[FEAT] LiteLLM provider support (#1424)

* litellm LLM provider support

* fix lint error

* change import orders
fix issue with model retrieval

---------

Co-authored-by: Timothy Carambat <rambat1010@gmail.com>
This commit is contained in:
Sean Hatfield 2024-05-16 13:56:28 -07:00 committed by GitHub
parent 7c6c272051
commit 826ef00da3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 422 additions and 4 deletions

View File

@ -88,6 +88,7 @@ Some cool features of AnythingLLM
- [Groq](https://groq.com/)
- [Cohere](https://cohere.com/)
- [KoboldCPP](https://github.com/LostRuins/koboldcpp)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [Text Generation Web UI](https://github.com/oobabooga/text-generation-webui)
**Embedder models:**

View File

@ -82,6 +82,12 @@ GID='1000'
# GENERIC_OPEN_AI_MODEL_TOKEN_LIMIT=4096
# GENERIC_OPEN_AI_API_KEY=sk-123abc
# LLM_PROVIDER='litellm'
# LITE_LLM_MODEL_PREF='gpt-3.5-turbo'
# LITE_LLM_MODEL_TOKEN_LIMIT=4096
# LITE_LLM_BASE_PATH='http://127.0.0.1:4000'
# LITE_LLM_API_KEY='sk-123abc'
# LLM_PROVIDER='cohere'
# COHERE_API_KEY=
# COHERE_MODEL_PREF='command-r'

View File

@ -0,0 +1,148 @@
import { useEffect, useState } from "react";
import System from "@/models/system";
export default function LiteLLMOptions({ settings }) {
const [basePathValue, setBasePathValue] = useState(settings?.LiteLLMBasePath);
const [basePath, setBasePath] = useState(settings?.LiteLLMBasePath);
const [apiKeyValue, setApiKeyValue] = useState(settings?.LiteLLMAPIKey);
const [apiKey, setApiKey] = useState(settings?.LiteLLMAPIKey);
return (
<div className="w-full flex flex-col gap-y-4">
<div className="w-full flex items-center gap-4">
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Base URL
</label>
<input
type="url"
name="LiteLLMBasePath"
className="bg-zinc-900 text-white placeholder:text-white/20 text-sm rounded-lg focus:border-white block w-full p-2.5"
placeholder="http://127.0.0.1:4000"
defaultValue={settings?.LiteLLMBasePath}
required={true}
autoComplete="off"
spellCheck={false}
onChange={(e) => setBasePathValue(e.target.value)}
onBlur={() => setBasePath(basePathValue)}
/>
</div>
<LiteLLMModelSelection
settings={settings}
basePath={basePath}
apiKey={apiKey}
/>
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Token context window
</label>
<input
type="number"
name="LiteLLMTokenLimit"
className="bg-zinc-900 text-white placeholder:text-white/20 text-sm rounded-lg focus:border-white block w-full p-2.5"
placeholder="4096"
min={1}
onScroll={(e) => e.target.blur()}
defaultValue={settings?.LiteLLMTokenLimit}
required={true}
autoComplete="off"
/>
</div>
</div>
<div className="w-full flex items-center gap-4">
<div className="flex flex-col w-60">
<div className="flex flex-col gap-y-1 mb-4">
<label className="text-white text-sm font-semibold flex items-center gap-x-2">
API Key <p className="!text-xs !italic !font-thin">optional</p>
</label>
</div>
<input
type="password"
name="LiteLLMAPIKey"
className="bg-zinc-900 text-white placeholder:text-white/20 text-sm rounded-lg focus:border-white block w-full p-2.5"
placeholder="sk-mysecretkey"
defaultValue={settings?.LiteLLMAPIKey ? "*".repeat(20) : ""}
autoComplete="off"
spellCheck={false}
onChange={(e) => setApiKeyValue(e.target.value)}
onBlur={() => setApiKey(apiKeyValue)}
/>
</div>
</div>
</div>
);
}
function LiteLLMModelSelection({ settings, basePath = null, apiKey = null }) {
const [customModels, setCustomModels] = useState([]);
const [loading, setLoading] = useState(true);
useEffect(() => {
async function findCustomModels() {
if (!basePath) {
setCustomModels([]);
setLoading(false);
return;
}
setLoading(true);
const { models } = await System.customModels(
"litellm",
typeof apiKey === "boolean" ? null : apiKey,
basePath
);
setCustomModels(models || []);
setLoading(false);
}
findCustomModels();
}, [basePath, apiKey]);
if (loading || customModels.length == 0) {
return (
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Chat Model Selection
</label>
<select
name="LiteLLMModelPref"
disabled={true}
className="bg-zinc-900 border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
>
<option disabled={true} selected={true}>
{basePath?.includes("/v1")
? "-- loading available models --"
: "-- waiting for URL --"}
</option>
</select>
</div>
);
}
return (
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Chat Model Selection
</label>
<select
name="LiteLLMModelPref"
required={true}
className="bg-zinc-900 border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
>
{customModels.length > 0 && (
<optgroup label="Your loaded models">
{customModels.map((model) => {
return (
<option
key={model.id}
value={model.id}
selected={settings.LiteLLMModelPref === model.id}
>
{model.id}
</option>
);
})}
</optgroup>
)}
</select>
</div>
);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

View File

@ -21,6 +21,7 @@ import GroqLogo from "@/media/llmprovider/groq.png";
import KoboldCPPLogo from "@/media/llmprovider/koboldcpp.png";
import TextGenWebUILogo from "@/media/llmprovider/text-generation-webui.png";
import CohereLogo from "@/media/llmprovider/cohere.png";
import LiteLLMLogo from "@/media/llmprovider/litellm.png";
import PreLoader from "@/components/Preloader";
import OpenAiOptions from "@/components/LLMSelection/OpenAiOptions";
import GenericOpenAiOptions from "@/components/LLMSelection/GenericOpenAiOptions";
@ -38,12 +39,13 @@ import PerplexityOptions from "@/components/LLMSelection/PerplexityOptions";
import OpenRouterOptions from "@/components/LLMSelection/OpenRouterOptions";
import GroqAiOptions from "@/components/LLMSelection/GroqAiOptions";
import CohereAiOptions from "@/components/LLMSelection/CohereAiOptions";
import KoboldCPPOptions from "@/components/LLMSelection/KoboldCPPOptions";
import TextGenWebUIOptions from "@/components/LLMSelection/TextGenWebUIOptions";
import LiteLLMOptions from "@/components/LLMSelection/LiteLLMOptions";
import LLMItem from "@/components/LLMSelection/LLMItem";
import { CaretUpDown, MagnifyingGlass, X } from "@phosphor-icons/react";
import CTAButton from "@/components/lib/CTAButton";
import KoboldCPPOptions from "@/components/LLMSelection/KoboldCPPOptions";
import TextGenWebUIOptions from "@/components/LLMSelection/TextGenWebUIOptions";
export const AVAILABLE_LLM_PROVIDERS = [
{
@ -186,6 +188,14 @@ export const AVAILABLE_LLM_PROVIDERS = [
description: "Run Cohere's powerful Command models.",
requiredConfig: ["CohereApiKey"],
},
{
name: "LiteLLM",
value: "litellm",
logo: LiteLLMLogo,
options: (settings) => <LiteLLMOptions settings={settings} />,
description: "Run LiteLLM's OpenAI compatible proxy for various LLMs.",
requiredConfig: ["LiteLLMBasePath"],
},
{
name: "Generic OpenAI",
value: "generic-openai",

View File

@ -17,6 +17,8 @@ import OpenRouterLogo from "@/media/llmprovider/openrouter.jpeg";
import GroqLogo from "@/media/llmprovider/groq.png";
import KoboldCPPLogo from "@/media/llmprovider/koboldcpp.png";
import TextGenWebUILogo from "@/media/llmprovider/text-generation-webui.png";
import LiteLLMLogo from "@/media/llmprovider/litellm.png";
import CohereLogo from "@/media/llmprovider/cohere.png";
import ZillizLogo from "@/media/vectordbs/zilliz.png";
import AstraDBLogo from "@/media/vectordbs/astraDB.png";
@ -168,6 +170,13 @@ export const LLM_SELECTION_PRIVACY = {
],
logo: CohereLogo,
},
litellm: {
name: "LiteLLM",
description: [
"Your model and chats are only accessible on the server running LiteLLM",
],
logo: LiteLLMLogo,
},
};
export const VECTOR_DB_PRIVACY = {

View File

@ -17,6 +17,8 @@ import OpenRouterLogo from "@/media/llmprovider/openrouter.jpeg";
import GroqLogo from "@/media/llmprovider/groq.png";
import KoboldCPPLogo from "@/media/llmprovider/koboldcpp.png";
import TextGenWebUILogo from "@/media/llmprovider/text-generation-webui.png";
import LiteLLMLogo from "@/media/llmprovider/litellm.png";
import CohereLogo from "@/media/llmprovider/cohere.png";
import OpenAiOptions from "@/components/LLMSelection/OpenAiOptions";
import GenericOpenAiOptions from "@/components/LLMSelection/GenericOpenAiOptions";
@ -34,14 +36,15 @@ import PerplexityOptions from "@/components/LLMSelection/PerplexityOptions";
import OpenRouterOptions from "@/components/LLMSelection/OpenRouterOptions";
import GroqAiOptions from "@/components/LLMSelection/GroqAiOptions";
import CohereAiOptions from "@/components/LLMSelection/CohereAiOptions";
import KoboldCPPOptions from "@/components/LLMSelection/KoboldCPPOptions";
import TextGenWebUIOptions from "@/components/LLMSelection/TextGenWebUIOptions";
import LiteLLMOptions from "@/components/LLMSelection/LiteLLMOptions";
import LLMItem from "@/components/LLMSelection/LLMItem";
import System from "@/models/system";
import paths from "@/utils/paths";
import showToast from "@/utils/toast";
import { useNavigate } from "react-router-dom";
import KoboldCPPOptions from "@/components/LLMSelection/KoboldCPPOptions";
import TextGenWebUIOptions from "@/components/LLMSelection/TextGenWebUIOptions";
const TITLE = "LLM Preference";
const DESCRIPTION =
@ -164,6 +167,13 @@ const LLMS = [
options: (settings) => <CohereAiOptions settings={settings} />,
description: "Run Cohere's powerful Command models.",
},
{
name: "LiteLLM",
value: "litellm",
logo: LiteLLMLogo,
options: (settings) => <LiteLLMOptions settings={settings} />,
description: "Run LiteLLM's OpenAI compatible proxy for various LLMs.",
},
{
name: "Generic OpenAI",
value: "generic-openai",

View File

@ -79,6 +79,12 @@ JWT_SECRET="my-random-string-for-seeding" # Please generate random string at lea
# GENERIC_OPEN_AI_MODEL_TOKEN_LIMIT=4096
# GENERIC_OPEN_AI_API_KEY=sk-123abc
# LLM_PROVIDER='litellm'
# LITE_LLM_MODEL_PREF='gpt-3.5-turbo'
# LITE_LLM_MODEL_TOKEN_LIMIT=4096
# LITE_LLM_BASE_PATH='http://127.0.0.1:4000'
# LITE_LLM_API_KEY='sk-123abc'
# LLM_PROVIDER='cohere'
# COHERE_API_KEY=
# COHERE_MODEL_PREF='command-r'

View File

@ -408,6 +408,12 @@ const SystemSettings = {
TextGenWebUITokenLimit: process.env.TEXT_GEN_WEB_UI_MODEL_TOKEN_LIMIT,
TextGenWebUIAPIKey: !!process.env.TEXT_GEN_WEB_UI_API_KEY,
// LiteLLM Keys
LiteLLMModelPref: process.env.LITE_LLM_MODEL_PREF,
LiteLLMTokenLimit: process.env.LITE_LLM_MODEL_TOKEN_LIMIT,
LiteLLMBasePath: process.env.LITE_LLM_BASE_PATH,
LiteLLMApiKey: !!process.env.LITE_LLM_API_KEY,
// Generic OpenAI Keys
GenericOpenAiBasePath: process.env.GENERIC_OPEN_AI_BASE_PATH,
GenericOpenAiModelPref: process.env.GENERIC_OPEN_AI_MODEL_PREF,

View File

@ -0,0 +1,178 @@
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const {
writeResponseChunk,
clientAbortedHandler,
} = require("../../helpers/chat/responses");
class LiteLLM {
constructor(embedder = null, modelPreference = null) {
const { OpenAI: OpenAIApi } = require("openai");
if (!process.env.LITE_LLM_BASE_PATH)
throw new Error(
"LiteLLM must have a valid base path to use for the api."
);
this.basePath = process.env.LITE_LLM_BASE_PATH;
this.openai = new OpenAIApi({
baseURL: this.basePath,
apiKey: process.env.LITE_LLM_API_KEY ?? null,
});
this.model = modelPreference ?? process.env.LITE_LLM_MODEL_PREF ?? null;
this.maxTokens = process.env.LITE_LLM_MODEL_TOKEN_LIMIT ?? 1024;
if (!this.model) throw new Error("LiteLLM must have a valid model set.");
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
if (!embedder)
console.warn(
"No embedding provider defined for LiteLLM - falling back to NativeEmbedder for embedding!"
);
this.embedder = !embedder ? new NativeEmbedder() : embedder;
this.defaultTemp = 0.7;
this.log(`Inference API: ${this.basePath} Model: ${this.model}`);
}
log(text, ...args) {
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
// Ensure the user set a value for the token limit
// and if undefined - assume 4096 window.
promptWindowLimit() {
const limit = process.env.LITE_LLM_MODEL_TOKEN_LIMIT || 4096;
if (!limit || isNaN(Number(limit)))
throw new Error("No token context limit was set.");
return Number(limit);
}
// Short circuit since we have no idea if the model is valid or not
// in pre-flight for generic endpoints
isValidChatCompletionModel(_modelName = "") {
return true;
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}
async isSafe(_input = "") {
// Not implemented so must be stubbed
return { safe: true, reasons: [] };
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
const result = await this.openai.chat.completions
.create({
model: this.model,
messages,
temperature,
max_tokens: parseInt(this.maxTokens), // LiteLLM requires int
})
.catch((e) => {
throw new Error(e.response.data.error.message);
});
if (!result.hasOwnProperty("choices") || result.choices.length === 0)
return null;
return result.choices[0].message.content;
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
const streamRequest = await this.openai.chat.completions.create({
model: this.model,
stream: true,
messages,
temperature,
max_tokens: parseInt(this.maxTokens), // LiteLLM requires int
});
return streamRequest;
}
handleStream(response, stream, responseProps) {
const { uuid = uuidv4(), sources = [] } = responseProps;
return new Promise(async (resolve) => {
let fullText = "";
const handleAbort = () => clientAbortedHandler(resolve, fullText);
response.on("close", handleAbort);
for await (const chunk of stream) {
const message = chunk?.choices?.[0];
const token = message?.delta?.content;
if (token) {
fullText += token;
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: token,
close: false,
error: false,
});
}
// LiteLLM does not give a finish reason in stream until the final chunk
if (message.finish_reason || message.finish_reason === "stop") {
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
response.removeListener("close", handleAbort);
resolve(fullText);
}
}
});
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
LiteLLM,
};

View File

@ -16,6 +16,7 @@ const SUPPORT_CUSTOM_MODELS = [
"openrouter",
"lmstudio",
"koboldcpp",
"litellm",
"elevenlabs-tts",
];
@ -44,6 +45,8 @@ async function getCustomModels(provider = "", apiKey = null, basePath = null) {
return await getLMStudioModels(basePath);
case "koboldcpp":
return await getKoboldCPPModels(basePath);
case "litellm":
return await liteLLMModels(basePath, apiKey);
case "elevenlabs-tts":
return await getElevenLabsModels(apiKey);
default:
@ -164,6 +167,25 @@ async function localAIModels(basePath = null, apiKey = null) {
return { models, error: null };
}
async function liteLLMModels(basePath = null, apiKey = null) {
const { OpenAI: OpenAIApi } = require("openai");
const openai = new OpenAIApi({
baseURL: basePath || process.env.LITE_LLM_BASE_PATH,
apiKey: apiKey || process.env.LITE_LLM_API_KEY || null,
});
const models = await openai.models
.list()
.then((results) => results.data)
.catch((e) => {
console.error(`LiteLLM:listModels`, e.message);
return [];
});
// Api Key was successful so lets save it for future uses
if (models.length > 0 && !!apiKey) process.env.LITE_LLM_API_KEY = apiKey;
return { models, error: null };
}
async function getLMStudioModels(basePath = null) {
try {
const { OpenAI: OpenAIApi } = require("openai");

View File

@ -86,6 +86,9 @@ function getLLMProvider({ provider = null, model = null } = {}) {
case "cohere":
const { CohereLLM } = require("../AiProviders/cohere");
return new CohereLLM(embedder, model);
case "litellm":
const { LiteLLM } = require("../AiProviders/liteLLM");
return new LiteLLM(embedder, model);
case "generic-openai":
const { GenericOpenAiLLM } = require("../AiProviders/genericOpenAi");
return new GenericOpenAiLLM(embedder, model);

View File

@ -160,6 +160,24 @@ const KEY_MAPPING = {
checks: [],
},
// LiteLLM Settings
LiteLLMModelPref: {
envKey: "LITE_LLM_MODEL_PREF",
checks: [isNotEmpty],
},
LiteLLMTokenLimit: {
envKey: "LITE_LLM_MODEL_TOKEN_LIMIT",
checks: [nonZero],
},
LiteLLMBasePath: {
envKey: "LITE_LLM_BASE_PATH",
checks: [isValidURL],
},
LiteLLMApiKey: {
envKey: "LITE_LLM_API_KEY",
checks: [],
},
// Generic OpenAI InferenceSettings
GenericOpenAiBasePath: {
envKey: "GENERIC_OPEN_AI_BASE_PATH",
@ -469,6 +487,7 @@ function supportedLLM(input = "") {
"koboldcpp",
"textgenwebui",
"cohere",
"litellm",
"generic-openai",
].includes(input);
return validSelection ? null : `${input} is not a valid LLM provider.`;