Support LocalAi as LLM provider by @tlandenberger (#373)

* feature: add LocalAI as llm provider

* update Onboarding/mgmt settings
Grab models from models endpoint for localai
merge with master

* update streaming for complete chunk streaming
update localAI LLM to be able to stream

* force schema on URL

---------
Co-authored-by: timothycarambat <rambat1010@gmail.com>
Co-authored-by: tlandenberger <tobiaslandenberger@gmail.com>
This commit is contained in:
Timothy Carambat 2023-11-14 12:31:44 -08:00 committed by GitHub
parent 6957bc3ec0
commit 4bb99ab4bf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 442 additions and 12 deletions

View File

@ -23,6 +23,11 @@ CACHE_VECTORS="true"
# LMSTUDIO_BASE_PATH='http://your-server:1234/v1' # LMSTUDIO_BASE_PATH='http://your-server:1234/v1'
# LMSTUDIO_MODEL_TOKEN_LIMIT=4096 # LMSTUDIO_MODEL_TOKEN_LIMIT=4096
# LLM_PROVIDER='localai'
# LOCAL_AI_BASE_PATH='http://host.docker.internal:8080/v1'
# LOCAL_AI_MODEL_PREF='luna-ai-llama2'
# LOCAL_AI_MODEL_TOKEN_LIMIT=4096
########################################### ###########################################
######## Embedding API SElECTION ########## ######## Embedding API SElECTION ##########
########################################### ###########################################

View File

@ -0,0 +1,140 @@
import { useEffect, useState } from "react";
import { Info } from "@phosphor-icons/react";
import paths from "../../../utils/paths";
import System from "../../../models/system";
export default function LocalAiOptions({ settings, showAlert = false }) {
const [basePathValue, setBasePathValue] = useState(settings?.LocalAiBasePath);
const [basePath, setBasePath] = useState(settings?.LocalAiBasePath);
function updateBasePath() {
setBasePath(basePathValue);
}
return (
<div className="w-full flex flex-col">
{showAlert && (
<div className="flex flex-col md:flex-row md:items-center gap-x-2 text-white mb-6 bg-blue-800/30 w-fit rounded-lg px-4 py-2">
<div className="gap-x-2 flex items-center">
<Info size={12} className="hidden md:visible" />
<p className="text-sm md:text-base">
LocalAI as your LLM requires you to set an embedding service to
use.
</p>
</div>
<a
href={paths.settings.embeddingPreference()}
className="text-sm md:text-base my-2 underline"
>
Manage embedding &rarr;
</a>
</div>
)}
<div className="w-full flex items-center gap-4">
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Local AI Base URL
</label>
<input
type="url"
name="LocalAiBasePath"
className="bg-zinc-900 text-white placeholder-white placeholder-opacity-60 text-sm rounded-lg focus:border-white block w-full p-2.5"
placeholder="http://localhost:1234/v1"
defaultValue={settings?.LocalAiBasePath}
required={true}
autoComplete="off"
spellCheck={false}
onChange={(e) => setBasePathValue(e.target.value)}
onBlur={updateBasePath}
/>
</div>
<LocalAIModelSelection settings={settings} basePath={basePath} />
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Token context window
</label>
<input
type="number"
name="LocalAiTokenLimit"
className="bg-zinc-900 text-white placeholder-white placeholder-opacity-60 text-sm rounded-lg focus:border-white block w-full p-2.5"
placeholder="4096"
min={1}
onScroll={(e) => e.target.blur()}
defaultValue={settings?.LocalAiTokenLimit}
required={true}
autoComplete="off"
/>
</div>
</div>
</div>
);
}
function LocalAIModelSelection({ settings, basePath = null }) {
const [customModels, setCustomModels] = useState([]);
const [loading, setLoading] = useState(true);
useEffect(() => {
async function findCustomModels() {
if (!basePath || !basePath.includes("/v1")) {
setCustomModels([]);
setLoading(false);
return;
}
setLoading(true);
const { models } = await System.customModels("localai", null, basePath);
setCustomModels(models || []);
setLoading(false);
}
findCustomModels();
}, [basePath]);
if (loading || customModels.length == 0) {
return (
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Chat Model Selection
</label>
<select
name="LocalAiModelPref"
disabled={true}
className="bg-zinc-900 border border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
>
<option disabled={true} selected={true}>
{basePath?.includes("/v1")
? "-- loading available models --"
: "-- waiting for URL --"}
</option>
</select>
</div>
);
}
return (
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Chat Model Selection
</label>
<select
name="LocalAiModelPref"
required={true}
className="bg-zinc-900 border border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
>
{customModels.length > 0 && (
<optgroup label="Your loaded models">
{customModels.map((model) => {
return (
<option
key={model.id}
value={model.id}
selected={settings.LocalAiModelPref === model.id}
>
{model.id}
</option>
);
})}
</optgroup>
)}
</select>
</div>
);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 174 KiB

View File

@ -319,13 +319,14 @@ const System = {
return false; return false;
}); });
}, },
customModels: async function (provider, apiKey) { customModels: async function (provider, apiKey = null, basePath = null) {
return fetch(`${API_BASE}/system/custom-models`, { return fetch(`${API_BASE}/system/custom-models`, {
method: "POST", method: "POST",
headers: baseHeaders(), headers: baseHeaders(),
body: JSON.stringify({ body: JSON.stringify({
provider, provider,
apiKey, apiKey,
basePath,
}), }),
}) })
.then((res) => { .then((res) => {

View File

@ -9,12 +9,14 @@ import OpenAiLogo from "../../../media/llmprovider/openai.png";
import AzureOpenAiLogo from "../../../media/llmprovider/azure.png"; import AzureOpenAiLogo from "../../../media/llmprovider/azure.png";
import AnthropicLogo from "../../../media/llmprovider/anthropic.png"; import AnthropicLogo from "../../../media/llmprovider/anthropic.png";
import LMStudioLogo from "../../../media/llmprovider/lmstudio.png"; import LMStudioLogo from "../../../media/llmprovider/lmstudio.png";
import LocalAiLogo from "../../../media/llmprovider/localai.png";
import PreLoader from "../../../components/Preloader"; import PreLoader from "../../../components/Preloader";
import LLMProviderOption from "../../../components/LLMSelection/LLMProviderOption"; import LLMProviderOption from "../../../components/LLMSelection/LLMProviderOption";
import OpenAiOptions from "../../../components/LLMSelection/OpenAiOptions"; import OpenAiOptions from "../../../components/LLMSelection/OpenAiOptions";
import AzureAiOptions from "../../../components/LLMSelection/AzureAiOptions"; import AzureAiOptions from "../../../components/LLMSelection/AzureAiOptions";
import AnthropicAiOptions from "../../../components/LLMSelection/AnthropicAiOptions"; import AnthropicAiOptions from "../../../components/LLMSelection/AnthropicAiOptions";
import LMStudioOptions from "../../../components/LLMSelection/LMStudioOptions"; import LMStudioOptions from "../../../components/LLMSelection/LMStudioOptions";
import LocalAiOptions from "../../../components/LLMSelection/LocalAiOptions";
export default function GeneralLLMPreference() { export default function GeneralLLMPreference() {
const [saving, setSaving] = useState(false); const [saving, setSaving] = useState(false);
@ -141,6 +143,15 @@ export default function GeneralLLMPreference() {
image={LMStudioLogo} image={LMStudioLogo}
onClick={updateLLMChoice} onClick={updateLLMChoice}
/> />
<LLMProviderOption
name="Local AI"
value="localai"
link="localai.io"
description="Run LLMs locally on your own machine."
checked={llmChoice === "localai"}
image={LocalAiLogo}
onClick={updateLLMChoice}
/>
</div> </div>
<div className="mt-10 flex flex-wrap gap-4 max-w-[800px]"> <div className="mt-10 flex flex-wrap gap-4 max-w-[800px]">
{llmChoice === "openai" && ( {llmChoice === "openai" && (
@ -155,6 +166,9 @@ export default function GeneralLLMPreference() {
{llmChoice === "lmstudio" && ( {llmChoice === "lmstudio" && (
<LMStudioOptions settings={settings} showAlert={true} /> <LMStudioOptions settings={settings} showAlert={true} />
)} )}
{llmChoice === "localai" && (
<LocalAiOptions settings={settings} showAlert={true} />
)}
</div> </div>
</div> </div>
</form> </form>

View File

@ -4,6 +4,7 @@ import OpenAiLogo from "../../../../../media/llmprovider/openai.png";
import AzureOpenAiLogo from "../../../../../media/llmprovider/azure.png"; import AzureOpenAiLogo from "../../../../../media/llmprovider/azure.png";
import AnthropicLogo from "../../../../../media/llmprovider/anthropic.png"; import AnthropicLogo from "../../../../../media/llmprovider/anthropic.png";
import LMStudioLogo from "../../../../../media/llmprovider/lmstudio.png"; import LMStudioLogo from "../../../../../media/llmprovider/lmstudio.png";
import LocalAiLogo from "../../../../../media/llmprovider/localai.png";
import ChromaLogo from "../../../../../media/vectordbs/chroma.png"; import ChromaLogo from "../../../../../media/vectordbs/chroma.png";
import PineconeLogo from "../../../../../media/vectordbs/pinecone.png"; import PineconeLogo from "../../../../../media/vectordbs/pinecone.png";
import LanceDbLogo from "../../../../../media/vectordbs/lancedb.png"; import LanceDbLogo from "../../../../../media/vectordbs/lancedb.png";
@ -43,6 +44,13 @@ const LLM_SELECTION_PRIVACY = {
], ],
logo: LMStudioLogo, logo: LMStudioLogo,
}, },
localai: {
name: "LocalAI",
description: [
"Your model and chats are only accessible on the server running LocalAI",
],
logo: LocalAiLogo,
},
}; };
const VECTOR_DB_PRIVACY = { const VECTOR_DB_PRIVACY = {

View File

@ -3,6 +3,7 @@ import OpenAiLogo from "../../../../../media/llmprovider/openai.png";
import AzureOpenAiLogo from "../../../../../media/llmprovider/azure.png"; import AzureOpenAiLogo from "../../../../../media/llmprovider/azure.png";
import AnthropicLogo from "../../../../../media/llmprovider/anthropic.png"; import AnthropicLogo from "../../../../../media/llmprovider/anthropic.png";
import LMStudioLogo from "../../../../../media/llmprovider/lmstudio.png"; import LMStudioLogo from "../../../../../media/llmprovider/lmstudio.png";
import LocalAiLogo from "../../../../../media/llmprovider/localai.png";
import System from "../../../../../models/system"; import System from "../../../../../models/system";
import PreLoader from "../../../../../components/Preloader"; import PreLoader from "../../../../../components/Preloader";
import LLMProviderOption from "../../../../../components/LLMSelection/LLMProviderOption"; import LLMProviderOption from "../../../../../components/LLMSelection/LLMProviderOption";
@ -10,6 +11,7 @@ import OpenAiOptions from "../../../../../components/LLMSelection/OpenAiOptions"
import AzureAiOptions from "../../../../../components/LLMSelection/AzureAiOptions"; import AzureAiOptions from "../../../../../components/LLMSelection/AzureAiOptions";
import AnthropicAiOptions from "../../../../../components/LLMSelection/AnthropicAiOptions"; import AnthropicAiOptions from "../../../../../components/LLMSelection/AnthropicAiOptions";
import LMStudioOptions from "../../../../../components/LLMSelection/LMStudioOptions"; import LMStudioOptions from "../../../../../components/LLMSelection/LMStudioOptions";
import LocalAiOptions from "../../../../../components/LLMSelection/LocalAiOptions";
function LLMSelection({ nextStep, prevStep, currentStep }) { function LLMSelection({ nextStep, prevStep, currentStep }) {
const [llmChoice, setLLMChoice] = useState("openai"); const [llmChoice, setLLMChoice] = useState("openai");
@ -47,8 +49,8 @@ function LLMSelection({ nextStep, prevStep, currentStep }) {
switch (data.LLMProvider) { switch (data.LLMProvider) {
case "anthropic": case "anthropic":
return nextStep("embedding_preferences");
case "lmstudio": case "lmstudio":
case "localai":
return nextStep("embedding_preferences"); return nextStep("embedding_preferences");
default: default:
return nextStep("vector_database"); return nextStep("vector_database");
@ -107,6 +109,15 @@ function LLMSelection({ nextStep, prevStep, currentStep }) {
image={LMStudioLogo} image={LMStudioLogo}
onClick={updateLLMChoice} onClick={updateLLMChoice}
/> />
<LLMProviderOption
name="Local AI"
value="localai"
link="localai.io"
description="Run LLMs locally on your own machine."
checked={llmChoice === "localai"}
image={LocalAiLogo}
onClick={updateLLMChoice}
/>
</div> </div>
<div className="mt-10 flex flex-wrap gap-4 max-w-[800px]"> <div className="mt-10 flex flex-wrap gap-4 max-w-[800px]">
{llmChoice === "openai" && <OpenAiOptions settings={settings} />} {llmChoice === "openai" && <OpenAiOptions settings={settings} />}
@ -117,6 +128,7 @@ function LLMSelection({ nextStep, prevStep, currentStep }) {
{llmChoice === "lmstudio" && ( {llmChoice === "lmstudio" && (
<LMStudioOptions settings={settings} /> <LMStudioOptions settings={settings} />
)} )}
{llmChoice === "localai" && <LocalAiOptions settings={settings} />}
</div> </div>
</div> </div>
<div className="flex w-full justify-between items-center p-6 space-x-2 border-t rounded-b border-gray-500/50"> <div className="flex w-full justify-between items-center p-6 space-x-2 border-t rounded-b border-gray-500/50">

View File

@ -23,6 +23,11 @@ JWT_SECRET="my-random-string-for-seeding" # Please generate random string at lea
# LMSTUDIO_BASE_PATH='http://your-server:1234/v1' # LMSTUDIO_BASE_PATH='http://your-server:1234/v1'
# LMSTUDIO_MODEL_TOKEN_LIMIT=4096 # LMSTUDIO_MODEL_TOKEN_LIMIT=4096
# LLM_PROVIDER='localai'
# LOCAL_AI_BASE_PATH='http://localhost:8080/v1'
# LOCAL_AI_MODEL_PREF='luna-ai-llama2'
# LOCAL_AI_MODEL_TOKEN_LIMIT=4096
########################################### ###########################################
######## Embedding API SElECTION ########## ######## Embedding API SElECTION ##########
########################################### ###########################################

View File

@ -615,8 +615,12 @@ function systemEndpoints(app) {
[validatedRequest], [validatedRequest],
async (request, response) => { async (request, response) => {
try { try {
const { provider, apiKey } = reqBody(request); const { provider, apiKey = null, basePath = null } = reqBody(request);
const { models, error } = await getCustomModels(provider, apiKey); const { models, error } = await getCustomModels(
provider,
apiKey,
basePath
);
return response.status(200).json({ return response.status(200).json({
models, models,
error, error,

View File

@ -94,6 +94,20 @@ const SystemSettings = {
AzureOpenAiEmbeddingModelPref: process.env.EMBEDDING_MODEL_PREF, AzureOpenAiEmbeddingModelPref: process.env.EMBEDDING_MODEL_PREF,
} }
: {}), : {}),
...(llmProvider === "localai"
? {
LocalAiBasePath: process.env.LOCAL_AI_BASE_PATH,
LocalAiModelPref: process.env.LOCAL_AI_MODEL_PREF,
LocalAiTokenLimit: process.env.LOCAL_AI_MODEL_TOKEN_LIMIT,
// For embedding credentials when localai is selected.
OpenAiKey: !!process.env.OPEN_AI_KEY,
AzureOpenAiEndpoint: process.env.AZURE_OPENAI_ENDPOINT,
AzureOpenAiKey: !!process.env.AZURE_OPENAI_KEY,
AzureOpenAiEmbeddingModelPref: process.env.EMBEDDING_MODEL_PREF,
}
: {}),
}; };
}, },

View File

@ -0,0 +1,182 @@
const { chatPrompt } = require("../../chats");
class LocalAiLLM {
constructor(embedder = null) {
if (!process.env.LOCAL_AI_BASE_PATH)
throw new Error("No LocalAI Base Path was set.");
const { Configuration, OpenAIApi } = require("openai");
const config = new Configuration({
basePath: process.env.LOCAL_AI_BASE_PATH,
});
this.openai = new OpenAIApi(config);
this.model = process.env.LOCAL_AI_MODEL_PREF;
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
if (!embedder)
throw new Error(
"INVALID LOCAL AI SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use LocalAI as your LLM."
);
this.embedder = embedder;
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
}
// Ensure the user set a value for the token limit
// and if undefined - assume 4096 window.
promptWindowLimit() {
const limit = process.env.LOCAL_AI_MODEL_TOKEN_LIMIT || 4096;
if (!limit || isNaN(Number(limit)))
throw new Error("No LocalAi token context limit was set.");
return Number(limit);
}
async isValidChatCompletionModel(_ = "") {
return true;
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
}) {
const prompt = {
role: "system",
content: `${systemPrompt}
Context:
${contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}
async isSafe(_input = "") {
// Not implemented so must be stubbed
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`LocalAI chat: ${this.model} is not valid for chat completion!`
);
const textResponse = await this.openai
.createChatCompletion({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? 0.7),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
})
.then((json) => {
const res = json.data;
if (!res.hasOwnProperty("choices"))
throw new Error("LocalAI chat: No results!");
if (res.choices.length === 0)
throw new Error("LocalAI chat: No results length!");
return res.choices[0].message.content;
})
.catch((error) => {
throw new Error(
`LocalAI::createChatCompletion failed with: ${error.message}`
);
});
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`LocalAI chat: ${this.model} is not valid for chat completion!`
);
const streamRequest = await this.openai.createChatCompletion(
{
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? 0.7),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
},
{ responseType: "stream" }
);
return streamRequest;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`LocalAI chat: ${this.model} is not valid for chat completion!`
);
const { data } = await this.openai.createChatCompletion({
model: this.model,
messages,
temperature,
});
if (!data.hasOwnProperty("choices")) return null;
return data.choices[0].message.content;
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`LocalAi chat: ${this.model} is not valid for chat completion!`
);
const streamRequest = await this.openai.createChatCompletion(
{
model: this.model,
stream: true,
messages,
temperature,
},
{ responseType: "stream" }
);
return streamRequest;
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
LocalAiLLM,
};

View File

@ -211,12 +211,18 @@ function handleStreamResponses(response, stream, responseProps) {
.filter((line) => line.trim() !== ""); .filter((line) => line.trim() !== "");
for (const line of lines) { for (const line of lines) {
let validJSON = false;
const message = chunk + line.replace(/^data: /, ""); const message = chunk + line.replace(/^data: /, "");
// JSON chunk is incomplete and has not ended yet // JSON chunk is incomplete and has not ended yet
// so we need to stitch it together. You would think JSON // so we need to stitch it together. You would think JSON
// chunks would only come complete - but they don't! // chunks would only come complete - but they don't!
if (message.slice(-3) !== "}]}") { try {
JSON.parse(message);
validJSON = true;
} catch {}
if (!validJSON) {
chunk += message; chunk += message;
continue; continue;
} else { } else {
@ -234,12 +240,12 @@ function handleStreamResponses(response, stream, responseProps) {
}); });
resolve(fullText); resolve(fullText);
} else { } else {
let finishReason; let finishReason = null;
let token = ""; let token = "";
try { try {
const json = JSON.parse(message); const json = JSON.parse(message);
token = json?.choices?.[0]?.delta?.content; token = json?.choices?.[0]?.delta?.content;
finishReason = json?.choices?.[0]?.finish_reason; finishReason = json?.choices?.[0]?.finish_reason || null;
} catch { } catch {
continue; continue;
} }

View File

@ -1,12 +1,14 @@
const SUPPORT_CUSTOM_MODELS = ["openai"]; const SUPPORT_CUSTOM_MODELS = ["openai", "localai"];
async function getCustomModels(provider = "", apiKey = null) { async function getCustomModels(provider = "", apiKey = null, basePath = null) {
if (!SUPPORT_CUSTOM_MODELS.includes(provider)) if (!SUPPORT_CUSTOM_MODELS.includes(provider))
return { models: [], error: "Invalid provider for custom models" }; return { models: [], error: "Invalid provider for custom models" };
switch (provider) { switch (provider) {
case "openai": case "openai":
return await openAiModels(apiKey); return await openAiModels(apiKey);
case "localai":
return await localAIModels(basePath);
default: default:
return { models: [], error: "Invalid provider for custom models" }; return { models: [], error: "Invalid provider for custom models" };
} }
@ -33,6 +35,23 @@ async function openAiModels(apiKey = null) {
return { models, error: null }; return { models, error: null };
} }
async function localAIModels(basePath = null) {
const { Configuration, OpenAIApi } = require("openai");
const config = new Configuration({
basePath,
});
const openai = new OpenAIApi(config);
const models = await openai
.listModels()
.then((res) => res.data.data)
.catch((e) => {
console.error(`LocalAI:listModels`, e.message);
return [];
});
return { models, error: null };
}
module.exports = { module.exports = {
getCustomModels, getCustomModels,
}; };

View File

@ -39,6 +39,10 @@ function getLLMProvider() {
const { LMStudioLLM } = require("../AiProviders/lmStudio"); const { LMStudioLLM } = require("../AiProviders/lmStudio");
embedder = getEmbeddingEngineSelection(); embedder = getEmbeddingEngineSelection();
return new LMStudioLLM(embedder); return new LMStudioLLM(embedder);
case "localai":
const { LocalAiLLM } = require("../AiProviders/localAi");
embedder = getEmbeddingEngineSelection();
return new LocalAiLLM(embedder);
default: default:
throw new Error("ENV: No LLM_PROVIDER value found in environment!"); throw new Error("ENV: No LLM_PROVIDER value found in environment!");
} }

View File

@ -47,13 +47,27 @@ const KEY_MAPPING = {
// LMStudio Settings // LMStudio Settings
LMStudioBasePath: { LMStudioBasePath: {
envKey: "LMSTUDIO_BASE_PATH", envKey: "LMSTUDIO_BASE_PATH",
checks: [isNotEmpty, validLMStudioBasePath], checks: [isNotEmpty, validLLMExternalBasePath],
}, },
LMStudioTokenLimit: { LMStudioTokenLimit: {
envKey: "LMSTUDIO_MODEL_TOKEN_LIMIT", envKey: "LMSTUDIO_MODEL_TOKEN_LIMIT",
checks: [nonZero], checks: [nonZero],
}, },
// LocalAI Settings
LocalAiBasePath: {
envKey: "LOCAL_AI_BASE_PATH",
checks: [isNotEmpty, validLLMExternalBasePath],
},
LocalAiModelPref: {
envKey: "LOCAL_AI_MODEL_PREF",
checks: [],
},
LocalAiTokenLimit: {
envKey: "LOCAL_AI_MODEL_TOKEN_LIMIT",
checks: [nonZero],
},
EmbeddingEngine: { EmbeddingEngine: {
envKey: "EMBEDDING_ENGINE", envKey: "EMBEDDING_ENGINE",
checks: [supportedEmbeddingModel], checks: [supportedEmbeddingModel],
@ -151,7 +165,7 @@ function validAnthropicApiKey(input = "") {
: "Anthropic Key must start with sk-ant-"; : "Anthropic Key must start with sk-ant-";
} }
function validLMStudioBasePath(input = "") { function validLLMExternalBasePath(input = "") {
try { try {
new URL(input); new URL(input);
if (!input.includes("v1")) return "URL must include /v1"; if (!input.includes("v1")) return "URL must include /v1";
@ -164,7 +178,9 @@ function validLMStudioBasePath(input = "") {
} }
function supportedLLM(input = "") { function supportedLLM(input = "") {
return ["openai", "azure", "anthropic", "lmstudio"].includes(input); return ["openai", "azure", "anthropic", "lmstudio", "localai"].includes(
input
);
} }
function validAnthropicModel(input = "") { function validAnthropicModel(input = "") {