Llm chore cleanup (#501)

* move internal functions to private in class
simplify lc message convertor

* Fix hanging Context text when none is present
This commit is contained in:
Timothy Carambat 2023-12-28 14:42:34 -08:00 committed by GitHub
parent 2a1202de54
commit 6d5968bf7e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 129 additions and 98 deletions

View File

@ -27,6 +27,18 @@ class AzureOpenAiLLM {
this.embedder = !embedder ? new AzureOpenAiEmbedder() : embedder;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
}
@ -55,13 +67,7 @@ class AzureOpenAiLLM {
}) {
const prompt = {
role: "system",
content: `${systemPrompt}
Context:
${contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")}`,
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}

View File

@ -1,4 +1,3 @@
const { v4 } = require("uuid");
const { chatPrompt } = require("../../chats");
class GeminiLLM {
@ -22,7 +21,18 @@ class GeminiLLM {
"INVALID GEMINI LLM SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use Gemini as your LLM."
);
this.embedder = embedder;
this.answerKey = v4().split("-")[0];
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
@ -57,13 +67,7 @@ class GeminiLLM {
}) {
const prompt = {
role: "system",
content: `${systemPrompt}
Context:
${contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")}`,
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [
prompt,

View File

@ -27,6 +27,18 @@ class LMStudioLLM {
this.embedder = embedder;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
}
@ -54,13 +66,7 @@ class LMStudioLLM {
}) {
const prompt = {
role: "system",
content: `${systemPrompt}
Context:
${contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")}`,
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}

View File

@ -29,6 +29,18 @@ class LocalAiLLM {
this.embedder = embedder;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
}
@ -54,13 +66,7 @@ class LocalAiLLM {
}) {
const prompt = {
role: "system",
content: `${systemPrompt}
Context:
${contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")}`,
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}

View File

@ -1,8 +1,6 @@
const os = require("os");
const fs = require("fs");
const path = require("path");
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const { HumanMessage, SystemMessage, AIMessage } = require("langchain/schema");
const { chatPrompt } = require("../../chats");
// Docs: https://api.js.langchain.com/classes/chat_models_llama_cpp.ChatLlamaCpp.html
@ -29,12 +27,6 @@ class NativeLLM {
: path.resolve(__dirname, `../../../storage/models/downloaded`)
);
// Set ENV for if llama.cpp needs to rebuild at runtime and machine is not
// running Apple Silicon.
process.env.NODE_LLAMA_CPP_METAL = os
.cpus()
.some((cpu) => cpu.model.includes("Apple"));
// Make directory when it does not exist in existing installations
if (!fs.existsSync(this.cacheDir)) fs.mkdirSync(this.cacheDir);
}
@ -56,12 +48,46 @@ class NativeLLM {
// If the model has been loaded once, it is in the memory now
// so we can skip re-loading it and instead go straight to inference.
// Note: this will break temperature setting hopping between workspaces with different temps.
async llamaClient({ temperature = 0.7 }) {
async #llamaClient({ temperature = 0.7 }) {
if (global.llamaModelInstance) return global.llamaModelInstance;
await this.#initializeLlamaModel(temperature);
return global.llamaModelInstance;
}
#convertToLangchainPrototypes(chats = []) {
const {
HumanMessage,
SystemMessage,
AIMessage,
} = require("langchain/schema");
const langchainChats = [];
const roleToMessageMap = {
system: SystemMessage,
user: HumanMessage,
assistant: AIMessage,
};
for (const chat of chats) {
if (!roleToMessageMap.hasOwnProperty(chat.role)) continue;
const MessageClass = roleToMessageMap[chat.role];
langchainChats.push(new MessageClass({ content: chat.content }));
}
return langchainChats;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
}
@ -84,13 +110,7 @@ class NativeLLM {
}) {
const prompt = {
role: "system",
content: `${systemPrompt}
Context:
${contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")}`,
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}
@ -111,7 +131,7 @@ Context:
rawHistory
);
const model = await this.llamaClient({
const model = await this.#llamaClient({
temperature: Number(workspace?.openAiTemp ?? 0.7),
});
const response = await model.call(messages);
@ -124,7 +144,7 @@ Context:
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
const model = await this.llamaClient({
const model = await this.#llamaClient({
temperature: Number(workspace?.openAiTemp ?? 0.7),
});
const messages = await this.compressMessages(
@ -140,13 +160,13 @@ Context:
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
const model = await this.llamaClient({ temperature });
const model = await this.#llamaClient({ temperature });
const response = await model.call(messages);
return response.content;
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
const model = await this.llamaClient({ temperature });
const model = await this.#llamaClient({ temperature });
const responseStream = await model.stream(messages);
return responseStream;
}
@ -167,27 +187,7 @@ Context:
messageArray,
rawHistory
);
return this.convertToLangchainPrototypes(compressedMessages);
}
convertToLangchainPrototypes(chats = []) {
const langchainChats = [];
for (const chat of chats) {
switch (chat.role) {
case "system":
langchainChats.push(new SystemMessage({ content: chat.content }));
break;
case "user":
langchainChats.push(new HumanMessage({ content: chat.content }));
break;
case "assistant":
langchainChats.push(new AIMessage({ content: chat.content }));
break;
default:
break;
}
}
return langchainChats;
return this.#convertToLangchainPrototypes(compressedMessages);
}
}

View File

@ -40,24 +40,33 @@ class OllamaAILLM {
AIMessage,
} = require("langchain/schema");
const langchainChats = [];
const roleToMessageMap = {
system: SystemMessage,
user: HumanMessage,
assistant: AIMessage,
};
for (const chat of chats) {
switch (chat.role) {
case "system":
langchainChats.push(new SystemMessage({ content: chat.content }));
break;
case "user":
langchainChats.push(new HumanMessage({ content: chat.content }));
break;
case "assistant":
langchainChats.push(new AIMessage({ content: chat.content }));
break;
default:
break;
}
if (!roleToMessageMap.hasOwnProperty(chat.role)) continue;
const MessageClass = roleToMessageMap[chat.role];
langchainChats.push(new MessageClass({ content: chat.content }));
}
return langchainChats;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
}
@ -83,13 +92,7 @@ class OllamaAILLM {
}) {
const prompt = {
role: "system",
content: `${systemPrompt}
Context:
${contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")}`,
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}

View File

@ -24,6 +24,18 @@ class OpenAiLLM {
this.embedder = !embedder ? new OpenAiEmbedder() : embedder;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
}
@ -68,13 +80,7 @@ class OpenAiLLM {
}) {
const prompt = {
role: "system",
content: `${systemPrompt}
Context:
${contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")}`,
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}