mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-10 17:00:11 +01:00
[FEAT] LiteLLM provider support (#1424)
* litellm LLM provider support * fix lint error * change import orders fix issue with model retrieval --------- Co-authored-by: Timothy Carambat <rambat1010@gmail.com>
This commit is contained in:
parent
7c6c272051
commit
826ef00da3
@ -88,6 +88,7 @@ Some cool features of AnythingLLM
|
||||
- [Groq](https://groq.com/)
|
||||
- [Cohere](https://cohere.com/)
|
||||
- [KoboldCPP](https://github.com/LostRuins/koboldcpp)
|
||||
- [LiteLLM](https://github.com/BerriAI/litellm)
|
||||
- [Text Generation Web UI](https://github.com/oobabooga/text-generation-webui)
|
||||
|
||||
**Embedder models:**
|
||||
|
@ -82,6 +82,12 @@ GID='1000'
|
||||
# GENERIC_OPEN_AI_MODEL_TOKEN_LIMIT=4096
|
||||
# GENERIC_OPEN_AI_API_KEY=sk-123abc
|
||||
|
||||
# LLM_PROVIDER='litellm'
|
||||
# LITE_LLM_MODEL_PREF='gpt-3.5-turbo'
|
||||
# LITE_LLM_MODEL_TOKEN_LIMIT=4096
|
||||
# LITE_LLM_BASE_PATH='http://127.0.0.1:4000'
|
||||
# LITE_LLM_API_KEY='sk-123abc'
|
||||
|
||||
# LLM_PROVIDER='cohere'
|
||||
# COHERE_API_KEY=
|
||||
# COHERE_MODEL_PREF='command-r'
|
||||
|
148
frontend/src/components/LLMSelection/LiteLLMOptions/index.jsx
Normal file
148
frontend/src/components/LLMSelection/LiteLLMOptions/index.jsx
Normal file
@ -0,0 +1,148 @@
|
||||
import { useEffect, useState } from "react";
|
||||
import System from "@/models/system";
|
||||
|
||||
export default function LiteLLMOptions({ settings }) {
|
||||
const [basePathValue, setBasePathValue] = useState(settings?.LiteLLMBasePath);
|
||||
const [basePath, setBasePath] = useState(settings?.LiteLLMBasePath);
|
||||
const [apiKeyValue, setApiKeyValue] = useState(settings?.LiteLLMAPIKey);
|
||||
const [apiKey, setApiKey] = useState(settings?.LiteLLMAPIKey);
|
||||
|
||||
return (
|
||||
<div className="w-full flex flex-col gap-y-4">
|
||||
<div className="w-full flex items-center gap-4">
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-4">
|
||||
Base URL
|
||||
</label>
|
||||
<input
|
||||
type="url"
|
||||
name="LiteLLMBasePath"
|
||||
className="bg-zinc-900 text-white placeholder:text-white/20 text-sm rounded-lg focus:border-white block w-full p-2.5"
|
||||
placeholder="http://127.0.0.1:4000"
|
||||
defaultValue={settings?.LiteLLMBasePath}
|
||||
required={true}
|
||||
autoComplete="off"
|
||||
spellCheck={false}
|
||||
onChange={(e) => setBasePathValue(e.target.value)}
|
||||
onBlur={() => setBasePath(basePathValue)}
|
||||
/>
|
||||
</div>
|
||||
<LiteLLMModelSelection
|
||||
settings={settings}
|
||||
basePath={basePath}
|
||||
apiKey={apiKey}
|
||||
/>
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-4">
|
||||
Token context window
|
||||
</label>
|
||||
<input
|
||||
type="number"
|
||||
name="LiteLLMTokenLimit"
|
||||
className="bg-zinc-900 text-white placeholder:text-white/20 text-sm rounded-lg focus:border-white block w-full p-2.5"
|
||||
placeholder="4096"
|
||||
min={1}
|
||||
onScroll={(e) => e.target.blur()}
|
||||
defaultValue={settings?.LiteLLMTokenLimit}
|
||||
required={true}
|
||||
autoComplete="off"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
<div className="w-full flex items-center gap-4">
|
||||
<div className="flex flex-col w-60">
|
||||
<div className="flex flex-col gap-y-1 mb-4">
|
||||
<label className="text-white text-sm font-semibold flex items-center gap-x-2">
|
||||
API Key <p className="!text-xs !italic !font-thin">optional</p>
|
||||
</label>
|
||||
</div>
|
||||
<input
|
||||
type="password"
|
||||
name="LiteLLMAPIKey"
|
||||
className="bg-zinc-900 text-white placeholder:text-white/20 text-sm rounded-lg focus:border-white block w-full p-2.5"
|
||||
placeholder="sk-mysecretkey"
|
||||
defaultValue={settings?.LiteLLMAPIKey ? "*".repeat(20) : ""}
|
||||
autoComplete="off"
|
||||
spellCheck={false}
|
||||
onChange={(e) => setApiKeyValue(e.target.value)}
|
||||
onBlur={() => setApiKey(apiKeyValue)}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
function LiteLLMModelSelection({ settings, basePath = null, apiKey = null }) {
|
||||
const [customModels, setCustomModels] = useState([]);
|
||||
const [loading, setLoading] = useState(true);
|
||||
|
||||
useEffect(() => {
|
||||
async function findCustomModels() {
|
||||
if (!basePath) {
|
||||
setCustomModels([]);
|
||||
setLoading(false);
|
||||
return;
|
||||
}
|
||||
setLoading(true);
|
||||
const { models } = await System.customModels(
|
||||
"litellm",
|
||||
typeof apiKey === "boolean" ? null : apiKey,
|
||||
basePath
|
||||
);
|
||||
setCustomModels(models || []);
|
||||
setLoading(false);
|
||||
}
|
||||
findCustomModels();
|
||||
}, [basePath, apiKey]);
|
||||
|
||||
if (loading || customModels.length == 0) {
|
||||
return (
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-4">
|
||||
Chat Model Selection
|
||||
</label>
|
||||
<select
|
||||
name="LiteLLMModelPref"
|
||||
disabled={true}
|
||||
className="bg-zinc-900 border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
|
||||
>
|
||||
<option disabled={true} selected={true}>
|
||||
{basePath?.includes("/v1")
|
||||
? "-- loading available models --"
|
||||
: "-- waiting for URL --"}
|
||||
</option>
|
||||
</select>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
return (
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-4">
|
||||
Chat Model Selection
|
||||
</label>
|
||||
<select
|
||||
name="LiteLLMModelPref"
|
||||
required={true}
|
||||
className="bg-zinc-900 border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
|
||||
>
|
||||
{customModels.length > 0 && (
|
||||
<optgroup label="Your loaded models">
|
||||
{customModels.map((model) => {
|
||||
return (
|
||||
<option
|
||||
key={model.id}
|
||||
value={model.id}
|
||||
selected={settings.LiteLLMModelPref === model.id}
|
||||
>
|
||||
{model.id}
|
||||
</option>
|
||||
);
|
||||
})}
|
||||
</optgroup>
|
||||
)}
|
||||
</select>
|
||||
</div>
|
||||
);
|
||||
}
|
BIN
frontend/src/media/llmprovider/litellm.png
Normal file
BIN
frontend/src/media/llmprovider/litellm.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 49 KiB |
@ -21,6 +21,7 @@ import GroqLogo from "@/media/llmprovider/groq.png";
|
||||
import KoboldCPPLogo from "@/media/llmprovider/koboldcpp.png";
|
||||
import TextGenWebUILogo from "@/media/llmprovider/text-generation-webui.png";
|
||||
import CohereLogo from "@/media/llmprovider/cohere.png";
|
||||
import LiteLLMLogo from "@/media/llmprovider/litellm.png";
|
||||
import PreLoader from "@/components/Preloader";
|
||||
import OpenAiOptions from "@/components/LLMSelection/OpenAiOptions";
|
||||
import GenericOpenAiOptions from "@/components/LLMSelection/GenericOpenAiOptions";
|
||||
@ -38,12 +39,13 @@ import PerplexityOptions from "@/components/LLMSelection/PerplexityOptions";
|
||||
import OpenRouterOptions from "@/components/LLMSelection/OpenRouterOptions";
|
||||
import GroqAiOptions from "@/components/LLMSelection/GroqAiOptions";
|
||||
import CohereAiOptions from "@/components/LLMSelection/CohereAiOptions";
|
||||
import KoboldCPPOptions from "@/components/LLMSelection/KoboldCPPOptions";
|
||||
import TextGenWebUIOptions from "@/components/LLMSelection/TextGenWebUIOptions";
|
||||
import LiteLLMOptions from "@/components/LLMSelection/LiteLLMOptions";
|
||||
|
||||
import LLMItem from "@/components/LLMSelection/LLMItem";
|
||||
import { CaretUpDown, MagnifyingGlass, X } from "@phosphor-icons/react";
|
||||
import CTAButton from "@/components/lib/CTAButton";
|
||||
import KoboldCPPOptions from "@/components/LLMSelection/KoboldCPPOptions";
|
||||
import TextGenWebUIOptions from "@/components/LLMSelection/TextGenWebUIOptions";
|
||||
|
||||
export const AVAILABLE_LLM_PROVIDERS = [
|
||||
{
|
||||
@ -186,6 +188,14 @@ export const AVAILABLE_LLM_PROVIDERS = [
|
||||
description: "Run Cohere's powerful Command models.",
|
||||
requiredConfig: ["CohereApiKey"],
|
||||
},
|
||||
{
|
||||
name: "LiteLLM",
|
||||
value: "litellm",
|
||||
logo: LiteLLMLogo,
|
||||
options: (settings) => <LiteLLMOptions settings={settings} />,
|
||||
description: "Run LiteLLM's OpenAI compatible proxy for various LLMs.",
|
||||
requiredConfig: ["LiteLLMBasePath"],
|
||||
},
|
||||
{
|
||||
name: "Generic OpenAI",
|
||||
value: "generic-openai",
|
||||
|
@ -17,6 +17,8 @@ import OpenRouterLogo from "@/media/llmprovider/openrouter.jpeg";
|
||||
import GroqLogo from "@/media/llmprovider/groq.png";
|
||||
import KoboldCPPLogo from "@/media/llmprovider/koboldcpp.png";
|
||||
import TextGenWebUILogo from "@/media/llmprovider/text-generation-webui.png";
|
||||
import LiteLLMLogo from "@/media/llmprovider/litellm.png";
|
||||
|
||||
import CohereLogo from "@/media/llmprovider/cohere.png";
|
||||
import ZillizLogo from "@/media/vectordbs/zilliz.png";
|
||||
import AstraDBLogo from "@/media/vectordbs/astraDB.png";
|
||||
@ -168,6 +170,13 @@ export const LLM_SELECTION_PRIVACY = {
|
||||
],
|
||||
logo: CohereLogo,
|
||||
},
|
||||
litellm: {
|
||||
name: "LiteLLM",
|
||||
description: [
|
||||
"Your model and chats are only accessible on the server running LiteLLM",
|
||||
],
|
||||
logo: LiteLLMLogo,
|
||||
},
|
||||
};
|
||||
|
||||
export const VECTOR_DB_PRIVACY = {
|
||||
|
@ -17,6 +17,8 @@ import OpenRouterLogo from "@/media/llmprovider/openrouter.jpeg";
|
||||
import GroqLogo from "@/media/llmprovider/groq.png";
|
||||
import KoboldCPPLogo from "@/media/llmprovider/koboldcpp.png";
|
||||
import TextGenWebUILogo from "@/media/llmprovider/text-generation-webui.png";
|
||||
import LiteLLMLogo from "@/media/llmprovider/litellm.png";
|
||||
|
||||
import CohereLogo from "@/media/llmprovider/cohere.png";
|
||||
import OpenAiOptions from "@/components/LLMSelection/OpenAiOptions";
|
||||
import GenericOpenAiOptions from "@/components/LLMSelection/GenericOpenAiOptions";
|
||||
@ -34,14 +36,15 @@ import PerplexityOptions from "@/components/LLMSelection/PerplexityOptions";
|
||||
import OpenRouterOptions from "@/components/LLMSelection/OpenRouterOptions";
|
||||
import GroqAiOptions from "@/components/LLMSelection/GroqAiOptions";
|
||||
import CohereAiOptions from "@/components/LLMSelection/CohereAiOptions";
|
||||
import KoboldCPPOptions from "@/components/LLMSelection/KoboldCPPOptions";
|
||||
import TextGenWebUIOptions from "@/components/LLMSelection/TextGenWebUIOptions";
|
||||
import LiteLLMOptions from "@/components/LLMSelection/LiteLLMOptions";
|
||||
|
||||
import LLMItem from "@/components/LLMSelection/LLMItem";
|
||||
import System from "@/models/system";
|
||||
import paths from "@/utils/paths";
|
||||
import showToast from "@/utils/toast";
|
||||
import { useNavigate } from "react-router-dom";
|
||||
import KoboldCPPOptions from "@/components/LLMSelection/KoboldCPPOptions";
|
||||
import TextGenWebUIOptions from "@/components/LLMSelection/TextGenWebUIOptions";
|
||||
|
||||
const TITLE = "LLM Preference";
|
||||
const DESCRIPTION =
|
||||
@ -164,6 +167,13 @@ const LLMS = [
|
||||
options: (settings) => <CohereAiOptions settings={settings} />,
|
||||
description: "Run Cohere's powerful Command models.",
|
||||
},
|
||||
{
|
||||
name: "LiteLLM",
|
||||
value: "litellm",
|
||||
logo: LiteLLMLogo,
|
||||
options: (settings) => <LiteLLMOptions settings={settings} />,
|
||||
description: "Run LiteLLM's OpenAI compatible proxy for various LLMs.",
|
||||
},
|
||||
{
|
||||
name: "Generic OpenAI",
|
||||
value: "generic-openai",
|
||||
|
@ -79,6 +79,12 @@ JWT_SECRET="my-random-string-for-seeding" # Please generate random string at lea
|
||||
# GENERIC_OPEN_AI_MODEL_TOKEN_LIMIT=4096
|
||||
# GENERIC_OPEN_AI_API_KEY=sk-123abc
|
||||
|
||||
# LLM_PROVIDER='litellm'
|
||||
# LITE_LLM_MODEL_PREF='gpt-3.5-turbo'
|
||||
# LITE_LLM_MODEL_TOKEN_LIMIT=4096
|
||||
# LITE_LLM_BASE_PATH='http://127.0.0.1:4000'
|
||||
# LITE_LLM_API_KEY='sk-123abc'
|
||||
|
||||
# LLM_PROVIDER='cohere'
|
||||
# COHERE_API_KEY=
|
||||
# COHERE_MODEL_PREF='command-r'
|
||||
|
@ -408,6 +408,12 @@ const SystemSettings = {
|
||||
TextGenWebUITokenLimit: process.env.TEXT_GEN_WEB_UI_MODEL_TOKEN_LIMIT,
|
||||
TextGenWebUIAPIKey: !!process.env.TEXT_GEN_WEB_UI_API_KEY,
|
||||
|
||||
// LiteLLM Keys
|
||||
LiteLLMModelPref: process.env.LITE_LLM_MODEL_PREF,
|
||||
LiteLLMTokenLimit: process.env.LITE_LLM_MODEL_TOKEN_LIMIT,
|
||||
LiteLLMBasePath: process.env.LITE_LLM_BASE_PATH,
|
||||
LiteLLMApiKey: !!process.env.LITE_LLM_API_KEY,
|
||||
|
||||
// Generic OpenAI Keys
|
||||
GenericOpenAiBasePath: process.env.GENERIC_OPEN_AI_BASE_PATH,
|
||||
GenericOpenAiModelPref: process.env.GENERIC_OPEN_AI_MODEL_PREF,
|
||||
|
178
server/utils/AiProviders/liteLLM/index.js
Normal file
178
server/utils/AiProviders/liteLLM/index.js
Normal file
@ -0,0 +1,178 @@
|
||||
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
||||
const {
|
||||
writeResponseChunk,
|
||||
clientAbortedHandler,
|
||||
} = require("../../helpers/chat/responses");
|
||||
|
||||
class LiteLLM {
|
||||
constructor(embedder = null, modelPreference = null) {
|
||||
const { OpenAI: OpenAIApi } = require("openai");
|
||||
if (!process.env.LITE_LLM_BASE_PATH)
|
||||
throw new Error(
|
||||
"LiteLLM must have a valid base path to use for the api."
|
||||
);
|
||||
|
||||
this.basePath = process.env.LITE_LLM_BASE_PATH;
|
||||
this.openai = new OpenAIApi({
|
||||
baseURL: this.basePath,
|
||||
apiKey: process.env.LITE_LLM_API_KEY ?? null,
|
||||
});
|
||||
this.model = modelPreference ?? process.env.LITE_LLM_MODEL_PREF ?? null;
|
||||
this.maxTokens = process.env.LITE_LLM_MODEL_TOKEN_LIMIT ?? 1024;
|
||||
if (!this.model) throw new Error("LiteLLM must have a valid model set.");
|
||||
this.limits = {
|
||||
history: this.promptWindowLimit() * 0.15,
|
||||
system: this.promptWindowLimit() * 0.15,
|
||||
user: this.promptWindowLimit() * 0.7,
|
||||
};
|
||||
|
||||
if (!embedder)
|
||||
console.warn(
|
||||
"No embedding provider defined for LiteLLM - falling back to NativeEmbedder for embedding!"
|
||||
);
|
||||
this.embedder = !embedder ? new NativeEmbedder() : embedder;
|
||||
this.defaultTemp = 0.7;
|
||||
this.log(`Inference API: ${this.basePath} Model: ${this.model}`);
|
||||
}
|
||||
|
||||
log(text, ...args) {
|
||||
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
||||
}
|
||||
|
||||
#appendContext(contextTexts = []) {
|
||||
if (!contextTexts || !contextTexts.length) return "";
|
||||
return (
|
||||
"\nContext:\n" +
|
||||
contextTexts
|
||||
.map((text, i) => {
|
||||
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
||||
})
|
||||
.join("")
|
||||
);
|
||||
}
|
||||
|
||||
streamingEnabled() {
|
||||
return "streamGetChatCompletion" in this;
|
||||
}
|
||||
|
||||
// Ensure the user set a value for the token limit
|
||||
// and if undefined - assume 4096 window.
|
||||
promptWindowLimit() {
|
||||
const limit = process.env.LITE_LLM_MODEL_TOKEN_LIMIT || 4096;
|
||||
if (!limit || isNaN(Number(limit)))
|
||||
throw new Error("No token context limit was set.");
|
||||
return Number(limit);
|
||||
}
|
||||
|
||||
// Short circuit since we have no idea if the model is valid or not
|
||||
// in pre-flight for generic endpoints
|
||||
isValidChatCompletionModel(_modelName = "") {
|
||||
return true;
|
||||
}
|
||||
|
||||
constructPrompt({
|
||||
systemPrompt = "",
|
||||
contextTexts = [],
|
||||
chatHistory = [],
|
||||
userPrompt = "",
|
||||
}) {
|
||||
const prompt = {
|
||||
role: "system",
|
||||
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
||||
};
|
||||
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
|
||||
}
|
||||
|
||||
async isSafe(_input = "") {
|
||||
// Not implemented so must be stubbed
|
||||
return { safe: true, reasons: [] };
|
||||
}
|
||||
|
||||
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
||||
const result = await this.openai.chat.completions
|
||||
.create({
|
||||
model: this.model,
|
||||
messages,
|
||||
temperature,
|
||||
max_tokens: parseInt(this.maxTokens), // LiteLLM requires int
|
||||
})
|
||||
.catch((e) => {
|
||||
throw new Error(e.response.data.error.message);
|
||||
});
|
||||
|
||||
if (!result.hasOwnProperty("choices") || result.choices.length === 0)
|
||||
return null;
|
||||
return result.choices[0].message.content;
|
||||
}
|
||||
|
||||
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
||||
const streamRequest = await this.openai.chat.completions.create({
|
||||
model: this.model,
|
||||
stream: true,
|
||||
messages,
|
||||
temperature,
|
||||
max_tokens: parseInt(this.maxTokens), // LiteLLM requires int
|
||||
});
|
||||
return streamRequest;
|
||||
}
|
||||
|
||||
handleStream(response, stream, responseProps) {
|
||||
const { uuid = uuidv4(), sources = [] } = responseProps;
|
||||
|
||||
return new Promise(async (resolve) => {
|
||||
let fullText = "";
|
||||
|
||||
const handleAbort = () => clientAbortedHandler(resolve, fullText);
|
||||
response.on("close", handleAbort);
|
||||
|
||||
for await (const chunk of stream) {
|
||||
const message = chunk?.choices?.[0];
|
||||
const token = message?.delta?.content;
|
||||
|
||||
if (token) {
|
||||
fullText += token;
|
||||
writeResponseChunk(response, {
|
||||
uuid,
|
||||
sources: [],
|
||||
type: "textResponseChunk",
|
||||
textResponse: token,
|
||||
close: false,
|
||||
error: false,
|
||||
});
|
||||
}
|
||||
|
||||
// LiteLLM does not give a finish reason in stream until the final chunk
|
||||
if (message.finish_reason || message.finish_reason === "stop") {
|
||||
writeResponseChunk(response, {
|
||||
uuid,
|
||||
sources,
|
||||
type: "textResponseChunk",
|
||||
textResponse: "",
|
||||
close: true,
|
||||
error: false,
|
||||
});
|
||||
response.removeListener("close", handleAbort);
|
||||
resolve(fullText);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
||||
async embedTextInput(textInput) {
|
||||
return await this.embedder.embedTextInput(textInput);
|
||||
}
|
||||
async embedChunks(textChunks = []) {
|
||||
return await this.embedder.embedChunks(textChunks);
|
||||
}
|
||||
|
||||
async compressMessages(promptArgs = {}, rawHistory = []) {
|
||||
const { messageArrayCompressor } = require("../../helpers/chat");
|
||||
const messageArray = this.constructPrompt(promptArgs);
|
||||
return await messageArrayCompressor(this, messageArray, rawHistory);
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
LiteLLM,
|
||||
};
|
@ -16,6 +16,7 @@ const SUPPORT_CUSTOM_MODELS = [
|
||||
"openrouter",
|
||||
"lmstudio",
|
||||
"koboldcpp",
|
||||
"litellm",
|
||||
"elevenlabs-tts",
|
||||
];
|
||||
|
||||
@ -44,6 +45,8 @@ async function getCustomModels(provider = "", apiKey = null, basePath = null) {
|
||||
return await getLMStudioModels(basePath);
|
||||
case "koboldcpp":
|
||||
return await getKoboldCPPModels(basePath);
|
||||
case "litellm":
|
||||
return await liteLLMModels(basePath, apiKey);
|
||||
case "elevenlabs-tts":
|
||||
return await getElevenLabsModels(apiKey);
|
||||
default:
|
||||
@ -164,6 +167,25 @@ async function localAIModels(basePath = null, apiKey = null) {
|
||||
return { models, error: null };
|
||||
}
|
||||
|
||||
async function liteLLMModels(basePath = null, apiKey = null) {
|
||||
const { OpenAI: OpenAIApi } = require("openai");
|
||||
const openai = new OpenAIApi({
|
||||
baseURL: basePath || process.env.LITE_LLM_BASE_PATH,
|
||||
apiKey: apiKey || process.env.LITE_LLM_API_KEY || null,
|
||||
});
|
||||
const models = await openai.models
|
||||
.list()
|
||||
.then((results) => results.data)
|
||||
.catch((e) => {
|
||||
console.error(`LiteLLM:listModels`, e.message);
|
||||
return [];
|
||||
});
|
||||
|
||||
// Api Key was successful so lets save it for future uses
|
||||
if (models.length > 0 && !!apiKey) process.env.LITE_LLM_API_KEY = apiKey;
|
||||
return { models, error: null };
|
||||
}
|
||||
|
||||
async function getLMStudioModels(basePath = null) {
|
||||
try {
|
||||
const { OpenAI: OpenAIApi } = require("openai");
|
||||
|
@ -86,6 +86,9 @@ function getLLMProvider({ provider = null, model = null } = {}) {
|
||||
case "cohere":
|
||||
const { CohereLLM } = require("../AiProviders/cohere");
|
||||
return new CohereLLM(embedder, model);
|
||||
case "litellm":
|
||||
const { LiteLLM } = require("../AiProviders/liteLLM");
|
||||
return new LiteLLM(embedder, model);
|
||||
case "generic-openai":
|
||||
const { GenericOpenAiLLM } = require("../AiProviders/genericOpenAi");
|
||||
return new GenericOpenAiLLM(embedder, model);
|
||||
|
@ -160,6 +160,24 @@ const KEY_MAPPING = {
|
||||
checks: [],
|
||||
},
|
||||
|
||||
// LiteLLM Settings
|
||||
LiteLLMModelPref: {
|
||||
envKey: "LITE_LLM_MODEL_PREF",
|
||||
checks: [isNotEmpty],
|
||||
},
|
||||
LiteLLMTokenLimit: {
|
||||
envKey: "LITE_LLM_MODEL_TOKEN_LIMIT",
|
||||
checks: [nonZero],
|
||||
},
|
||||
LiteLLMBasePath: {
|
||||
envKey: "LITE_LLM_BASE_PATH",
|
||||
checks: [isValidURL],
|
||||
},
|
||||
LiteLLMApiKey: {
|
||||
envKey: "LITE_LLM_API_KEY",
|
||||
checks: [],
|
||||
},
|
||||
|
||||
// Generic OpenAI InferenceSettings
|
||||
GenericOpenAiBasePath: {
|
||||
envKey: "GENERIC_OPEN_AI_BASE_PATH",
|
||||
@ -469,6 +487,7 @@ function supportedLLM(input = "") {
|
||||
"koboldcpp",
|
||||
"textgenwebui",
|
||||
"cohere",
|
||||
"litellm",
|
||||
"generic-openai",
|
||||
].includes(input);
|
||||
return validSelection ? null : `${input} is not a valid LLM provider.`;
|
||||
|
Loading…
Reference in New Issue
Block a user