throw new Error(
|
||||
`Novita chat: ${this.model} is not valid for chat completion!`
|
||||
);
|
||||
|
||||
const result = await this.openai.chat.completions
|
||||
.create({
|
||||
model: this.model,
|
||||
messages,
|
||||
temperature,
|
||||
})
|
||||
.catch((e) => {
|
||||
throw new Error(e.message);
|
||||
});
|
||||
|
||||
if (!result.hasOwnProperty("choices") || result.choices.length === 0)
|
||||
return null;
|
||||
return result.choices[0].message.content;
|
||||
}
|
||||
|
||||
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
||||
if (!(await this.isValidChatCompletionModel(this.model)))
|
||||
throw new Error(
|
||||
`Novita chat: ${this.model} is not valid for chat completion!`
|
||||
);
|
||||
|
||||
const streamRequest = await this.openai.chat.completions.create({
|
||||
model: this.model,
|
||||
stream: true,
|
||||
messages,
|
||||
temperature,
|
||||
});
|
||||
return streamRequest;
|
||||
}
|
||||
|
||||
handleStream(response, stream, responseProps) {
|
||||
const timeoutThresholdMs = this.timeout;
|
||||
const { uuid = uuidv4(), sources = [] } = responseProps;
|
||||
|
||||
return new Promise(async (resolve) => {
|
||||
let fullText = "";
|
||||
let lastChunkTime = null; // null when first token is still not received.
|
||||
|
||||
// Establish listener to early-abort a streaming response
|
||||
// in case things go sideways or the user does not like the response.
|
||||
// We preserve the generated text but continue as if chat was completed
|
||||
// to preserve previously generated content.
|
||||
const handleAbort = () => clientAbortedHandler(resolve, fullText);
|
||||
response.on("close", handleAbort);
|
||||
|
||||
// NOTICE: Not all Novita models will return a stop reason
|
||||
// which keeps the connection open and so the model never finalizes the stream
|
||||
// like the traditional OpenAI response schema does. So in the case the response stream
|
||||
// never reaches a formal close state we maintain an interval timer that if we go >=timeoutThresholdMs with
|
||||
// no new chunks then we kill the stream and assume it to be complete. Novita is quite fast
|
||||
// so this threshold should permit most responses, but we can adjust `timeoutThresholdMs` if
|
||||
// we find it is too aggressive.
|
||||
const timeoutCheck = setInterval(() => {
|
||||
if (lastChunkTime === null) return;
|
||||
|
||||
const now = Number(new Date());
|
||||
const diffMs = now - lastChunkTime;
|
||||
if (diffMs >= timeoutThresholdMs) {
|
||||
this.log(
|
||||
`Novita stream did not self-close and has been stale for >${timeoutThresholdMs}ms. Closing response stream.`
|
||||
);
|
||||
writeResponseChunk(response, {
|
||||
uuid,
|
||||
sources,
|
||||
type: "textResponseChunk",
|
||||
textResponse: "",
|
||||
close: true,
|
||||
error: false,
|
||||
});
|
||||
clearInterval(timeoutCheck);
|
||||
response.removeListener("close", handleAbort);
|
||||
resolve(fullText);
|
||||
}
|
||||
}, 500);
|
||||
|
||||
try {
|
||||
for await (const chunk of stream) {
|
||||
const message = chunk?.choices?.[0];
|
||||
const token = message?.delta?.content;
|
||||
lastChunkTime = Number(new Date());
|
||||
|
||||
if (token) {
|
||||
fullText += token;
|
||||
writeResponseChunk(response, {
|
||||
uuid,
|
||||
sources: [],
|
||||
type: "textResponseChunk",
|
||||
textResponse: token,
|
||||
close: false,
|
||||
error: false,
|
||||
});
|
||||
}
|
||||
|
||||
if (message.finish_reason !== null) {
|
||||
writeResponseChunk(response, {
|
||||
uuid,
|
||||
sources,
|
||||
type: "textResponseChunk",
|
||||
textResponse: "",
|
||||
close: true,
|
||||
error: false,
|
||||
});
|
||||
response.removeListener("close", handleAbort);
|
||||
resolve(fullText);
|
||||
}
|
||||
}
|
||||
} catch (e) {
|
||||
writeResponseChunk(response, {
|
||||
uuid,
|
||||
sources,
|
||||
type: "abort",
|
||||
textResponse: null,
|
||||
close: true,
|
||||
error: e.message,
|
||||
});
|
||||
response.removeListener("close", handleAbort);
|
||||
resolve(fullText);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
||||
async embedTextInput(textInput) {
|
||||
return await this.embedder.embedTextInput(textInput);
|
||||
}
|
||||
async embedChunks(textChunks = []) {
|
||||
return await this.embedder.embedChunks(textChunks);
|
||||
}
|
||||
|
||||
async compressMessages(promptArgs = {}, rawHistory = []) {
|
||||
const { messageArrayCompressor } = require("../../helpers/chat");
|
||||
const messageArray = this.constructPrompt(promptArgs);
|
||||
return await messageArrayCompressor(this, messageArray, rawHistory);
|
||||
}
|
||||
}
|
||||
|
||||
async function fetchNovitaModels() {
|
||||
return await fetch(`https://api.novita.ai/v3/openai/models`, {
|
||||
method: "GET",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
})
|
||||
.then((res) => res.json())
|
||||
.then(({ data = [] }) => {
|
||||
const models = {};
|
||||
data.forEach((model) => {
|
||||
models[model.id] = {
|
||||
id: model.id,
|
||||
name: model.title,
|
||||
organization:
|
||||
model.id.split("/")[0].charAt(0).toUpperCase() +
|
||||
model.id.split("/")[0].slice(1),
|
||||
maxLength: model.context_size,
|
||||
};
|
||||
});
|
||||
|
||||
// Cache all response information
|
||||
if (!fs.existsSync(cacheFolder))
|
||||
fs.mkdirSync(cacheFolder, { recursive: true });
|
||||
fs.writeFileSync(
|
||||
path.resolve(cacheFolder, "models.json"),
|
||||
JSON.stringify(models),
|
||||
{
|
||||
encoding: "utf-8",
|
||||
}
|
||||
);
|
||||
fs.writeFileSync(
|
||||
path.resolve(cacheFolder, ".cached_at"),
|
||||
String(Number(new Date())),
|
||||
{
|
||||
encoding: "utf-8",
|
||||
}
|
||||
);
|
||||
return models;
|
||||
})
|
||||
.catch((e) => {
|
||||
console.error(e);
|
||||
return {};
|
||||
});
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
NovitaLLM,
|
||||
fetchNovitaModels,
|
||||
};
|
@ -1,3 +1,18 @@
|
||||
/**
|
||||
* @typedef {object} DocumentMetadata
|
||||
* @property {string} id - eg; "123e4567-e89b-12d3-a456-426614174000"
|
||||
* @property {string} url - eg; "file://example.com/index.html"
|
||||
* @property {string} title - eg; "example.com/index.html"
|
||||
* @property {string} docAuthor - eg; "no author found"
|
||||
* @property {string} description - eg; "No description found."
|
||||
* @property {string} docSource - eg; "URL link uploaded by the user."
|
||||
* @property {string} chunkSource - eg; link://https://example.com
|
||||
* @property {string} published - ISO 8601 date string
|
||||
* @property {number} wordCount - Number of words in the document
|
||||
* @property {string} pageContent - The raw text content of the document
|
||||
* @property {number} token_count_estimate - Number of tokens in the document
|
||||
*/
|
||||
|
||||
function isNullOrNaN(value) {
|
||||
if (value === null) return true;
|
||||
return isNaN(value);
|
||||
@ -29,10 +44,12 @@ class TextSplitter {
|
||||
console.log(`\x1b[35m[TextSplitter]\x1b[0m ${text}`, ...args);
|
||||
}
|
||||
|
||||
// Does a quick check to determine the text chunk length limit.
|
||||
// Embedder models have hard-set limits that cannot be exceeded, just like an LLM context
|
||||
// so here we want to allow override of the default 1000, but up to the models maximum, which is
|
||||
// sometimes user defined.
|
||||
/**
|
||||
* Does a quick check to determine the text chunk length limit.
|
||||
* Embedder models have hard-set limits that cannot be exceeded, just like an LLM context
|
||||
* so here we want to allow override of the default 1000, but up to the models maximum, which is
|
||||
* sometimes user defined.
|
||||
*/
|
||||
static determineMaxChunkSize(preferred = null, embedderLimit = 1000) {
|
||||
const prefValue = isNullOrNaN(preferred)
|
||||
? Number(embedderLimit)
|
||||
@ -45,6 +62,70 @@ class TextSplitter {
|
||||
return prefValue > limit ? limit : prefValue;
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a string of metadata to be prepended to each chunk.
|
||||
* @param {DocumentMetadata} metadata - Metadata to be prepended to each chunk.
|
||||
* @returns {{[key: ('title' | 'published' | 'source')]: string}} Object of metadata that will be prepended to each chunk.
|
||||
*/
|
||||
static buildHeaderMeta(metadata = {}) {
|
||||
if (!metadata || Object.keys(metadata).length === 0) return null;
|
||||
const PLUCK_MAP = {
|
||||
title: {
|
||||
as: "sourceDocument",
|
||||
pluck: (metadata) => {
|
||||
return metadata?.title || null;
|
||||
},
|
||||
},
|
||||
published: {
|
||||
as: "published",
|
||||
pluck: (metadata) => {
|
||||
return metadata?.published || null;
|
||||
},
|
||||
},
|
||||
chunkSource: {
|
||||
as: "source",
|
||||
pluck: (metadata) => {
|
||||
const validPrefixes = ["link://", "youtube://"];
|
||||
// If the chunkSource is a link or youtube link, we can add the URL
|
||||
// as its source in the metadata so the LLM can use it for context.
|
||||
// eg prompt: Where did you get this information? -> answer: "from https://example.com"
|
||||
if (
|
||||
!metadata?.chunkSource || // Exists
|
||||
!metadata?.chunkSource.length || // Is not empty
|
||||
typeof metadata.chunkSource !== "string" || // Is a string
|
||||
!validPrefixes.some(
|
||||
(prefix) => metadata.chunkSource.startsWith(prefix) // Has a valid prefix we respect
|
||||
)
|
||||
)
|
||||
return null;
|
||||
|
||||
// We know a prefix is present, so we can split on it and return the rest.
|
||||
// If nothing is found, return null and it will not be added to the metadata.
|
||||
let source = null;
|
||||
for (const prefix of validPrefixes) {
|
||||
source = metadata.chunkSource.split(prefix)?.[1] || null;
|
||||
if (source) break;
|
||||
}
|
||||
|
||||
return source;
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
const pluckedData = {};
|
||||
Object.entries(PLUCK_MAP).forEach(([key, value]) => {
|
||||
if (!(key in metadata)) return; // Skip if the metadata key is not present.
|
||||
const pluckedValue = value.pluck(metadata);
|
||||
if (!pluckedValue) return; // Skip if the plucked value is null/empty.
|
||||
pluckedData[value.as] = pluckedValue;
|
||||
});
|
||||
|
||||
return pluckedData;
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a string of metadata to be prepended to each chunk.
|
||||
*/
|
||||
stringifyHeader() {
|
||||
if (!this.config.chunkHeaderMeta) return null;
|
||||
let content = "";
|
||||
|
@ -791,6 +791,8 @@ ${this.getHistory({ to: route.to })
|
||||
return new Providers.ApiPieProvider({ model: config.model });
|
||||
case "xai":
|
||||
return new Providers.XAIProvider({ model: config.model });
|
||||
case "novita":
|
||||
return new Providers.NovitaProvider({ model: config.model });
|
||||
|
||||
default:
|
||||
throw new Error(
|
||||
|
@ -206,6 +206,14 @@ class Provider {
|
||||
apiKey: process.env.LITE_LLM_API_KEY ?? null,
|
||||
...config,
|
||||
});
|
||||
case "novita":
|
||||
return new ChatOpenAI({
|
||||
configuration: {
|
||||
baseURL: "https://api.novita.ai/v3/openai",
|
||||
},
|
||||
apiKey: process.env.NOVITA_LLM_API_KEY ?? null,
|
||||
...config,
|
||||
});
|
||||
|
||||
default:
|
||||
throw new Error(`Unsupported provider ${provider} for this task.`);
|
||||
|
@ -18,6 +18,7 @@ const DeepSeekProvider = require("./deepseek.js");
|
||||
const LiteLLMProvider = require("./litellm.js");
|
||||
const ApiPieProvider = require("./apipie.js");
|
||||
const XAIProvider = require("./xai.js");
|
||||
const NovitaProvider = require("./novita.js");
|
||||
|
||||
module.exports = {
|
||||
OpenAIProvider,
|
||||
@ -40,4 +41,5 @@ module.exports = {
|
||||
LiteLLMProvider,
|
||||
ApiPieProvider,
|
||||
XAIProvider,
|
||||
NovitaProvider,
|
||||
};
|
||||
|
115
server/utils/agents/aibitat/providers/novita.js
Normal file
115
server/utils/agents/aibitat/providers/novita.js
Normal file
@ -0,0 +1,115 @@
|
||||
const OpenAI = require("openai");
|
||||
const Provider = require("./ai-provider.js");
|
||||
const InheritMultiple = require("./helpers/classes.js");
|
||||
const UnTooled = require("./helpers/untooled.js");
|
||||
|
||||
/**
|
||||
* The agent provider for the Novita AI provider.
|
||||
*/
|
||||
class NovitaProvider extends InheritMultiple([Provider, UnTooled]) {
|
||||
model;
|
||||
|
||||
constructor(config = {}) {
|
||||
const { model = "gryphe/mythomax-l2-13b" } = config;
|
||||
super();
|
||||
const client = new OpenAI({
|
||||
baseURL: "https://api.novita.ai/v3/openai",
|
||||
apiKey: process.env.NOVITA_LLM_API_KEY,
|
||||
maxRetries: 3,
|
||||
defaultHeaders: {
|
||||
"HTTP-Referer": "https://anythingllm.com",
|
||||
"X-Novita-Source": "anythingllm",
|
||||
},
|
||||
});
|
||||
|
||||
this._client = client;
|
||||
this.model = model;
|
||||
this.verbose = true;
|
||||
}
|
||||
|
||||
get client() {
|
||||
return this._client;
|
||||
}
|
||||
|
||||
async #handleFunctionCallChat({ messages = [] }) {
|
||||
return await this.client.chat.completions
|
||||
.create({
|
||||
model: this.model,
|
||||
temperature: 0,
|
||||
messages,
|
||||
})
|
||||
.then((result) => {
|
||||
if (!result.hasOwnProperty("choices"))
|
||||
throw new Error("Novita chat: No results!");
|
||||
if (result.choices.length === 0)
|
||||
throw new Error("Novita chat: No results length!");
|
||||
return result.choices[0].message.content;
|
||||
})
|
||||
.catch((_) => {
|
||||
return null;
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a completion based on the received messages.
|
||||
*
|
||||
* @param messages A list of messages to send to the API.
|
||||
* @param functions
|
||||
* @returns The completion.
|
||||
*/
|
||||
async complete(messages, functions = null) {
|
||||
let completion;
|
||||
if (functions.length > 0) {
|
||||
const { toolCall, text } = await this.functionCall(
|
||||
messages,
|
||||
functions,
|
||||
this.#handleFunctionCallChat.bind(this)
|
||||
);
|
||||
|
||||
if (toolCall !== null) {
|
||||
this.providerLog(`Valid tool call found - running ${toolCall.name}.`);
|
||||
this.deduplicator.trackRun(toolCall.name, toolCall.arguments);
|
||||
return {
|
||||
result: null,
|
||||
functionCall: {
|
||||
name: toolCall.name,
|
||||
arguments: toolCall.arguments,
|
||||
},
|
||||
cost: 0,
|
||||
};
|
||||
}
|
||||
completion = { content: text };
|
||||
}
|
||||
|
||||
if (!completion?.content) {
|
||||
this.providerLog("Will assume chat completion without tool call inputs.");
|
||||
const response = await this.client.chat.completions.create({
|
||||
model: this.model,
|
||||
messages: this.cleanMsgs(messages),
|
||||
});
|
||||
completion = response.choices[0].message;
|
||||
}
|
||||
|
||||
// The UnTooled class inherited Deduplicator is mostly useful to prevent the agent
|
||||
// from calling the exact same function over and over in a loop within a single chat exchange
|
||||
// _but_ we should enable it to call previously used tools in a new chat interaction.
|
||||
this.deduplicator.reset("runs");
|
||||
return {
|
||||
result: completion.content,
|
||||
cost: 0,
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the cost of the completion.
|
||||
*
|
||||
* @param _usage The completion to get the cost for.
|
||||
* @returns The cost of the completion.
|
||||
* Stubbed since Novita AI has no cost basis.
|
||||
*/
|
||||
getCost() {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = NovitaProvider;
|
@ -173,6 +173,10 @@ class AgentHandler {
|
||||
if (!process.env.XAI_LLM_API_KEY)
|
||||
throw new Error("xAI API Key must be provided to use agents.");
|
||||
break;
|
||||
case "novita":
|
||||
if (!process.env.NOVITA_LLM_API_KEY)
|
||||
throw new Error("Novita API Key must be provided to use agents.");
|
||||
break;
|
||||
|
||||
default:
|
||||
throw new Error(
|
||||
@ -236,6 +240,8 @@ class AgentHandler {
|
||||
return process.env.APIPIE_LLM_MODEL_PREF ?? null;
|
||||
case "xai":
|
||||
return process.env.XAI_LLM_MODEL_PREF ?? "grok-beta";
|
||||
case "novita":
|
||||
return process.env.NOVITA_LLM_MODEL_PREF ?? "gryphe/mythomax-l2-13b";
|
||||
default:
|
||||
return null;
|
||||
}
|
||||
|
@ -4,6 +4,7 @@ const { perplexityModels } = require("../AiProviders/perplexity");
|
||||
const { togetherAiModels } = require("../AiProviders/togetherAi");
|
||||
const { fireworksAiModels } = require("../AiProviders/fireworksAi");
|
||||
const { ElevenLabsTTS } = require("../TextToSpeech/elevenLabs");
|
||||
const { fetchNovitaModels } = require("../AiProviders/novita");
|
||||
const SUPPORT_CUSTOM_MODELS = [
|
||||
"openai",
|
||||
"localai",
|
||||
@ -21,6 +22,7 @@ const SUPPORT_CUSTOM_MODELS = [
|
||||
"groq",
|
||||
"deepseek",
|
||||
"apipie",
|
||||
"novita",
|
||||
"xai",
|
||||
];
|
||||
|
||||
@ -61,6 +63,8 @@ async function getCustomModels(provider = "", apiKey = null, basePath = null) {
|
||||
return await getDeepSeekModels(apiKey);
|
||||
case "apipie":
|
||||
return await getAPIPieModels(apiKey);
|
||||
case "novita":
|
||||
return await getNovitaModels();
|
||||
case "xai":
|
||||
return await getXAIModels(apiKey);
|
||||
default:
|
||||
@ -362,6 +366,20 @@ async function getOpenRouterModels() {
|
||||
return { models, error: null };
|
||||
}
|
||||
|
||||
async function getNovitaModels() {
|
||||
const knownModels = await fetchNovitaModels();
|
||||
if (!Object.keys(knownModels).length === 0)
|
||||
return { models: [], error: null };
|
||||
const models = Object.values(knownModels).map((model) => {
|
||||
return {
|
||||
id: model.id,
|
||||
organization: model.organization,
|
||||
name: model.name,
|
||||
};
|
||||
});
|
||||
return { models, error: null };
|
||||
}
|
||||
|
||||
async function getAPIPieModels(apiKey = null) {
|
||||
const knownModels = await fetchApiPieModels(apiKey);
|
||||
if (!Object.keys(knownModels).length === 0)
|
||||
|
@ -168,6 +168,9 @@ function getLLMProvider({ provider = null, model = null } = {}) {
|
||||
case "apipie":
|
||||
const { ApiPieLLM } = require("../AiProviders/apipie");
|
||||
return new ApiPieLLM(embedder, model);
|
||||
case "novita":
|
||||
const { NovitaLLM } = require("../AiProviders/novita");
|
||||
return new NovitaLLM(embedder, model);
|
||||
case "xai":
|
||||
const { XAiLLM } = require("../AiProviders/xai");
|
||||
return new XAiLLM(embedder, model);
|
||||
@ -303,6 +306,9 @@ function getLLMProviderClass({ provider = null } = {}) {
|
||||
case "apipie":
|
||||
const { ApiPieLLM } = require("../AiProviders/apipie");
|
||||
return ApiPieLLM;
|
||||
case "novita":
|
||||
const { NovitaLLM } = require("../AiProviders/novita");
|
||||
return NovitaLLM;
|
||||
case "xai":
|
||||
const { XAiLLM } = require("../AiProviders/xai");
|
||||
return XAiLLM;
|
||||
|
@ -412,6 +412,20 @@ const KEY_MAPPING = {
|
||||
checks: [],
|
||||
},
|
||||
|
||||
// Novita Options
|
||||
NovitaLLMApiKey: {
|
||||
envKey: "NOVITA_LLM_API_KEY",
|
||||
checks: [isNotEmpty],
|
||||
},
|
||||
NovitaLLMModelPref: {
|
||||
envKey: "NOVITA_LLM_MODEL_PREF",
|
||||
checks: [isNotEmpty],
|
||||
},
|
||||
NovitaLLMTimeout: {
|
||||
envKey: "NOVITA_LLM_TIMEOUT_MS",
|
||||
checks: [],
|
||||
},
|
||||
|
||||
// Groq Options
|
||||
GroqApiKey: {
|
||||
envKey: "GROQ_API_KEY",
|
||||
@ -673,6 +687,7 @@ function supportedLLM(input = "") {
|
||||
"huggingface",
|
||||
"perplexity",
|
||||
"openrouter",
|
||||
"novita",
|
||||
"groq",
|
||||
"koboldcpp",
|
||||
"textgenwebui",
|
||||
|
@ -160,10 +160,7 @@ const AstraDB = {
|
||||
{ label: "text_splitter_chunk_overlap" },
|
||||
20
|
||||
),
|
||||
chunkHeaderMeta: {
|
||||
sourceDocument: metadata?.title,
|
||||
published: metadata?.published || "unknown",
|
||||
},
|
||||
chunkHeaderMeta: TextSplitter.buildHeaderMeta(metadata),
|
||||
});
|
||||
const textChunks = await textSplitter.splitText(pageContent);
|
||||
|
||||
|
@ -251,10 +251,7 @@ const Chroma = {
|
||||
{ label: "text_splitter_chunk_overlap" },
|
||||
20
|
||||
),
|
||||
chunkHeaderMeta: {
|
||||
sourceDocument: metadata?.title,
|
||||
published: metadata?.published || "unknown",
|
||||
},
|
||||
chunkHeaderMeta: TextSplitter.buildHeaderMeta(metadata),
|
||||
});
|
||||
const textChunks = await textSplitter.splitText(pageContent);
|
||||
|
||||
|
@ -240,10 +240,7 @@ const LanceDb = {
|
||||
{ label: "text_splitter_chunk_overlap" },
|
||||
20
|
||||
),
|
||||
chunkHeaderMeta: {
|
||||
sourceDocument: metadata?.title,
|
||||
published: metadata?.published || "unknown",
|
||||
},
|
||||
chunkHeaderMeta: TextSplitter.buildHeaderMeta(metadata),
|
||||
});
|
||||
const textChunks = await textSplitter.splitText(pageContent);
|
||||
|
||||
|
@ -203,10 +203,7 @@ const Milvus = {
|
||||
{ label: "text_splitter_chunk_overlap" },
|
||||
20
|
||||
),
|
||||
chunkHeaderMeta: {
|
||||
sourceDocument: metadata?.title,
|
||||
published: metadata?.published || "unknown",
|
||||
},
|
||||
chunkHeaderMeta: TextSplitter.buildHeaderMeta(metadata),
|
||||
});
|
||||
const textChunks = await textSplitter.splitText(pageContent);
|
||||
|
||||
|
@ -146,10 +146,7 @@ const PineconeDB = {
|
||||
{ label: "text_splitter_chunk_overlap" },
|
||||
20
|
||||
),
|
||||
chunkHeaderMeta: {
|
||||
sourceDocument: metadata?.title,
|
||||
published: metadata?.published || "unknown",
|
||||
},
|
||||
chunkHeaderMeta: TextSplitter.buildHeaderMeta(metadata),
|
||||
});
|
||||
const textChunks = await textSplitter.splitText(pageContent);
|
||||
|
||||
|
@ -222,10 +222,7 @@ const QDrant = {
|
||||
{ label: "text_splitter_chunk_overlap" },
|
||||
20
|
||||
),
|
||||
chunkHeaderMeta: {
|
||||
sourceDocument: metadata?.title,
|
||||
published: metadata?.published || "unknown",
|
||||
},
|
||||
chunkHeaderMeta: TextSplitter.buildHeaderMeta(metadata),
|
||||
});
|
||||
const textChunks = await textSplitter.splitText(pageContent);
|
||||
|
||||
|
@ -262,10 +262,7 @@ const Weaviate = {
|
||||
{ label: "text_splitter_chunk_overlap" },
|
||||
20
|
||||
),
|
||||
chunkHeaderMeta: {
|
||||
sourceDocument: metadata?.title,
|
||||
published: metadata?.published || "unknown",
|
||||
},
|
||||
chunkHeaderMeta: TextSplitter.buildHeaderMeta(metadata),
|
||||
});
|
||||
const textChunks = await textSplitter.splitText(pageContent);
|
||||
|
||||
|
@ -196,10 +196,7 @@ const Zilliz = {
|
||||
{ label: "text_splitter_chunk_overlap" },
|
||||
20
|
||||
),
|
||||
chunkHeaderMeta: {
|
||||
sourceDocument: metadata?.title,
|
||||
published: metadata?.published || "unknown",
|
||||
},
|
||||
chunkHeaderMeta: TextSplitter.buildHeaderMeta(metadata),
|
||||
});
|
||||
const textChunks = await textSplitter.splitText(pageContent);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user