Embedder download - fallback URL (#1056)

* Embedder download - fallback URL

* improve logging for native embedder
This commit is contained in:
Timothy Carambat 2024-04-06 11:49:15 -07:00 committed by GitHub
parent 1f8ab0d245
commit 6f52a2b729
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 73 additions and 29 deletions

View File

@ -4,6 +4,12 @@ const { toChunks } = require("../../helpers");
const { v4 } = require("uuid");
class NativeEmbedder {
// This is a folder that Mintplex Labs hosts for those who cannot capture the HF model download
// endpoint for various reasons. This endpoint is not guaranteed to be active or maintained
// and may go offline at any time at Mintplex Labs's discretion.
#fallbackHost =
"https://s3.us-west-1.amazonaws.com/public.useanything.com/support/models/";
constructor() {
// Model Card: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
this.model = "Xenova/all-MiniLM-L6-v2";
@ -13,6 +19,7 @@ class NativeEmbedder {
: path.resolve(__dirname, `../../../storage/models`)
);
this.modelPath = path.resolve(this.cacheDir, "Xenova", "all-MiniLM-L6-v2");
this.modelDownloaded = fs.existsSync(this.modelPath);
// Limit of how many strings we can process in a single pass to stay with resource or network limits
this.maxConcurrentChunks = 25;
@ -20,6 +27,11 @@ class NativeEmbedder {
// Make directory when it does not exist in existing installations
if (!fs.existsSync(this.cacheDir)) fs.mkdirSync(this.cacheDir);
this.log("Initialized");
}
log(text, ...args) {
console.log(`\x1b[36m[NativeEmbedder]\x1b[0m ${text}`, ...args);
}
#tempfilePath() {
@ -39,41 +51,73 @@ class NativeEmbedder {
}
}
async embedderClient() {
if (!fs.existsSync(this.modelPath)) {
console.log(
"\x1b[34m[INFO]\x1b[0m The native embedding model has never been run and will be downloaded right now. Subsequent runs will be faster. (~23MB)\n\n"
);
}
async #fetchWithHost(hostOverride = null) {
try {
// Convert ESM to CommonJS via import so we can load this library.
const pipeline = (...args) =>
import("@xenova/transformers").then(({ pipeline }) =>
pipeline(...args)
);
return await pipeline("feature-extraction", this.model, {
import("@xenova/transformers").then(({ pipeline, env }) => {
if (!this.modelDownloaded) {
// if model is not downloaded, we will log where we are fetching from.
if (hostOverride) {
env.remoteHost = hostOverride;
env.remotePathTemplate = "{model}/"; // Our S3 fallback url does not support revision File structure.
}
this.log(`Downloading ${this.model} from ${env.remoteHost}`);
}
return pipeline(...args);
});
return {
pipeline: await pipeline("feature-extraction", this.model, {
cache_dir: this.cacheDir,
...(!fs.existsSync(this.modelPath)
...(!this.modelDownloaded
? {
// Show download progress if we need to download any files
progress_callback: (data) => {
if (!data.hasOwnProperty("progress")) return;
console.log(
`\x1b[34m[Embedding - Downloading Model Files]\x1b[0m ${
`\x1b[36m[NativeEmbedder - Downloading model]\x1b[0m ${
data.file
} ${~~data?.progress}%`
);
},
}
: {}),
});
}),
retry: false,
error: null,
};
} catch (error) {
console.error("Failed to load the native embedding model:", error);
throw error;
return {
pipeline: null,
retry: hostOverride === null ? this.#fallbackHost : false,
error,
};
}
}
// This function will do a single fallback attempt (not recursive on purpose) to try to grab the embedder model on first embed
// since at time, some clients cannot properly download the model from HF servers due to a number of reasons (IP, VPN, etc).
// Given this model is critical and nobody reads the GitHub issues before submitting the bug, we get the same bug
// report 20 times a day: https://github.com/Mintplex-Labs/anything-llm/issues/821
// So to attempt to monkey-patch this we have a single fallback URL to help alleviate duplicate bug reports.
async embedderClient() {
if (!this.modelDownloaded)
this.log(
"The native embedding model has never been run and will be downloaded right now. Subsequent runs will be faster. (~23MB)"
);
let fetchResponse = await this.#fetchWithHost();
if (fetchResponse.pipeline !== null) return fetchResponse.pipeline;
this.log(
`Failed to download model from primary URL. Using fallback ${fetchResponse.retry}`
);
if (!!fetchResponse.retry)
fetchResponse = await this.#fetchWithHost(fetchResponse.retry);
if (fetchResponse.pipeline !== null) return fetchResponse.pipeline;
throw fetchResponse.error;
}
async embedTextInput(textInput) {
const result = await this.embedChunks(textInput);
return result?.[0] || [];
@ -89,6 +133,7 @@ class NativeEmbedder {
// during a very large document (>100K words) but can spike up to 70% before gc.
// This seems repeatable for all document sizes.
// While this does take a while, it is zero set up and is 100% free and on-instance.
// It still may crash depending on other elements at play - so no promises it works under all conditions.
async embedChunks(textChunks = []) {
const tmpFilePath = this.#tempfilePath();
const chunks = toChunks(textChunks, this.maxConcurrentChunks);
@ -112,7 +157,7 @@ class NativeEmbedder {
data = JSON.stringify(output.tolist());
await this.#writeToTempfile(tmpFilePath, data);
console.log(`\x1b[34m[Embedded Chunk ${idx + 1} of ${chunkLen}]\x1b[0m`);
this.log(`Embedded Chunk ${idx + 1} of ${chunkLen}`);
if (chunkLen - 1 !== idx) await this.#writeToTempfile(tmpFilePath, ",");
if (chunkLen - 1 === idx) await this.#writeToTempfile(tmpFilePath, "]");
pipeline = null;

View File

@ -101,7 +101,6 @@ function getEmbeddingEngineSelection() {
return new OllamaEmbedder();
case "native":
const { NativeEmbedder } = require("../EmbeddingEngines/native");
console.log("\x1b[34m[INFO]\x1b[0m Using Native Embedder");
return new NativeEmbedder();
default:
return null;