Add Qdrant support for embedding, chat, and conversation (#192)

* Add Qdrant support for embedding, chat, and conversation

* Change comments
This commit is contained in:
Timothy Carambat 2023-08-15 15:26:44 -07:00 committed by GitHub
parent 4086253292
commit cf0b24af02
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 499 additions and 2 deletions

View File

@ -1,6 +1,7 @@
{
"cSpell.words": [
"openai",
"Qdrant",
"Weaviate"
]
}

View File

@ -37,6 +37,11 @@ PINECONE_INDEX=
# WEAVIATE_ENDPOINT="http://localhost:8080"
# WEAVIATE_API_KEY=
# Enable all below if you are using vector database: Qdrant.
# VECTOR_DB="qdrant"
# QDRANT_ENDPOINT="http://localhost:6333"
# QDRANT_API_KEY=
# CLOUD DEPLOYMENT VARIRABLES ONLY
# AUTH_TOKEN="hunter2" # This is the password to your application if remote hosting.
# NO_DEBUG="true"

View File

@ -4,6 +4,7 @@ import ChromaLogo from "../../../../media/vectordbs/chroma.png";
import PineconeLogo from "../../../../media/vectordbs/pinecone.png";
import LanceDbLogo from "../../../../media/vectordbs/lancedb.png";
import WeaviateLogo from "../../../../media/vectordbs/weaviate.png";
import QDrantLogo from "../../../../media/vectordbs/qdrant.png";
const noop = () => false;
export default function VectorDBSelection({
@ -80,6 +81,15 @@ export default function VectorDBSelection({
image={PineconeLogo}
onClick={updateVectorChoice}
/>
<VectorDBOption
name="QDrant"
value="qdrant"
link="qdrant.tech"
description="Open source local and distributed cloud vector database."
checked={vectorDB === "qdrant"}
image={QDrantLogo}
onClick={updateVectorChoice}
/>
<VectorDBOption
name="Weaviate"
value="weaviate"
@ -181,6 +191,41 @@ export default function VectorDBSelection({
</p>
</div>
)}
{vectorDB === "qdrant" && (
<>
<div>
<label className="block mb-2 text-sm font-medium text-gray-800 dark:text-slate-200">
QDrant API Endpoint
</label>
<input
type="url"
name="QdrantEndpoint"
disabled={!canDebug}
className="bg-gray-50 border border-gray-500 text-gray-900 placeholder-gray-500 text-sm rounded-lg dark:bg-stone-700 focus:border-stone-500 block w-full p-2.5 dark:text-slate-200 dark:placeholder-stone-500 dark:border-slate-200"
placeholder="http://localhost:6633"
defaultValue={settings?.QdrantEndpoint}
required={true}
autoComplete="off"
spellCheck={false}
/>
</div>
<div>
<label className="block mb-2 text-sm font-medium text-gray-800 dark:text-slate-200">
Api Key
</label>
<input
type="password"
name="QdrantApiKey"
disabled={!canDebug}
className="bg-gray-50 border border-gray-500 text-gray-900 placeholder-gray-500 text-sm rounded-lg dark:bg-stone-700 focus:border-stone-500 block w-full p-2.5 dark:text-slate-200 dark:placeholder-stone-500 dark:border-slate-200"
placeholder="wOeqxsYP4....1244sba"
defaultValue={settings?.QdrantApiKey}
autoComplete="off"
spellCheck={false}
/>
</div>
</>
)}
{vectorDB === "weaviate" && (
<>
<div>

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

View File

@ -36,6 +36,11 @@ PINECONE_INDEX=
# WEAVIATE_ENDPOINT="http://localhost:8080"
# WEAVIATE_API_KEY=
# Enable all below if you are using vector database: Qdrant.
# VECTOR_DB="qdrant"
# QDRANT_ENDPOINT="http://localhost:6333"
# QDRANT_API_KEY=
# CLOUD DEPLOYMENT VARIRABLES ONLY
# AUTH_TOKEN="hunter2" # This is the password to your application if remote hosting.

View File

@ -78,6 +78,12 @@ function systemEndpoints(app) {
WeaviateApiKey: process.env.WEAVIATE_API_KEY,
}
: {}),
...(vectorDB === "qdrant"
? {
QdrantEndpoint: process.env.QDRANT_ENDPOINT,
QdrantApiKey: process.env.QDRANT_API_KEY,
}
: {}),
LLMProvider: llmProvider,
...(llmProvider === "openai"
? {

View File

@ -18,6 +18,7 @@
"@azure/openai": "^1.0.0-beta.3",
"@googleapis/youtube": "^9.0.0",
"@pinecone-database/pinecone": "^0.1.6",
"@qdrant/js-client-rest": "^1.4.0",
"archiver": "^5.3.1",
"bcrypt": "^5.1.0",
"body-parser": "^1.20.2",

View File

@ -13,6 +13,9 @@ function getVectorDbClass() {
case "weaviate":
const { Weaviate } = require("../vectorDbProviders/weaviate");
return Weaviate;
case "qdrant":
const { QDrant } = require("../vectorDbProviders/qdrant");
return QDrant;
default:
throw new Error("ENV: No VECTOR_DB value found in environment!");
}

View File

@ -47,6 +47,14 @@ const KEY_MAPPING = {
envKey: "WEAVIATE_API_KEY",
checks: [],
},
QdrantEndpoint: {
envKey: "QDRANT_ENDPOINT",
checks: [isValidURL],
},
QdrantApiKey: {
envKey: "QDRANT_API_KEY",
checks: [],
},
PineConeEnvironment: {
envKey: "PINECONE_ENVIRONMENT",
@ -112,7 +120,7 @@ function validOpenAIModel(input = "") {
}
function supportedVectorDB(input = "") {
const supported = ["chroma", "pinecone", "lancedb", "weaviate"];
const supported = ["chroma", "pinecone", "lancedb", "weaviate", "qdrant"];
return supported.includes(input)
? null
: `Invalid VectorDB type. Must be one of ${supported.join(", ")}.`;

View File

@ -0,0 +1,397 @@
const { QdrantClient } = require("@qdrant/js-client-rest");
const { RecursiveCharacterTextSplitter } = require("langchain/text_splitter");
const { storeVectorResult, cachedVectorInformation } = require("../../files");
const { v4: uuidv4 } = require("uuid");
const { toChunks, getLLMProvider } = require("../../helpers");
const { chatPrompt } = require("../../chats");
const QDrant = {
name: "QDrant",
connect: async function () {
if (process.env.VECTOR_DB !== "qdrant")
throw new Error("QDrant::Invalid ENV settings");
const client = new QdrantClient({
url: process.env.QDRANT_ENDPOINT,
...(process.env.QDRANT_API_KEY
? { apiKey: process.env.QDRANT_API_KEY }
: {}),
});
const isAlive = (await client.api("cluster")?.clusterStatus())?.ok || false;
if (!isAlive)
throw new Error(
"QDrant::Invalid Heartbeat received - is the instance online?"
);
return { client };
},
heartbeat: async function () {
await this.connect();
return { heartbeat: Number(new Date()) };
},
totalIndicies: async function () {
const { client } = await this.connect();
const { collections } = await client.getCollections();
var totalVectors = 0;
for (const collection of collections) {
if (!collection || !collection.name) continue;
totalVectors +=
(await this.namespace(client, collection.name))?.vectorCount || 0;
}
return totalVectors;
},
namespaceCount: async function (_namespace = null) {
const { client } = await this.connect();
const namespace = await this.namespace(client, _namespace);
return namespace?.vectorCount || 0;
},
similarityResponse: async function (_client, namespace, queryVector) {
const { client } = await this.connect();
const result = {
contextTexts: [],
sourceDocuments: [],
};
const responses = await client.search(namespace, {
vector: queryVector,
limit: 4,
});
responses.forEach((response) => {
result.contextTexts.push(response?.payload?.text || "");
result.sourceDocuments.push({
...(response?.payload || {}),
id: response.id,
});
});
return result;
},
namespace: async function (client, namespace = null) {
if (!namespace) throw new Error("No namespace value provided.");
const collection = await client.getCollection(namespace).catch(() => null);
if (!collection) return null;
return {
name: namespace,
...collection,
vectorCount: collection.vectors_count,
};
},
hasNamespace: async function (namespace = null) {
if (!namespace) return false;
const { client } = await this.connect();
return await this.namespaceExists(client, namespace);
},
namespaceExists: async function (client, namespace = null) {
if (!namespace) throw new Error("No namespace value provided.");
const collection = await client.getCollection(namespace).catch((e) => {
console.error("QDrant::namespaceExists", e.message);
return null;
});
return !!collection;
},
deleteVectorsInNamespace: async function (client, namespace = null) {
await client.deleteCollection(namespace);
return true;
},
getOrCreateCollection: async function (client, namespace) {
if (await this.namespaceExists(client, namespace)) {
return await client.getCollection(namespace);
}
await client.createCollection(namespace, {
vectors: {
size: 1536, //TODO: Fixed to OpenAI models - when other embeddings exist make variable.
distance: "Cosine",
},
});
return await client.getCollection(namespace);
},
addDocumentToNamespace: async function (
namespace,
documentData = {},
fullFilePath = null
) {
const { DocumentVectors } = require("../../../models/vectors");
try {
const { pageContent, docId, ...metadata } = documentData;
if (!pageContent || pageContent.length == 0) return false;
console.log("Adding new vectorized document into namespace", namespace);
const cacheResult = await cachedVectorInformation(fullFilePath);
if (cacheResult.exists) {
const { client } = await this.connect();
const collection = await this.getOrCreateCollection(client, namespace);
if (!collection)
throw new Error("Failed to create new QDrant collection!", {
namespace,
});
const { chunks } = cacheResult;
const documentVectors = [];
for (const chunk of chunks) {
const submission = {
ids: [],
vectors: [],
payloads: [],
};
// Before sending to Qdrant and saving the records to our db
// we need to assign the id of each chunk that is stored in the cached file.
chunk.forEach((chunk) => {
const id = uuidv4();
const { id: _id, ...payload } = chunk.payload;
documentVectors.push({ docId, vectorId: id });
submission.ids.push(id);
submission.vectors.push(chunk.vector);
submission.payloads.push(payload);
});
const additionResult = await client.upsert(namespace, {
wait: true,
batch: { ...submission },
});
if (additionResult?.status !== "completed")
throw new Error("Error embedding into QDrant", additionResult);
}
await DocumentVectors.bulkInsert(documentVectors);
return true;
}
// If we are here then we are going to embed and store a novel document.
// We have to do this manually as opposed to using LangChains `Qdrant.fromDocuments`
// because we then cannot atomically control our namespace to granularly find/remove documents
// from vectordb.
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: 1000,
chunkOverlap: 20,
});
const textChunks = await textSplitter.splitText(pageContent);
console.log("Chunks created from document:", textChunks.length);
const LLMConnector = getLLMProvider();
const documentVectors = [];
const vectors = [];
const vectorValues = await LLMConnector.embedChunks(textChunks);
const submission = {
ids: [],
vectors: [],
payloads: [],
};
if (!!vectorValues && vectorValues.length > 0) {
for (const [i, vector] of vectorValues.entries()) {
const vectorRecord = {
id: uuidv4(),
vector: vector,
// [DO NOT REMOVE]
// LangChain will be unable to find your text if you embed manually and dont include the `text` key.
// https://github.com/hwchase17/langchainjs/blob/2def486af734c0ca87285a48f1a04c057ab74bdf/langchain/src/vectorstores/pinecone.ts#L64
payload: { ...metadata, text: textChunks[i] },
};
submission.ids.push(vectorRecord.id);
submission.vectors.push(vectorRecord.vector);
submission.payloads.push(vectorRecord.payload);
vectors.push(vectorRecord);
documentVectors.push({ docId, vectorId: vectorRecord.id });
}
} else {
console.error(
"Could not use OpenAI to embed document chunks! This document will not be recorded."
);
}
const { client } = await this.connect();
const collection = await this.getOrCreateCollection(client, namespace);
if (!collection)
throw new Error("Failed to create new QDrant collection!", {
namespace,
});
if (vectors.length > 0) {
const chunks = [];
console.log("Inserting vectorized chunks into QDrant collection.");
for (const chunk of toChunks(vectors, 500)) chunks.push(chunk);
const additionResult = await client.upsert(namespace, {
wait: true,
batch: {
ids: submission.ids,
vectors: submission.vectors,
payloads: submission.payloads,
},
});
if (additionResult?.status !== "completed")
throw new Error("Error embedding into QDrant", additionResult);
await storeVectorResult(chunks, fullFilePath);
}
await DocumentVectors.bulkInsert(documentVectors);
return true;
} catch (e) {
console.error("addDocumentToNamespace", e.message);
return false;
}
},
deleteDocumentFromNamespace: async function (namespace, docId) {
const { DocumentVectors } = require("../../../models/vectors");
const { client } = await this.connect();
if (!(await this.namespaceExists(client, namespace))) return;
const knownDocuments = await DocumentVectors.where(`docId = '${docId}'`);
if (knownDocuments.length === 0) return;
const vectorIds = knownDocuments.map((doc) => doc.vectorId);
await client.delete(namespace, {
wait: true,
points: vectorIds,
});
const indexes = knownDocuments.map((doc) => doc.id);
await DocumentVectors.deleteIds(indexes);
return true;
},
query: async function (reqBody = {}) {
const { namespace = null, input, workspace = {} } = reqBody;
if (!namespace || !input) throw new Error("Invalid request body");
const { client } = await this.connect();
if (!(await this.namespaceExists(client, namespace))) {
return {
response: null,
sources: [],
message: "Invalid query - no documents found for workspace!",
};
}
const LLMConnector = getLLMProvider();
const queryVector = await LLMConnector.embedTextInput(input);
const { contextTexts, sourceDocuments } = await this.similarityResponse(
client,
namespace,
queryVector
);
const prompt = {
role: "system",
content: `${chatPrompt(workspace)}
Context:
${contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")}`,
};
const memory = [prompt, { role: "user", content: input }];
const responseText = await LLMConnector.getChatCompletion(memory, {
temperature: workspace?.openAiTemp ?? 0.7,
});
return {
response: responseText,
sources: this.curateSources(sourceDocuments),
message: false,
};
},
// This implementation of chat uses the chat history and modifies the system prompt at execution
// this is improved over the regular langchain implementation so that chats do not directly modify embeddings
// because then multi-user support will have all conversations mutating the base vector collection to which then
// the only solution is replicating entire vector databases per user - which will very quickly consume space on VectorDbs
chat: async function (reqBody = {}) {
const {
namespace = null,
input,
workspace = {},
chatHistory = [],
} = reqBody;
if (!namespace || !input) throw new Error("Invalid request body");
const { client } = await this.connect();
if (!(await this.namespaceExists(client, namespace))) {
return {
response: null,
sources: [],
message: "Invalid query - no documents found for workspace!",
};
}
const LLMConnector = getLLMProvider();
const queryVector = await LLMConnector.embedTextInput(input);
const { contextTexts, sourceDocuments } = await this.similarityResponse(
client,
namespace,
queryVector
);
const prompt = {
role: "system",
content: `${chatPrompt(workspace)}
Context:
${contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")}`,
};
const memory = [prompt, ...chatHistory, { role: "user", content: input }];
const responseText = await LLMConnector.getChatCompletion(memory, {
temperature: workspace?.openAiTemp ?? 0.7,
});
return {
response: responseText,
sources: this.curateSources(sourceDocuments),
message: false,
};
},
"namespace-stats": async function (reqBody = {}) {
const { namespace = null } = reqBody;
if (!namespace) throw new Error("namespace required");
const { client } = await this.connect();
if (!(await this.namespaceExists(client, namespace)))
throw new Error("Namespace by that name does not exist.");
const stats = await this.namespace(client, namespace);
return stats
? stats
: { message: "No stats were able to be fetched from DB for namespace" };
},
"delete-namespace": async function (reqBody = {}) {
const { namespace = null } = reqBody;
const { client } = await this.connect();
if (!(await this.namespaceExists(client, namespace)))
throw new Error("Namespace by that name does not exist.");
const details = await this.namespace(client, namespace);
await this.deleteVectorsInNamespace(client, namespace);
return {
message: `Namespace ${namespace} was deleted along with ${details?.vectorCount} vectors.`,
};
},
reset: async function () {
const { client } = await this.connect();
const response = await client.getCollections();
for (const collection of response.collections) {
await client.deleteCollection(collection.name);
}
return { reset: true };
},
curateSources: function (sources = []) {
const documents = [];
for (const source of sources) {
if (Object.keys(source).length > 0) {
documents.push({
...source,
});
}
}
return documents;
},
};
module.exports.QDrant = QDrant;

View File

@ -173,6 +173,25 @@
dependencies:
cross-fetch "^3.1.5"
"@qdrant/js-client-rest@^1.4.0":
version "1.4.0"
resolved "https://registry.yarnpkg.com/@qdrant/js-client-rest/-/js-client-rest-1.4.0.tgz#efd341a9a30b241e7e11f773b581b3102db1adc6"
integrity sha512-I3pCKnaVdqiVpZ9+XtEjCx7IQSJnerXffD/g8mj/fZsOOJH3IFM+nF2izOfVIByufAArW+drGcAPrxHedba99w==
dependencies:
"@qdrant/openapi-typescript-fetch" "^1.2.1"
"@sevinf/maybe" "^0.5.0"
undici "^5.22.1"
"@qdrant/openapi-typescript-fetch@^1.2.1":
version "1.2.1"
resolved "https://registry.yarnpkg.com/@qdrant/openapi-typescript-fetch/-/openapi-typescript-fetch-1.2.1.tgz#6e232899ca0a7fbc769f0c3a229b56f93da39f19"
integrity sha512-oiBJRN1ME7orFZocgE25jrM3knIF/OKJfMsZPBbtMMKfgNVYfps0MokGvSJkBmecj6bf8QoLXWIGlIoaTM4Zmw==
"@sevinf/maybe@^0.5.0":
version "0.5.0"
resolved "https://registry.yarnpkg.com/@sevinf/maybe/-/maybe-0.5.0.tgz#e59fcea028df615fe87d708bb30e1f338e46bb44"
integrity sha512-ARhyoYDnY1LES3vYI0fiG6e9esWfTNcXcO6+MPJJXcnyMV3bim4lnFt45VXouV7y82F4x3YH8nOQ6VztuvUiWg==
"@tootallnate/once@1":
version "1.1.2"
resolved "https://registry.yarnpkg.com/@tootallnate/once/-/once-1.1.2.tgz#ccb91445360179a04e7fe6aff78c00ffc1eeaf82"
@ -526,7 +545,7 @@ buffer@^5.5.0:
base64-js "^1.3.1"
ieee754 "^1.1.13"
busboy@^1.0.0:
busboy@^1.0.0, busboy@^1.6.0:
version "1.6.0"
resolved "https://registry.yarnpkg.com/busboy/-/busboy-1.6.0.tgz#966ea36a9502e43cdb9146962523b92f531f6893"
integrity sha512-8SFQbg/0hQ9xy3UNTB0YEnsNBbWfhf7RtnzpL7TkBiTBRfrQ9Fxcnz7VJsleJpyp6rVLvXiuORqjlHi5q+PYuA==
@ -2505,6 +2524,13 @@ undefsafe@^2.0.5:
resolved "https://registry.yarnpkg.com/undefsafe/-/undefsafe-2.0.5.tgz#38733b9327bdcd226db889fb723a6efd162e6e2c"
integrity sha512-WxONCrssBM8TSPRqN5EmsjVrsv4A8X12J4ArBiiayv3DyyG3ZlIg6yysuuSYdZsVz3TKcTg2fd//Ujd4CHV1iA==
undici@^5.22.1:
version "5.23.0"
resolved "https://registry.yarnpkg.com/undici/-/undici-5.23.0.tgz#e7bdb0ed42cebe7b7aca87ced53e6eaafb8f8ca0"
integrity sha512-1D7w+fvRsqlQ9GscLBwcAJinqcZGHUKjbOmXdlE/v8BvEGXjeWAax+341q44EuTcHXXnfyKNbKRq4Lg7OzhMmg==
dependencies:
busboy "^1.6.0"
unique-filename@^1.1.1:
version "1.1.1"
resolved "https://registry.yarnpkg.com/unique-filename/-/unique-filename-1.1.1.tgz#1d69769369ada0583103a1e6ae87681b56573230"