mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-14 02:20:12 +01:00
Merge branch 'master' into 1214-feat-implement-width-and-height-resizing-options-for-embed-chat-widget
This commit is contained in:
commit
ab63385a59
@ -5,7 +5,7 @@
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<b>AnythingLLM: The all-in-one AI app you were looking for.<br />
|
||||
<b>AnythingLLM:</b> The all-in-one AI app you were looking for.<br />
|
||||
Chat with your docs, use AI Agents, hyper-configurable, multi-user, & no fustrating set up required.
|
||||
</p>
|
||||
|
||||
|
@ -22,7 +22,6 @@ class OpenAiWhisper {
|
||||
.create({
|
||||
file: fs.createReadStream(fullFilePath),
|
||||
model: this.model,
|
||||
model: "whisper-1",
|
||||
response_format: "text",
|
||||
temperature: this.temperature,
|
||||
})
|
||||
|
@ -66,11 +66,17 @@ async function loadConfluence({ pageUrl, username, accessToken }) {
|
||||
const outFolder = slugify(
|
||||
`${subdomain}-confluence-${v4().slice(0, 4)}`
|
||||
).toLowerCase();
|
||||
const outFolderPath = path.resolve(
|
||||
|
||||
const outFolderPath =
|
||||
process.env.NODE_ENV === "development"
|
||||
? path.resolve(
|
||||
__dirname,
|
||||
`../../../../server/storage/documents/${outFolder}`
|
||||
);
|
||||
fs.mkdirSync(outFolderPath);
|
||||
)
|
||||
: path.resolve(process.env.STORAGE_DIR, `documents/${outFolder}`);
|
||||
|
||||
if (!fs.existsSync(outFolderPath))
|
||||
fs.mkdirSync(outFolderPath, { recursive: true });
|
||||
|
||||
docs.forEach((doc) => {
|
||||
const data = {
|
||||
|
@ -31,11 +31,17 @@ async function loadGithubRepo(args) {
|
||||
const outFolder = slugify(
|
||||
`${repo.author}-${repo.project}-${repo.branch}-${v4().slice(0, 4)}`
|
||||
).toLowerCase();
|
||||
const outFolderPath = path.resolve(
|
||||
|
||||
const outFolderPath =
|
||||
process.env.NODE_ENV === "development"
|
||||
? path.resolve(
|
||||
__dirname,
|
||||
`../../../../server/storage/documents/${outFolder}`
|
||||
);
|
||||
fs.mkdirSync(outFolderPath);
|
||||
)
|
||||
: path.resolve(process.env.STORAGE_DIR, `documents/${outFolder}`);
|
||||
|
||||
if (!fs.existsSync(outFolderPath))
|
||||
fs.mkdirSync(outFolderPath, { recursive: true });
|
||||
|
||||
for (const doc of docs) {
|
||||
if (!doc.pageContent) continue;
|
||||
|
@ -67,11 +67,17 @@ async function loadYouTubeTranscript({ url }) {
|
||||
const outFolder = slugify(
|
||||
`${metadata.author} YouTube transcripts`
|
||||
).toLowerCase();
|
||||
const outFolderPath = path.resolve(
|
||||
|
||||
const outFolderPath =
|
||||
process.env.NODE_ENV === "development"
|
||||
? path.resolve(
|
||||
__dirname,
|
||||
`../../../../server/storage/documents/${outFolder}`
|
||||
);
|
||||
if (!fs.existsSync(outFolderPath)) fs.mkdirSync(outFolderPath);
|
||||
)
|
||||
: path.resolve(process.env.STORAGE_DIR, `documents/${outFolder}`);
|
||||
|
||||
if (!fs.existsSync(outFolderPath))
|
||||
fs.mkdirSync(outFolderPath, { recursive: true });
|
||||
|
||||
const data = {
|
||||
id: v4(),
|
||||
|
@ -66,6 +66,11 @@ GID='1000'
|
||||
# GROQ_API_KEY=gsk_abcxyz
|
||||
# GROQ_MODEL_PREF=llama3-8b-8192
|
||||
|
||||
# LLM_PROVIDER='koboldcpp'
|
||||
# KOBOLD_CPP_BASE_PATH='http://127.0.0.1:5000/v1'
|
||||
# KOBOLD_CPP_MODEL_PREF='koboldcpp/codellama-7b-instruct.Q4_K_S'
|
||||
# KOBOLD_CPP_MODEL_TOKEN_LIMIT=4096
|
||||
|
||||
# LLM_PROVIDER='generic-openai'
|
||||
# GENERIC_OPEN_AI_BASE_PATH='http://proxy.url.openai.com/v1'
|
||||
# GENERIC_OPEN_AI_MODEL_PREF='gpt-3.5-turbo'
|
||||
|
112
frontend/src/components/LLMSelection/KoboldCPPOptions/index.jsx
Normal file
112
frontend/src/components/LLMSelection/KoboldCPPOptions/index.jsx
Normal file
@ -0,0 +1,112 @@
|
||||
import { useState, useEffect } from "react";
|
||||
import System from "@/models/system";
|
||||
|
||||
export default function KoboldCPPOptions({ settings }) {
|
||||
const [basePathValue, setBasePathValue] = useState(
|
||||
settings?.KoboldCPPBasePath
|
||||
);
|
||||
const [basePath, setBasePath] = useState(settings?.KoboldCPPBasePath);
|
||||
|
||||
return (
|
||||
<div className="flex gap-4 flex-wrap">
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-4">
|
||||
Base URL
|
||||
</label>
|
||||
<input
|
||||
type="url"
|
||||
name="KoboldCPPBasePath"
|
||||
className="bg-zinc-900 text-white placeholder:text-white/20 text-sm rounded-lg focus:border-white block w-full p-2.5"
|
||||
placeholder="http://127.0.0.1:5000/v1"
|
||||
defaultValue={settings?.KoboldCPPBasePath}
|
||||
required={true}
|
||||
autoComplete="off"
|
||||
spellCheck={false}
|
||||
onChange={(e) => setBasePathValue(e.target.value)}
|
||||
onBlur={() => setBasePath(basePathValue)}
|
||||
/>
|
||||
</div>
|
||||
<KoboldCPPModelSelection settings={settings} basePath={basePath} />
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-4">
|
||||
Token context window
|
||||
</label>
|
||||
<input
|
||||
type="number"
|
||||
name="KoboldCPPTokenLimit"
|
||||
className="bg-zinc-900 text-white placeholder:text-white/20 text-sm rounded-lg focus:border-white block w-full p-2.5"
|
||||
placeholder="4096"
|
||||
min={1}
|
||||
onScroll={(e) => e.target.blur()}
|
||||
defaultValue={settings?.KoboldCPPTokenLimit}
|
||||
required={true}
|
||||
autoComplete="off"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
function KoboldCPPModelSelection({ settings, basePath = null }) {
|
||||
const [customModels, setCustomModels] = useState([]);
|
||||
const [loading, setLoading] = useState(true);
|
||||
|
||||
useEffect(() => {
|
||||
async function findCustomModels() {
|
||||
if (!basePath || !basePath.includes("/v1")) {
|
||||
setCustomModels([]);
|
||||
setLoading(false);
|
||||
return;
|
||||
}
|
||||
setLoading(true);
|
||||
const { models } = await System.customModels("koboldcpp", null, basePath);
|
||||
setCustomModels(models || []);
|
||||
setLoading(false);
|
||||
}
|
||||
findCustomModels();
|
||||
}, [basePath]);
|
||||
|
||||
if (loading || customModels.length === 0) {
|
||||
return (
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-4">
|
||||
Chat Model Selection
|
||||
</label>
|
||||
<select
|
||||
name="KoboldCPPModelPref"
|
||||
disabled={true}
|
||||
className="bg-zinc-900 border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
|
||||
>
|
||||
<option disabled={true} selected={true}>
|
||||
{basePath?.includes("/v1")
|
||||
? "-- loading available models --"
|
||||
: "-- waiting for URL --"}
|
||||
</option>
|
||||
</select>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
return (
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-4">
|
||||
Chat Model Selection
|
||||
</label>
|
||||
<select
|
||||
name="KoboldCPPModelPref"
|
||||
required={true}
|
||||
className="bg-zinc-900 border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
|
||||
>
|
||||
{customModels.map((model) => (
|
||||
<option
|
||||
key={model.id}
|
||||
value={model.id}
|
||||
selected={settings?.KoboldCPPModelPref === model.id}
|
||||
>
|
||||
{model.id}
|
||||
</option>
|
||||
))}
|
||||
</select>
|
||||
</div>
|
||||
);
|
||||
}
|
BIN
frontend/src/media/llmprovider/koboldcpp.png
Normal file
BIN
frontend/src/media/llmprovider/koboldcpp.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 6.9 KiB |
@ -18,6 +18,7 @@ import HuggingFaceLogo from "@/media/llmprovider/huggingface.png";
|
||||
import PerplexityLogo from "@/media/llmprovider/perplexity.png";
|
||||
import OpenRouterLogo from "@/media/llmprovider/openrouter.jpeg";
|
||||
import GroqLogo from "@/media/llmprovider/groq.png";
|
||||
import KoboldCPPLogo from "@/media/llmprovider/koboldcpp.png";
|
||||
import CohereLogo from "@/media/llmprovider/cohere.png";
|
||||
import PreLoader from "@/components/Preloader";
|
||||
import OpenAiOptions from "@/components/LLMSelection/OpenAiOptions";
|
||||
@ -40,6 +41,7 @@ import CohereAiOptions from "@/components/LLMSelection/CohereAiOptions";
|
||||
import LLMItem from "@/components/LLMSelection/LLMItem";
|
||||
import { CaretUpDown, MagnifyingGlass, X } from "@phosphor-icons/react";
|
||||
import CTAButton from "@/components/lib/CTAButton";
|
||||
import KoboldCPPOptions from "@/components/LLMSelection/KoboldCPPOptions";
|
||||
|
||||
export const AVAILABLE_LLM_PROVIDERS = [
|
||||
{
|
||||
@ -154,6 +156,18 @@ export const AVAILABLE_LLM_PROVIDERS = [
|
||||
"The fastest LLM inferencing available for real-time AI applications.",
|
||||
requiredConfig: ["GroqApiKey"],
|
||||
},
|
||||
{
|
||||
name: "KoboldCPP",
|
||||
value: "koboldcpp",
|
||||
logo: KoboldCPPLogo,
|
||||
options: (settings) => <KoboldCPPOptions settings={settings} />,
|
||||
description: "Run local LLMs using koboldcpp.",
|
||||
requiredConfig: [
|
||||
"KoboldCPPModelPref",
|
||||
"KoboldCPPBasePath",
|
||||
"KoboldCPPTokenLimit",
|
||||
],
|
||||
},
|
||||
{
|
||||
name: "Cohere",
|
||||
value: "cohere",
|
||||
|
@ -15,6 +15,7 @@ import HuggingFaceLogo from "@/media/llmprovider/huggingface.png";
|
||||
import PerplexityLogo from "@/media/llmprovider/perplexity.png";
|
||||
import OpenRouterLogo from "@/media/llmprovider/openrouter.jpeg";
|
||||
import GroqLogo from "@/media/llmprovider/groq.png";
|
||||
import KoboldCPPLogo from "@/media/llmprovider/koboldcpp.png";
|
||||
import CohereLogo from "@/media/llmprovider/cohere.png";
|
||||
import ZillizLogo from "@/media/vectordbs/zilliz.png";
|
||||
import AstraDBLogo from "@/media/vectordbs/astraDB.png";
|
||||
@ -138,6 +139,13 @@ export const LLM_SELECTION_PRIVACY = {
|
||||
],
|
||||
logo: GroqLogo,
|
||||
},
|
||||
koboldcpp: {
|
||||
name: "KoboldCPP",
|
||||
description: [
|
||||
"Your model and chats are only accessible on the server running KoboldCPP",
|
||||
],
|
||||
logo: KoboldCPPLogo,
|
||||
},
|
||||
"generic-openai": {
|
||||
name: "Generic OpenAI compatible service",
|
||||
description: [
|
||||
|
@ -15,6 +15,7 @@ import HuggingFaceLogo from "@/media/llmprovider/huggingface.png";
|
||||
import PerplexityLogo from "@/media/llmprovider/perplexity.png";
|
||||
import OpenRouterLogo from "@/media/llmprovider/openrouter.jpeg";
|
||||
import GroqLogo from "@/media/llmprovider/groq.png";
|
||||
import KoboldCPPLogo from "@/media/llmprovider/koboldcpp.png";
|
||||
import CohereLogo from "@/media/llmprovider/cohere.png";
|
||||
import OpenAiOptions from "@/components/LLMSelection/OpenAiOptions";
|
||||
import GenericOpenAiOptions from "@/components/LLMSelection/GenericOpenAiOptions";
|
||||
@ -38,6 +39,7 @@ import System from "@/models/system";
|
||||
import paths from "@/utils/paths";
|
||||
import showToast from "@/utils/toast";
|
||||
import { useNavigate } from "react-router-dom";
|
||||
import KoboldCPPOptions from "@/components/LLMSelection/KoboldCPPOptions";
|
||||
|
||||
const TITLE = "LLM Preference";
|
||||
const DESCRIPTION =
|
||||
@ -102,6 +104,13 @@ const LLMS = [
|
||||
options: (settings) => <LocalAiOptions settings={settings} />,
|
||||
description: "Run LLMs locally on your own machine.",
|
||||
},
|
||||
{
|
||||
name: "KoboldCPP",
|
||||
value: "koboldcpp",
|
||||
logo: KoboldCPPLogo,
|
||||
options: (settings) => <KoboldCPPOptions settings={settings} />,
|
||||
description: "Run local LLMs using koboldcpp.",
|
||||
},
|
||||
{
|
||||
name: "Together AI",
|
||||
value: "togetherai",
|
||||
|
@ -63,6 +63,11 @@ JWT_SECRET="my-random-string-for-seeding" # Please generate random string at lea
|
||||
# GROQ_API_KEY=gsk_abcxyz
|
||||
# GROQ_MODEL_PREF=llama3-8b-8192
|
||||
|
||||
# LLM_PROVIDER='koboldcpp'
|
||||
# KOBOLD_CPP_BASE_PATH='http://127.0.0.1:5000/v1'
|
||||
# KOBOLD_CPP_MODEL_PREF='koboldcpp/codellama-7b-instruct.Q4_K_S'
|
||||
# KOBOLD_CPP_MODEL_TOKEN_LIMIT=4096
|
||||
|
||||
# LLM_PROVIDER='generic-openai'
|
||||
# GENERIC_OPEN_AI_BASE_PATH='http://proxy.url.openai.com/v1'
|
||||
# GENERIC_OPEN_AI_MODEL_PREF='gpt-3.5-turbo'
|
||||
|
@ -359,6 +359,11 @@ const SystemSettings = {
|
||||
HuggingFaceLLMAccessToken: !!process.env.HUGGING_FACE_LLM_API_KEY,
|
||||
HuggingFaceLLMTokenLimit: process.env.HUGGING_FACE_LLM_TOKEN_LIMIT,
|
||||
|
||||
// KoboldCPP Keys
|
||||
KoboldCPPModelPref: process.env.KOBOLD_CPP_MODEL_PREF,
|
||||
KoboldCPPBasePath: process.env.KOBOLD_CPP_BASE_PATH,
|
||||
KoboldCPPTokenLimit: process.env.KOBOLD_CPP_MODEL_TOKEN_LIMIT,
|
||||
|
||||
// Generic OpenAI Keys
|
||||
GenericOpenAiBasePath: process.env.GENERIC_OPEN_AI_BASE_PATH,
|
||||
GenericOpenAiModelPref: process.env.GENERIC_OPEN_AI_MODEL_PREF,
|
||||
|
180
server/utils/AiProviders/koboldCPP/index.js
Normal file
180
server/utils/AiProviders/koboldCPP/index.js
Normal file
@ -0,0 +1,180 @@
|
||||
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
||||
const {
|
||||
clientAbortedHandler,
|
||||
writeResponseChunk,
|
||||
} = require("../../helpers/chat/responses");
|
||||
const { v4: uuidv4 } = require("uuid");
|
||||
|
||||
class KoboldCPPLLM {
|
||||
constructor(embedder = null, modelPreference = null) {
|
||||
const { OpenAI: OpenAIApi } = require("openai");
|
||||
if (!process.env.KOBOLD_CPP_BASE_PATH)
|
||||
throw new Error(
|
||||
"KoboldCPP must have a valid base path to use for the api."
|
||||
);
|
||||
|
||||
this.basePath = process.env.KOBOLD_CPP_BASE_PATH;
|
||||
this.openai = new OpenAIApi({
|
||||
baseURL: this.basePath,
|
||||
apiKey: null,
|
||||
});
|
||||
this.model = modelPreference ?? process.env.KOBOLD_CPP_MODEL_PREF ?? null;
|
||||
if (!this.model) throw new Error("KoboldCPP must have a valid model set.");
|
||||
this.limits = {
|
||||
history: this.promptWindowLimit() * 0.15,
|
||||
system: this.promptWindowLimit() * 0.15,
|
||||
user: this.promptWindowLimit() * 0.7,
|
||||
};
|
||||
|
||||
if (!embedder)
|
||||
console.warn(
|
||||
"No embedding provider defined for KoboldCPPLLM - falling back to NativeEmbedder for embedding!"
|
||||
);
|
||||
this.embedder = !embedder ? new NativeEmbedder() : embedder;
|
||||
this.defaultTemp = 0.7;
|
||||
this.log(`Inference API: ${this.basePath} Model: ${this.model}`);
|
||||
}
|
||||
|
||||
log(text, ...args) {
|
||||
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
||||
}
|
||||
|
||||
#appendContext(contextTexts = []) {
|
||||
if (!contextTexts || !contextTexts.length) return "";
|
||||
return (
|
||||
"\nContext:\n" +
|
||||
contextTexts
|
||||
.map((text, i) => {
|
||||
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
||||
})
|
||||
.join("")
|
||||
);
|
||||
}
|
||||
|
||||
streamingEnabled() {
|
||||
return "streamGetChatCompletion" in this;
|
||||
}
|
||||
|
||||
// Ensure the user set a value for the token limit
|
||||
// and if undefined - assume 4096 window.
|
||||
promptWindowLimit() {
|
||||
const limit = process.env.KOBOLD_CPP_MODEL_TOKEN_LIMIT || 4096;
|
||||
if (!limit || isNaN(Number(limit)))
|
||||
throw new Error("No token context limit was set.");
|
||||
return Number(limit);
|
||||
}
|
||||
|
||||
// Short circuit since we have no idea if the model is valid or not
|
||||
// in pre-flight for generic endpoints
|
||||
isValidChatCompletionModel(_modelName = "") {
|
||||
return true;
|
||||
}
|
||||
|
||||
constructPrompt({
|
||||
systemPrompt = "",
|
||||
contextTexts = [],
|
||||
chatHistory = [],
|
||||
userPrompt = "",
|
||||
}) {
|
||||
const prompt = {
|
||||
role: "system",
|
||||
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
||||
};
|
||||
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
|
||||
}
|
||||
|
||||
async isSafe(_input = "") {
|
||||
// Not implemented so must be stubbed
|
||||
return { safe: true, reasons: [] };
|
||||
}
|
||||
|
||||
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
||||
const result = await this.openai.chat.completions
|
||||
.create({
|
||||
model: this.model,
|
||||
messages,
|
||||
temperature,
|
||||
})
|
||||
.catch((e) => {
|
||||
throw new Error(e.response.data.error.message);
|
||||
});
|
||||
|
||||
if (!result.hasOwnProperty("choices") || result.choices.length === 0)
|
||||
return null;
|
||||
return result.choices[0].message.content;
|
||||
}
|
||||
|
||||
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
||||
const streamRequest = await this.openai.chat.completions.create({
|
||||
model: this.model,
|
||||
stream: true,
|
||||
messages,
|
||||
temperature,
|
||||
});
|
||||
return streamRequest;
|
||||
}
|
||||
|
||||
handleStream(response, stream, responseProps) {
|
||||
const { uuid = uuidv4(), sources = [] } = responseProps;
|
||||
|
||||
// Custom handler for KoboldCPP stream responses
|
||||
return new Promise(async (resolve) => {
|
||||
let fullText = "";
|
||||
const handleAbort = () => clientAbortedHandler(resolve, fullText);
|
||||
response.on("close", handleAbort);
|
||||
|
||||
for await (const chunk of stream) {
|
||||
const message = chunk?.choices?.[0];
|
||||
const token = message?.delta?.content;
|
||||
|
||||
if (token) {
|
||||
fullText += token;
|
||||
writeResponseChunk(response, {
|
||||
uuid,
|
||||
sources: [],
|
||||
type: "textResponseChunk",
|
||||
textResponse: token,
|
||||
close: false,
|
||||
error: false,
|
||||
});
|
||||
}
|
||||
|
||||
// KoboldCPP finishes with "length" or "stop"
|
||||
if (
|
||||
message.finish_reason !== "null" &&
|
||||
(message.finish_reason === "length" ||
|
||||
message.finish_reason === "stop")
|
||||
) {
|
||||
writeResponseChunk(response, {
|
||||
uuid,
|
||||
sources,
|
||||
type: "textResponseChunk",
|
||||
textResponse: "",
|
||||
close: true,
|
||||
error: false,
|
||||
});
|
||||
response.removeListener("close", handleAbort);
|
||||
resolve(fullText);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
||||
async embedTextInput(textInput) {
|
||||
return await this.embedder.embedTextInput(textInput);
|
||||
}
|
||||
async embedChunks(textChunks = []) {
|
||||
return await this.embedder.embedChunks(textChunks);
|
||||
}
|
||||
|
||||
async compressMessages(promptArgs = {}, rawHistory = []) {
|
||||
const { messageArrayCompressor } = require("../../helpers/chat");
|
||||
const messageArray = this.constructPrompt(promptArgs);
|
||||
return await messageArrayCompressor(this, messageArray, rawHistory);
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
KoboldCPPLLM,
|
||||
};
|
@ -14,6 +14,7 @@ const SUPPORT_CUSTOM_MODELS = [
|
||||
"perplexity",
|
||||
"openrouter",
|
||||
"lmstudio",
|
||||
"koboldcpp",
|
||||
];
|
||||
|
||||
async function getCustomModels(provider = "", apiKey = null, basePath = null) {
|
||||
@ -39,6 +40,8 @@ async function getCustomModels(provider = "", apiKey = null, basePath = null) {
|
||||
return await getOpenRouterModels();
|
||||
case "lmstudio":
|
||||
return await getLMStudioModels(basePath);
|
||||
case "koboldcpp":
|
||||
return await getKoboldCPPModels(basePath);
|
||||
default:
|
||||
return { models: [], error: "Invalid provider for custom models" };
|
||||
}
|
||||
@ -171,6 +174,28 @@ async function getLMStudioModels(basePath = null) {
|
||||
}
|
||||
}
|
||||
|
||||
async function getKoboldCPPModels(basePath = null) {
|
||||
try {
|
||||
const { OpenAI: OpenAIApi } = require("openai");
|
||||
const openai = new OpenAIApi({
|
||||
baseURL: basePath || process.env.LMSTUDIO_BASE_PATH,
|
||||
apiKey: null,
|
||||
});
|
||||
const models = await openai.models
|
||||
.list()
|
||||
.then((results) => results.data)
|
||||
.catch((e) => {
|
||||
console.error(`KoboldCPP:listModels`, e.message);
|
||||
return [];
|
||||
});
|
||||
|
||||
return { models, error: null };
|
||||
} catch (e) {
|
||||
console.error(`KoboldCPP:getKoboldCPPModels`, e.message);
|
||||
return { models: [], error: "Could not fetch KoboldCPP Models" };
|
||||
}
|
||||
}
|
||||
|
||||
async function ollamaAIModels(basePath = null) {
|
||||
let url;
|
||||
try {
|
||||
|
@ -77,6 +77,9 @@ function getLLMProvider({ provider = null, model = null } = {}) {
|
||||
case "groq":
|
||||
const { GroqLLM } = require("../AiProviders/groq");
|
||||
return new GroqLLM(embedder, model);
|
||||
case "koboldcpp":
|
||||
const { KoboldCPPLLM } = require("../AiProviders/koboldCPP");
|
||||
return new KoboldCPPLLM(embedder, model);
|
||||
case "cohere":
|
||||
const { CohereLLM } = require("../AiProviders/cohere");
|
||||
return new CohereLLM(embedder, model);
|
||||
|
@ -132,6 +132,20 @@ const KEY_MAPPING = {
|
||||
checks: [nonZero],
|
||||
},
|
||||
|
||||
// KoboldCPP Settings
|
||||
KoboldCPPBasePath: {
|
||||
envKey: "KOBOLD_CPP_BASE_PATH",
|
||||
checks: [isNotEmpty, isValidURL],
|
||||
},
|
||||
KoboldCPPModelPref: {
|
||||
envKey: "KOBOLD_CPP_MODEL_PREF",
|
||||
checks: [isNotEmpty],
|
||||
},
|
||||
KoboldCPPTokenLimit: {
|
||||
envKey: "KOBOLD_CPP_MODEL_TOKEN_LIMIT",
|
||||
checks: [nonZero],
|
||||
},
|
||||
|
||||
// Generic OpenAI InferenceSettings
|
||||
GenericOpenAiBasePath: {
|
||||
envKey: "GENERIC_OPEN_AI_BASE_PATH",
|
||||
@ -403,6 +417,7 @@ function supportedLLM(input = "") {
|
||||
"perplexity",
|
||||
"openrouter",
|
||||
"groq",
|
||||
"koboldcpp",
|
||||
"cohere",
|
||||
"generic-openai",
|
||||
].includes(input);
|
||||
|
Loading…
Reference in New Issue
Block a user