[CHORE] Remove sendChat and streamChat in all LLM providers (#1260)

* remove sendChat and streamChat functions/references in all LLM providers

* remove unused imports

---------

Co-authored-by: timothycarambat <rambat1010@gmail.com>
This commit is contained in:
Sean Hatfield 2024-05-01 16:52:28 -07:00 committed by GitHub
parent a156a1e58c
commit 9feaad79cc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 15 additions and 958 deletions

View File

@ -1,5 +1,4 @@
const { v4 } = require("uuid");
const { chatPrompt } = require("../../chats");
const {
writeResponseChunk,
clientAbortedHandler,
@ -33,7 +32,7 @@ class AnthropicLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
promptWindowLimit() {
@ -110,31 +109,6 @@ class AnthropicLLM {
}
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`Anthropic chat: ${this.model} is not valid for chat completion!`
);
const messages = await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
);
const streamRequest = await this.anthropic.messages.stream({
model: this.model,
max_tokens: 4096,
system: messages[0].content, // Strip out the system message
messages: messages.slice(1), // Pop off the system message
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
});
return streamRequest;
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(

View File

@ -1,5 +1,4 @@
const { AzureOpenAiEmbedder } = require("../../EmbeddingEngines/azureOpenAi");
const { chatPrompt } = require("../../chats");
const {
writeResponseChunk,
clientAbortedHandler,
@ -45,7 +44,7 @@ class AzureOpenAiLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
// Sure the user selected a proper value for the token limit
@ -82,66 +81,6 @@ class AzureOpenAiLLM {
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!this.model)
throw new Error(
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
);
const messages = await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
);
const textResponse = await this.openai
.getChatCompletions(this.model, messages, {
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
})
.then((res) => {
if (!res.hasOwnProperty("choices"))
throw new Error("AzureOpenAI chat: No results!");
if (res.choices.length === 0)
throw new Error("AzureOpenAI chat: No results length!");
return res.choices[0].message.content;
})
.catch((error) => {
console.log(error);
throw new Error(
`AzureOpenAI::getChatCompletions failed with: ${error.message}`
);
});
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!this.model)
throw new Error(
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
);
const messages = await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
);
const stream = await this.openai.streamChatCompletions(
this.model,
messages,
{
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
}
);
return stream;
}
async getChatCompletion(messages = [], { temperature = 0.7 }) {
if (!this.model)
throw new Error(

View File

@ -1,4 +1,3 @@
const { chatPrompt } = require("../../chats");
const {
writeResponseChunk,
clientAbortedHandler,
@ -48,7 +47,7 @@ class GeminiLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
promptWindowLimit() {
@ -118,32 +117,6 @@ class GeminiLLM {
return allMessages;
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`Gemini chat: ${this.model} is not valid for chat completion!`
);
const compressedHistory = await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
chatHistory,
},
rawHistory
);
const chatThread = this.gemini.startChat({
history: this.formatMessages(compressedHistory),
});
const result = await chatThread.sendMessage(prompt);
const response = result.response;
const responseText = response.text();
if (!responseText) throw new Error("Gemini: No response could be parsed.");
return responseText;
}
async getChatCompletion(messages = [], _opts = {}) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
@ -165,30 +138,6 @@ class GeminiLLM {
return responseText;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`Gemini chat: ${this.model} is not valid for chat completion!`
);
const compressedHistory = await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
chatHistory,
},
rawHistory
);
const chatThread = this.gemini.startChat({
history: this.formatMessages(compressedHistory),
});
const responseStream = await chatThread.sendMessageStream(prompt);
if (!responseStream.stream)
throw new Error("Could not stream response stream from Gemini.");
return responseStream.stream;
}
async streamGetChatCompletion(messages = [], _opts = {}) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(

View File

@ -1,5 +1,4 @@
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const { chatPrompt } = require("../../chats");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
@ -53,7 +52,7 @@ class GenericOpenAiLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
// Ensure the user set a value for the token limit
@ -89,55 +88,6 @@ class GenericOpenAiLLM {
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
const textResponse = await this.openai.chat.completions
.create({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
})
.then((result) => {
if (!result.hasOwnProperty("choices"))
throw new Error("GenericOpenAI chat: No results!");
if (result.choices.length === 0)
throw new Error("GenericOpenAI chat: No results length!");
return result.choices[0].message.content;
})
.catch((error) => {
throw new Error(
`GenericOpenAI::createChatCompletion failed with: ${error.message}`
);
});
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
const streamRequest = await this.openai.chat.completions.create({
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
});
return streamRequest;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
const result = await this.openai.chat.completions
.create({

View File

@ -1,5 +1,4 @@
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const { chatPrompt } = require("../../chats");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
@ -38,7 +37,7 @@ class GroqLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
promptWindowLimit() {
@ -91,65 +90,6 @@ class GroqLLM {
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Groq chat: ${this.model} is not valid for chat completion!`
);
const textResponse = await this.openai.chat.completions
.create({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
})
.then((result) => {
if (!result.hasOwnProperty("choices"))
throw new Error("GroqAI chat: No results!");
if (result.choices.length === 0)
throw new Error("GroqAI chat: No results length!");
return result.choices[0].message.content;
})
.catch((error) => {
throw new Error(
`GroqAI::createChatCompletion failed with: ${error.message}`
);
});
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`GroqAI:streamChat: ${this.model} is not valid for chat completion!`
);
const streamRequest = await this.openai.chat.completions.create({
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
});
return streamRequest;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(

View File

@ -1,6 +1,5 @@
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const { OpenAiEmbedder } = require("../../EmbeddingEngines/openAi");
const { chatPrompt } = require("../../chats");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
@ -48,7 +47,7 @@ class HuggingFaceLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
promptWindowLimit() {
@ -90,55 +89,6 @@ class HuggingFaceLLM {
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
const textResponse = await this.openai.chat.completions
.create({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
})
.then((result) => {
if (!result.hasOwnProperty("choices"))
throw new Error("HuggingFace chat: No results!");
if (result.choices.length === 0)
throw new Error("HuggingFace chat: No results length!");
return result.choices[0].message.content;
})
.catch((error) => {
throw new Error(
`HuggingFace::createChatCompletion failed with: ${error.message}`
);
});
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
const streamRequest = await this.openai.chat.completions.create({
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
});
return streamRequest;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
const result = await this.openai.createChatCompletion({
model: this.model,

View File

@ -1,4 +1,3 @@
const { chatPrompt } = require("../../chats");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
@ -49,7 +48,7 @@ class LMStudioLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
// Ensure the user set a value for the token limit
@ -85,65 +84,6 @@ class LMStudioLLM {
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!this.model)
throw new Error(
`LMStudio chat: ${this.model} is not valid or defined for chat completion!`
);
const textResponse = await this.lmstudio.chat.completions
.create({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
})
.then((result) => {
if (!result.hasOwnProperty("choices"))
throw new Error("LMStudio chat: No results!");
if (result.choices.length === 0)
throw new Error("LMStudio chat: No results length!");
return result.choices[0].message.content;
})
.catch((error) => {
throw new Error(
`LMStudio::createChatCompletion failed with: ${error.message}`
);
});
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!this.model)
throw new Error(
`LMStudio chat: ${this.model} is not valid or defined for chat completion!`
);
const streamRequest = await this.lmstudio.chat.completions.create({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
stream: true,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
});
return streamRequest;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!this.model)
throw new Error(

View File

@ -1,4 +1,3 @@
const { chatPrompt } = require("../../chats");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
@ -41,7 +40,7 @@ class LocalAiLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
// Ensure the user set a value for the token limit
@ -75,65 +74,6 @@ class LocalAiLLM {
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`LocalAI chat: ${this.model} is not valid for chat completion!`
);
const textResponse = await this.openai.chat.completions
.create({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
})
.then((result) => {
if (!result.hasOwnProperty("choices"))
throw new Error("LocalAI chat: No results!");
if (result.choices.length === 0)
throw new Error("LocalAI chat: No results length!");
return result.choices[0].message.content;
})
.catch((error) => {
throw new Error(
`LocalAI::createChatCompletion failed with: ${error.message}`
);
});
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`LocalAI chat: ${this.model} is not valid for chat completion!`
);
const streamRequest = await this.openai.chat.completions.create({
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
});
return streamRequest;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(

View File

@ -1,4 +1,3 @@
const { chatPrompt } = require("../../chats");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
@ -42,7 +41,7 @@ class MistralLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
promptWindowLimit() {
@ -70,64 +69,6 @@ class MistralLLM {
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Mistral chat: ${this.model} is not valid for chat completion!`
);
const textResponse = await this.openai.chat.completions
.create({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
})
.then((result) => {
if (!result.hasOwnProperty("choices"))
throw new Error("Mistral chat: No results!");
if (result.choices.length === 0)
throw new Error("Mistral chat: No results length!");
return result.choices[0].message.content;
})
.catch((error) => {
throw new Error(
`Mistral::createChatCompletion failed with: ${error.message}`
);
});
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Mistral chat: ${this.model} is not valid for chat completion!`
);
const streamRequest = await this.openai.chat.completions.create({
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
});
return streamRequest;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(

View File

@ -1,7 +1,6 @@
const fs = require("fs");
const path = require("path");
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const { chatPrompt } = require("../../chats");
const {
writeResponseChunk,
clientAbortedHandler,
@ -94,7 +93,7 @@ class NativeLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
// Ensure the user set a value for the token limit
@ -123,45 +122,6 @@ class NativeLLM {
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
try {
const messages = await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
);
const model = await this.#llamaClient({
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
});
const response = await model.call(messages);
return response.content;
} catch (error) {
throw new Error(
`NativeLLM::createChatCompletion failed with: ${error.message}`
);
}
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
const model = await this.#llamaClient({
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
});
const messages = await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
);
const responseStream = await model.stream(messages);
return responseStream;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
const model = await this.#llamaClient({ temperature });
const response = await model.call(messages);

View File

@ -1,4 +1,3 @@
const { chatPrompt } = require("../../chats");
const { StringOutputParser } = require("@langchain/core/output_parsers");
const {
writeResponseChunk,
@ -74,7 +73,7 @@ class OllamaAILLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
// Ensure the user set a value for the token limit
@ -108,53 +107,6 @@ class OllamaAILLM {
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
const messages = await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
);
const model = this.#ollamaClient({
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
});
const textResponse = await model
.pipe(new StringOutputParser())
.invoke(this.#convertToLangchainPrototypes(messages))
.catch((e) => {
throw new Error(
`Ollama::getChatCompletion failed to communicate with Ollama. ${e.message}`
);
});
if (!textResponse || !textResponse.length)
throw new Error(`Ollama::sendChat text response was empty.`);
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
const messages = await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
);
const model = this.#ollamaClient({
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
});
const stream = await model
.pipe(new StringOutputParser())
.stream(this.#convertToLangchainPrototypes(messages));
return stream;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
const model = this.#ollamaClient({ temperature });
const textResponse = await model

View File

@ -1,5 +1,4 @@
const { OpenAiEmbedder } = require("../../EmbeddingEngines/openAi");
const { chatPrompt } = require("../../chats");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
@ -41,7 +40,7 @@ class OpenAiLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
promptWindowLimit() {
@ -122,65 +121,6 @@ class OpenAiLLM {
return { safe: false, reasons };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`OpenAI chat: ${this.model} is not valid for chat completion!`
);
const textResponse = await this.openai.chat.completions
.create({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
})
.then((result) => {
if (!result.hasOwnProperty("choices"))
throw new Error("OpenAI chat: No results!");
if (result.choices.length === 0)
throw new Error("OpenAI chat: No results length!");
return result.choices[0].message.content;
})
.catch((error) => {
throw new Error(
`OpenAI::createChatCompletion failed with: ${error.message}`
);
});
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`OpenAI chat: ${this.model} is not valid for chat completion!`
);
const streamRequest = await this.openai.chat.completions({
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
});
return streamRequest;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(

View File

@ -1,10 +1,8 @@
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const { chatPrompt } = require("../../chats");
const { v4: uuidv4 } = require("uuid");
const {
writeResponseChunk,
clientAbortedHandler,
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
const fs = require("fs");
const path = require("path");
@ -99,7 +97,7 @@ class OpenRouterLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
promptWindowLimit() {
@ -131,65 +129,6 @@ class OpenRouterLLM {
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`OpenRouter chat: ${this.model} is not valid for chat completion!`
);
const textResponse = await this.openai.chat.completions
.create({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
})
.then((result) => {
if (!result.hasOwnProperty("choices"))
throw new Error("OpenRouter chat: No results!");
if (result.choices.length === 0)
throw new Error("OpenRouter chat: No results length!");
return result.choices[0].message.content;
})
.catch((error) => {
throw new Error(
`OpenRouter::createChatCompletion failed with: ${error.message}`
);
});
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`OpenRouter chat: ${this.model} is not valid for chat completion!`
);
const streamRequest = await this.openai.chat.completions.create({
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
});
return streamRequest;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
@ -304,143 +243,6 @@ class OpenRouterLLM {
});
}
// handleStream(response, stream, responseProps) {
// const timeoutThresholdMs = 500;
// const { uuid = uuidv4(), sources = [] } = responseProps;
// return new Promise((resolve) => {
// let fullText = "";
// let chunk = "";
// let lastChunkTime = null; // null when first token is still not received.
// // Establish listener to early-abort a streaming response
// // in case things go sideways or the user does not like the response.
// // We preserve the generated text but continue as if chat was completed
// // to preserve previously generated content.
// const handleAbort = () => clientAbortedHandler(resolve, fullText);
// response.on("close", handleAbort);
// // NOTICE: Not all OpenRouter models will return a stop reason
// // which keeps the connection open and so the model never finalizes the stream
// // like the traditional OpenAI response schema does. So in the case the response stream
// // never reaches a formal close state we maintain an interval timer that if we go >=timeoutThresholdMs with
// // no new chunks then we kill the stream and assume it to be complete. OpenRouter is quite fast
// // so this threshold should permit most responses, but we can adjust `timeoutThresholdMs` if
// // we find it is too aggressive.
// const timeoutCheck = setInterval(() => {
// if (lastChunkTime === null) return;
// const now = Number(new Date());
// const diffMs = now - lastChunkTime;
// if (diffMs >= timeoutThresholdMs) {
// console.log(
// `OpenRouter stream did not self-close and has been stale for >${timeoutThresholdMs}ms. Closing response stream.`
// );
// writeResponseChunk(response, {
// uuid,
// sources,
// type: "textResponseChunk",
// textResponse: "",
// close: true,
// error: false,
// });
// clearInterval(timeoutCheck);
// response.removeListener("close", handleAbort);
// resolve(fullText);
// }
// }, 500);
// stream.data.on("data", (data) => {
// const lines = data
// ?.toString()
// ?.split("\n")
// .filter((line) => line.trim() !== "");
// for (const line of lines) {
// let validJSON = false;
// const message = chunk + line.replace(/^data: /, "");
// // JSON chunk is incomplete and has not ended yet
// // so we need to stitch it together. You would think JSON
// // chunks would only come complete - but they don't!
// try {
// JSON.parse(message);
// validJSON = true;
// } catch { }
// if (!validJSON) {
// // It can be possible that the chunk decoding is running away
// // and the message chunk fails to append due to string length.
// // In this case abort the chunk and reset so we can continue.
// // ref: https://github.com/Mintplex-Labs/anything-llm/issues/416
// try {
// chunk += message;
// } catch (e) {
// console.error(`Chunk appending error`, e);
// chunk = "";
// }
// continue;
// } else {
// chunk = "";
// }
// if (message == "[DONE]") {
// lastChunkTime = Number(new Date());
// writeResponseChunk(response, {
// uuid,
// sources,
// type: "textResponseChunk",
// textResponse: "",
// close: true,
// error: false,
// });
// clearInterval(timeoutCheck);
// response.removeListener("close", handleAbort);
// resolve(fullText);
// } else {
// let finishReason = null;
// let token = "";
// try {
// const json = JSON.parse(message);
// token = json?.choices?.[0]?.delta?.content;
// finishReason = json?.choices?.[0]?.finish_reason || null;
// } catch {
// continue;
// }
// if (token) {
// fullText += token;
// lastChunkTime = Number(new Date());
// writeResponseChunk(response, {
// uuid,
// sources: [],
// type: "textResponseChunk",
// textResponse: token,
// close: false,
// error: false,
// });
// }
// if (finishReason !== null) {
// lastChunkTime = Number(new Date());
// writeResponseChunk(response, {
// uuid,
// sources,
// type: "textResponseChunk",
// textResponse: "",
// close: true,
// error: false,
// });
// clearInterval(timeoutCheck);
// response.removeListener("close", handleAbort);
// resolve(fullText);
// }
// }
// }
// });
// });
// }
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);

View File

@ -1,5 +1,4 @@
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const { chatPrompt } = require("../../chats");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
@ -50,7 +49,7 @@ class PerplexityLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
promptWindowLimit() {
@ -81,65 +80,6 @@ class PerplexityLLM {
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Perplexity chat: ${this.model} is not valid for chat completion!`
);
const textResponse = await this.openai.chat.completions
.create({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
})
.then((result) => {
if (!result.hasOwnProperty("choices"))
throw new Error("Perplexity chat: No results!");
if (result.choices.length === 0)
throw new Error("Perplexity chat: No results length!");
return result.choices[0].message.content;
})
.catch((error) => {
throw new Error(
`Perplexity::createChatCompletion failed with: ${error.message}`
);
});
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Perplexity chat: ${this.model} is not valid for chat completion!`
);
const streamRequest = await this.openai.chat.completions.create({
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
});
return streamRequest;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(

View File

@ -1,4 +1,3 @@
const { chatPrompt } = require("../../chats");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
@ -49,7 +48,7 @@ class TogetherAiLLM {
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
return "streamGetChatCompletion" in this;
}
// Ensure the user set a value for the token limit
@ -82,65 +81,6 @@ class TogetherAiLLM {
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Together AI chat: ${this.model} is not valid for chat completion!`
);
const textResponse = await this.openai.chat.completions
.create({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
})
.then((result) => {
if (!result.hasOwnProperty("choices"))
throw new Error("Together AI chat: No results!");
if (result.choices.length === 0)
throw new Error("Together AI chat: No results length!");
return result.choices[0].message.content;
})
.catch((error) => {
throw new Error(
`TogetherAI::createChatCompletion failed with: ${error.message}`
);
});
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`TogetherAI chat: ${this.model} is not valid for chat completion!`
);
const streamRequest = await this.openai.chat.completions.create({
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
});
return streamRequest;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(