Add Grok/XAI support for LLM & agents (#2517)

* Add Grok/XAI support for LLM & agents

* forgot files
This commit is contained in:
Timothy Carambat 2024-10-21 16:32:49 -07:00 committed by GitHub
parent 0074ededdd
commit 5bc96bca88
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
21 changed files with 512 additions and 0 deletions

View File

@ -53,6 +53,7 @@
"uuidv",
"vectordbs",
"Weaviate",
"XAILLM",
"Zilliz"
],
"eslint.experimental.useFlatConfig": true,

View File

@ -109,6 +109,10 @@ GID='1000'
# APIPIE_LLM_API_KEY='sk-123abc'
# APIPIE_LLM_MODEL_PREF='openrouter/llama-3.1-8b-instruct'
# LLM_PROVIDER='xai'
# XAI_LLM_API_KEY='xai-your-api-key-here'
# XAI_LLM_MODEL_PREF='grok-beta'
###########################################
######## Embedding API SElECTION ##########
###########################################

View File

@ -0,0 +1,114 @@
import { useState, useEffect } from "react";
import System from "@/models/system";
export default function XAILLMOptions({ settings }) {
const [inputValue, setInputValue] = useState(settings?.XAIApiKey);
const [apiKey, setApiKey] = useState(settings?.XAIApiKey);
return (
<div className="flex gap-[36px] mt-1.5">
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-3">
xAI API Key
</label>
<input
type="password"
name="XAIApiKey"
className="border-none bg-zinc-900 text-white placeholder:text-white/20 text-sm rounded-lg focus:outline-primary-button active:outline-primary-button outline-none block w-full p-2.5"
placeholder="xAI API Key"
defaultValue={settings?.XAIApiKey ? "*".repeat(20) : ""}
required={true}
autoComplete="off"
spellCheck={false}
onChange={(e) => setInputValue(e.target.value)}
onBlur={() => setApiKey(inputValue)}
/>
</div>
{!settings?.credentialsOnly && (
<XAIModelSelection settings={settings} apiKey={apiKey} />
)}
</div>
);
}
function XAIModelSelection({ apiKey, settings }) {
const [customModels, setCustomModels] = useState([]);
const [loading, setLoading] = useState(true);
useEffect(() => {
async function findCustomModels() {
if (!apiKey) {
setCustomModels([]);
setLoading(true);
return;
}
try {
setLoading(true);
const { models } = await System.customModels("xai", apiKey);
setCustomModels(models || []);
} catch (error) {
console.error("Failed to fetch custom models:", error);
setCustomModels([]);
} finally {
setLoading(false);
}
}
findCustomModels();
}, [apiKey]);
if (loading) {
return (
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-3">
Chat Model Selection
</label>
<select
name="XAIModelPref"
disabled={true}
className="border-none bg-zinc-900 border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
>
<option disabled={true} selected={true}>
--loading available models--
</option>
</select>
<p className="text-xs leading-[18px] font-base text-white text-opacity-60 mt-2">
Enter a valid API key to view all available models for your account.
</p>
</div>
);
}
return (
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-3">
Chat Model Selection
</label>
<select
name="XAIModelPref"
required={true}
className="border-none bg-zinc-900 border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
>
{customModels.length > 0 && (
<optgroup label="Available models">
{customModels.map((model) => {
return (
<option
key={model.id}
value={model.id}
selected={settings?.XAIModelPref === model.id}
>
{model.id}
</option>
);
})}
</optgroup>
)}
</select>
<p className="text-xs leading-[18px] font-base text-white text-opacity-60 mt-2">
Select the xAI model you want to use for your conversations.
</p>
</div>
);
}

View File

@ -49,6 +49,7 @@ const PROVIDER_DEFAULT_MODELS = {
textgenwebui: [],
"generic-openai": [],
bedrock: [],
xai: ["grok-beta"],
};
// For providers with large model lists (e.g. togetherAi) - we subgroup the options

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

View File

@ -27,6 +27,7 @@ import LiteLLMLogo from "@/media/llmprovider/litellm.png";
import AWSBedrockLogo from "@/media/llmprovider/bedrock.png";
import DeepSeekLogo from "@/media/llmprovider/deepseek.png";
import APIPieLogo from "@/media/llmprovider/apipie.png";
import XAILogo from "@/media/llmprovider/xai.png";
import PreLoader from "@/components/Preloader";
import OpenAiOptions from "@/components/LLMSelection/OpenAiOptions";
@ -52,6 +53,7 @@ import LiteLLMOptions from "@/components/LLMSelection/LiteLLMOptions";
import AWSBedrockLLMOptions from "@/components/LLMSelection/AwsBedrockLLMOptions";
import DeepSeekOptions from "@/components/LLMSelection/DeepSeekOptions";
import ApiPieLLMOptions from "@/components/LLMSelection/ApiPieOptions";
import XAILLMOptions from "@/components/LLMSelection/XAiLLMOptions";
import LLMItem from "@/components/LLMSelection/LLMItem";
import { CaretUpDown, MagnifyingGlass, X } from "@phosphor-icons/react";
@ -258,6 +260,15 @@ export const AVAILABLE_LLM_PROVIDERS = [
"GenericOpenAiKey",
],
},
{
name: "xAI",
value: "xai",
logo: XAILogo,
options: (settings) => <XAILLMOptions settings={settings} />,
description: "Run xAI's powerful LLMs like Grok-2 and more.",
requiredConfig: ["XAIApiKey", "XAIModelPref"],
},
{
name: "Native",
value: "native",

View File

@ -22,6 +22,7 @@ import LiteLLMLogo from "@/media/llmprovider/litellm.png";
import AWSBedrockLogo from "@/media/llmprovider/bedrock.png";
import DeepSeekLogo from "@/media/llmprovider/deepseek.png";
import APIPieLogo from "@/media/llmprovider/apipie.png";
import XAILogo from "@/media/llmprovider/xai.png";
import CohereLogo from "@/media/llmprovider/cohere.png";
import ZillizLogo from "@/media/vectordbs/zilliz.png";
@ -210,6 +211,13 @@ export const LLM_SELECTION_PRIVACY = {
],
logo: APIPieLogo,
},
xai: {
name: "xAI",
description: [
"Your model and chat contents are visible to xAI in accordance with their terms of service.",
],
logo: XAILogo,
},
};
export const VECTOR_DB_PRIVACY = {

View File

@ -22,6 +22,7 @@ import LiteLLMLogo from "@/media/llmprovider/litellm.png";
import AWSBedrockLogo from "@/media/llmprovider/bedrock.png";
import DeepSeekLogo from "@/media/llmprovider/deepseek.png";
import APIPieLogo from "@/media/llmprovider/apipie.png";
import XAILogo from "@/media/llmprovider/xai.png";
import CohereLogo from "@/media/llmprovider/cohere.png";
import OpenAiOptions from "@/components/LLMSelection/OpenAiOptions";
@ -47,6 +48,7 @@ import LiteLLMOptions from "@/components/LLMSelection/LiteLLMOptions";
import AWSBedrockLLMOptions from "@/components/LLMSelection/AwsBedrockLLMOptions";
import DeepSeekOptions from "@/components/LLMSelection/DeepSeekOptions";
import ApiPieLLMOptions from "@/components/LLMSelection/ApiPieOptions";
import XAILLMOptions from "@/components/LLMSelection/XAiLLMOptions";
import LLMItem from "@/components/LLMSelection/LLMItem";
import System from "@/models/system";
@ -219,6 +221,13 @@ const LLMS = [
options: (settings) => <AWSBedrockLLMOptions settings={settings} />,
description: "Run powerful foundation models privately with AWS Bedrock.",
},
{
name: "xAI",
value: "xai",
logo: XAILogo,
options: (settings) => <XAILLMOptions settings={settings} />,
description: "Run xAI's powerful LLMs like Grok-2 and more.",
},
{
name: "Native",
value: "native",

View File

@ -26,6 +26,7 @@ const ENABLED_PROVIDERS = [
"deepseek",
"litellm",
"apipie",
"xai",
// TODO: More agent support.
// "cohere", // Has tool calling and will need to build explicit support
// "huggingface" // Can be done but already has issues with no-chat templated. Needs to be tested.

View File

@ -99,6 +99,10 @@ SIG_SALT='salt' # Please generate random string at least 32 chars long.
# APIPIE_LLM_API_KEY='sk-123abc'
# APIPIE_LLM_MODEL_PREF='openrouter/llama-3.1-8b-instruct'
# LLM_PROVIDER='xai'
# XAI_LLM_API_KEY='xai-your-api-key-here'
# XAI_LLM_MODEL_PREF='grok-beta'
###########################################
######## Embedding API SElECTION ##########
###########################################

View File

@ -525,6 +525,10 @@ const SystemSettings = {
// APIPie LLM API Keys
ApipieLLMApiKey: !!process.env.APIPIE_LLM_API_KEY,
ApipieLLMModelPref: process.env.APIPIE_LLM_MODEL_PREF,
// xAI LLM API Keys
XAIApiKey: !!process.env.XAI_LLM_API_KEY,
XAIModelPref: process.env.XAI_LLM_MODEL_PREF,
};
},

View File

@ -61,6 +61,9 @@ const MODEL_MAP = {
"deepseek-chat": 128_000,
"deepseek-coder": 128_000,
},
xai: {
"grok-beta": 131_072,
},
};
module.exports = { MODEL_MAP };

View File

@ -0,0 +1,168 @@
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
const { MODEL_MAP } = require("../modelMap");
class XAiLLM {
constructor(embedder = null, modelPreference = null) {
if (!process.env.XAI_LLM_API_KEY)
throw new Error("No xAI API key was set.");
const { OpenAI: OpenAIApi } = require("openai");
this.openai = new OpenAIApi({
baseURL: "https://api.x.ai/v1",
apiKey: process.env.XAI_LLM_API_KEY,
});
this.model =
modelPreference || process.env.XAI_LLM_MODEL_PREF || "grok-beta";
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.7;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
static promptWindowLimit(modelName) {
return MODEL_MAP.xai[modelName] ?? 131_072;
}
promptWindowLimit() {
return MODEL_MAP.xai[this.model] ?? 131_072;
}
isValidChatCompletionModel(modelName = "") {
switch (modelName) {
case "grok-beta":
return true;
default:
return false;
}
}
/**
* Generates appropriate content array for a message + attachments.
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
* @returns {string|object[]}
*/
#generateContent({ userPrompt, attachments = [] }) {
if (!attachments.length) {
return userPrompt;
}
const content = [{ type: "text", text: userPrompt }];
for (let attachment of attachments) {
content.push({
type: "image_url",
image_url: {
url: attachment.contentString,
detail: "high",
},
});
}
return content.flat();
}
/**
* Construct the user prompt for this model.
* @param {{attachments: import("../../helpers").Attachment[]}} param0
* @returns
*/
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
attachments = [], // This is the specific attachment for only this prompt
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [
prompt,
...chatHistory,
{
role: "user",
content: this.#generateContent({ userPrompt, attachments }),
},
];
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`xAI chat: ${this.model} is not valid for chat completion!`
);
const result = await this.openai.chat.completions
.create({
model: this.model,
messages,
temperature,
})
.catch((e) => {
throw new Error(e.message);
});
if (!result.hasOwnProperty("choices") || result.choices.length === 0)
return null;
return result.choices[0].message.content;
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`xAI chat: ${this.model} is not valid for chat completion!`
);
const streamRequest = await this.openai.chat.completions.create({
model: this.model,
stream: true,
messages,
temperature,
});
return streamRequest;
}
handleStream(response, stream, responseProps) {
return handleDefaultStreamResponseV2(response, stream, responseProps);
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
XAiLLM,
};

View File

@ -789,6 +789,8 @@ ${this.getHistory({ to: route.to })
return new Providers.LiteLLMProvider({ model: config.model });
case "apipie":
return new Providers.ApiPieProvider({ model: config.model });
case "xai":
return new Providers.XAIProvider({ model: config.model });
default:
throw new Error(

View File

@ -146,6 +146,14 @@ class Provider {
apiKey: process.env.DEEPSEEK_API_KEY ?? null,
...config,
});
case "xai":
return new ChatOpenAI({
configuration: {
baseURL: "https://api.x.ai/v1",
},
apiKey: process.env.XAI_LLM_API_KEY ?? null,
...config,
});
// OSS Model Runners
// case "anythingllm_ollama":

View File

@ -17,6 +17,7 @@ const FireworksAIProvider = require("./fireworksai.js");
const DeepSeekProvider = require("./deepseek.js");
const LiteLLMProvider = require("./litellm.js");
const ApiPieProvider = require("./apipie.js");
const XAIProvider = require("./xai.js");
module.exports = {
OpenAIProvider,
@ -38,4 +39,5 @@ module.exports = {
FireworksAIProvider,
LiteLLMProvider,
ApiPieProvider,
XAIProvider,
};

View File

@ -0,0 +1,116 @@
const OpenAI = require("openai");
const Provider = require("./ai-provider.js");
const InheritMultiple = require("./helpers/classes.js");
const UnTooled = require("./helpers/untooled.js");
/**
* The agent provider for the xAI provider.
*/
class XAIProvider extends InheritMultiple([Provider, UnTooled]) {
model;
constructor(config = {}) {
const { model = "grok-beta" } = config;
super();
const client = new OpenAI({
baseURL: "https://api.x.ai/v1",
apiKey: process.env.XAI_LLM_API_KEY,
maxRetries: 3,
});
this._client = client;
this.model = model;
this.verbose = true;
}
get client() {
return this._client;
}
async #handleFunctionCallChat({ messages = [] }) {
return await this.client.chat.completions
.create({
model: this.model,
temperature: 0,
messages,
})
.then((result) => {
if (!result.hasOwnProperty("choices"))
throw new Error("xAI chat: No results!");
if (result.choices.length === 0)
throw new Error("xAI chat: No results length!");
return result.choices[0].message.content;
})
.catch((_) => {
return null;
});
}
/**
* Create a completion based on the received messages.
*
* @param messages A list of messages to send to the API.
* @param functions
* @returns The completion.
*/
async complete(messages, functions = null) {
try {
let completion;
if (functions.length > 0) {
const { toolCall, text } = await this.functionCall(
messages,
functions,
this.#handleFunctionCallChat.bind(this)
);
if (toolCall !== null) {
this.providerLog(`Valid tool call found - running ${toolCall.name}.`);
this.deduplicator.trackRun(toolCall.name, toolCall.arguments);
return {
result: null,
functionCall: {
name: toolCall.name,
arguments: toolCall.arguments,
},
cost: 0,
};
}
completion = { content: text };
}
if (!completion?.content) {
this.providerLog(
"Will assume chat completion without tool call inputs."
);
const response = await this.client.chat.completions.create({
model: this.model,
messages: this.cleanMsgs(messages),
});
completion = response.choices[0].message;
}
// The UnTooled class inherited Deduplicator is mostly useful to prevent the agent
// from calling the exact same function over and over in a loop within a single chat exchange
// _but_ we should enable it to call previously used tools in a new chat interaction.
this.deduplicator.reset("runs");
return {
result: completion.content,
cost: 0,
};
} catch (error) {
throw error;
}
}
/**
* Get the cost of the completion.
*
* @param _usage The completion to get the cost for.
* @returns The cost of the completion.
*/
getCost(_usage) {
return 0;
}
}
module.exports = XAIProvider;

View File

@ -169,6 +169,10 @@ class AgentHandler {
if (!process.env.APIPIE_LLM_API_KEY)
throw new Error("ApiPie API Key must be provided to use agents.");
break;
case "xai":
if (!process.env.XAI_LLM_API_KEY)
throw new Error("xAI API Key must be provided to use agents.");
break;
default:
throw new Error(
@ -228,6 +232,8 @@ class AgentHandler {
return process.env.LITE_LLM_MODEL_PREF ?? null;
case "apipie":
return process.env.APIPIE_LLM_MODEL_PREF ?? null;
case "xai":
return process.env.XAI_LLM_MODEL_PREF ?? "grok-beta";
default:
return null;
}

View File

@ -21,6 +21,7 @@ const SUPPORT_CUSTOM_MODELS = [
"groq",
"deepseek",
"apipie",
"xai",
];
async function getCustomModels(provider = "", apiKey = null, basePath = null) {
@ -60,6 +61,8 @@ async function getCustomModels(provider = "", apiKey = null, basePath = null) {
return await getDeepSeekModels(apiKey);
case "apipie":
return await getAPIPieModels(apiKey);
case "xai":
return await getXAIModels(apiKey);
default:
return { models: [], error: "Invalid provider for custom models" };
}
@ -466,6 +469,36 @@ async function getDeepSeekModels(apiKey = null) {
return { models, error: null };
}
async function getXAIModels(_apiKey = null) {
const { OpenAI: OpenAIApi } = require("openai");
const apiKey =
_apiKey === true
? process.env.XAI_LLM_API_KEY
: _apiKey || process.env.XAI_LLM_API_KEY || null;
const openai = new OpenAIApi({
baseURL: "https://api.x.ai/v1",
apiKey,
});
const models = await openai.models
.list()
.then((results) => results.data)
.catch((e) => {
console.error(`XAI:listModels`, e.message);
return [
{
created: 1725148800,
id: "grok-beta",
object: "model",
owned_by: "xai",
},
];
});
// Api Key was successful so lets save it for future uses
if (models.length > 0 && !!apiKey) process.env.XAI_LLM_API_KEY = apiKey;
return { models, error: null };
}
module.exports = {
getCustomModels,
};

View File

@ -165,6 +165,9 @@ function getLLMProvider({ provider = null, model = null } = {}) {
case "apipie":
const { ApiPieLLM } = require("../AiProviders/apipie");
return new ApiPieLLM(embedder, model);
case "xai":
const { XAiLLM } = require("../AiProviders/xai");
return new XAiLLM(embedder, model);
default:
throw new Error(
`ENV: No valid LLM_PROVIDER value found in environment! Using ${process.env.LLM_PROVIDER}`
@ -294,6 +297,9 @@ function getLLMProviderClass({ provider = null } = {}) {
case "apipie":
const { ApiPieLLM } = require("../AiProviders/apipie");
return ApiPieLLM;
case "xai":
const { XAiLLM } = require("../AiProviders/xai");
return XAiLLM;
default:
return null;
}

View File

@ -539,6 +539,16 @@ const KEY_MAPPING = {
envKey: "APIPIE_LLM_MODEL_PREF",
checks: [isNotEmpty],
},
// xAI Options
XAIApiKey: {
envKey: "XAI_LLM_API_KEY",
checks: [isNotEmpty],
},
XAIModelPref: {
envKey: "XAI_LLM_MODEL_PREF",
checks: [isNotEmpty],
},
};
function isNotEmpty(input = "") {
@ -643,6 +653,7 @@ function supportedLLM(input = "") {
"bedrock",
"deepseek",
"apipie",
"xai",
].includes(input);
return validSelection ? null : `${input} is not a valid LLM provider.`;
}