mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-19 04:30:10 +01:00
Add Qdrant support for embedding, chat, and conversation (#192)
* Add Qdrant support for embedding, chat, and conversation * Change comments
This commit is contained in:
parent
4086253292
commit
cf0b24af02
1
.vscode/settings.json
vendored
1
.vscode/settings.json
vendored
@ -1,6 +1,7 @@
|
||||
{
|
||||
"cSpell.words": [
|
||||
"openai",
|
||||
"Qdrant",
|
||||
"Weaviate"
|
||||
]
|
||||
}
|
@ -37,6 +37,11 @@ PINECONE_INDEX=
|
||||
# WEAVIATE_ENDPOINT="http://localhost:8080"
|
||||
# WEAVIATE_API_KEY=
|
||||
|
||||
# Enable all below if you are using vector database: Qdrant.
|
||||
# VECTOR_DB="qdrant"
|
||||
# QDRANT_ENDPOINT="http://localhost:6333"
|
||||
# QDRANT_API_KEY=
|
||||
|
||||
# CLOUD DEPLOYMENT VARIRABLES ONLY
|
||||
# AUTH_TOKEN="hunter2" # This is the password to your application if remote hosting.
|
||||
# NO_DEBUG="true"
|
||||
|
@ -4,6 +4,7 @@ import ChromaLogo from "../../../../media/vectordbs/chroma.png";
|
||||
import PineconeLogo from "../../../../media/vectordbs/pinecone.png";
|
||||
import LanceDbLogo from "../../../../media/vectordbs/lancedb.png";
|
||||
import WeaviateLogo from "../../../../media/vectordbs/weaviate.png";
|
||||
import QDrantLogo from "../../../../media/vectordbs/qdrant.png";
|
||||
|
||||
const noop = () => false;
|
||||
export default function VectorDBSelection({
|
||||
@ -80,6 +81,15 @@ export default function VectorDBSelection({
|
||||
image={PineconeLogo}
|
||||
onClick={updateVectorChoice}
|
||||
/>
|
||||
<VectorDBOption
|
||||
name="QDrant"
|
||||
value="qdrant"
|
||||
link="qdrant.tech"
|
||||
description="Open source local and distributed cloud vector database."
|
||||
checked={vectorDB === "qdrant"}
|
||||
image={QDrantLogo}
|
||||
onClick={updateVectorChoice}
|
||||
/>
|
||||
<VectorDBOption
|
||||
name="Weaviate"
|
||||
value="weaviate"
|
||||
@ -181,6 +191,41 @@ export default function VectorDBSelection({
|
||||
</p>
|
||||
</div>
|
||||
)}
|
||||
{vectorDB === "qdrant" && (
|
||||
<>
|
||||
<div>
|
||||
<label className="block mb-2 text-sm font-medium text-gray-800 dark:text-slate-200">
|
||||
QDrant API Endpoint
|
||||
</label>
|
||||
<input
|
||||
type="url"
|
||||
name="QdrantEndpoint"
|
||||
disabled={!canDebug}
|
||||
className="bg-gray-50 border border-gray-500 text-gray-900 placeholder-gray-500 text-sm rounded-lg dark:bg-stone-700 focus:border-stone-500 block w-full p-2.5 dark:text-slate-200 dark:placeholder-stone-500 dark:border-slate-200"
|
||||
placeholder="http://localhost:6633"
|
||||
defaultValue={settings?.QdrantEndpoint}
|
||||
required={true}
|
||||
autoComplete="off"
|
||||
spellCheck={false}
|
||||
/>
|
||||
</div>
|
||||
<div>
|
||||
<label className="block mb-2 text-sm font-medium text-gray-800 dark:text-slate-200">
|
||||
Api Key
|
||||
</label>
|
||||
<input
|
||||
type="password"
|
||||
name="QdrantApiKey"
|
||||
disabled={!canDebug}
|
||||
className="bg-gray-50 border border-gray-500 text-gray-900 placeholder-gray-500 text-sm rounded-lg dark:bg-stone-700 focus:border-stone-500 block w-full p-2.5 dark:text-slate-200 dark:placeholder-stone-500 dark:border-slate-200"
|
||||
placeholder="wOeqxsYP4....1244sba"
|
||||
defaultValue={settings?.QdrantApiKey}
|
||||
autoComplete="off"
|
||||
spellCheck={false}
|
||||
/>
|
||||
</div>
|
||||
</>
|
||||
)}
|
||||
{vectorDB === "weaviate" && (
|
||||
<>
|
||||
<div>
|
||||
|
BIN
frontend/src/media/vectordbs/qdrant.png
Normal file
BIN
frontend/src/media/vectordbs/qdrant.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 15 KiB |
@ -36,6 +36,11 @@ PINECONE_INDEX=
|
||||
# WEAVIATE_ENDPOINT="http://localhost:8080"
|
||||
# WEAVIATE_API_KEY=
|
||||
|
||||
# Enable all below if you are using vector database: Qdrant.
|
||||
# VECTOR_DB="qdrant"
|
||||
# QDRANT_ENDPOINT="http://localhost:6333"
|
||||
# QDRANT_API_KEY=
|
||||
|
||||
|
||||
# CLOUD DEPLOYMENT VARIRABLES ONLY
|
||||
# AUTH_TOKEN="hunter2" # This is the password to your application if remote hosting.
|
||||
|
@ -78,6 +78,12 @@ function systemEndpoints(app) {
|
||||
WeaviateApiKey: process.env.WEAVIATE_API_KEY,
|
||||
}
|
||||
: {}),
|
||||
...(vectorDB === "qdrant"
|
||||
? {
|
||||
QdrantEndpoint: process.env.QDRANT_ENDPOINT,
|
||||
QdrantApiKey: process.env.QDRANT_API_KEY,
|
||||
}
|
||||
: {}),
|
||||
LLMProvider: llmProvider,
|
||||
...(llmProvider === "openai"
|
||||
? {
|
||||
|
@ -18,6 +18,7 @@
|
||||
"@azure/openai": "^1.0.0-beta.3",
|
||||
"@googleapis/youtube": "^9.0.0",
|
||||
"@pinecone-database/pinecone": "^0.1.6",
|
||||
"@qdrant/js-client-rest": "^1.4.0",
|
||||
"archiver": "^5.3.1",
|
||||
"bcrypt": "^5.1.0",
|
||||
"body-parser": "^1.20.2",
|
||||
|
@ -13,6 +13,9 @@ function getVectorDbClass() {
|
||||
case "weaviate":
|
||||
const { Weaviate } = require("../vectorDbProviders/weaviate");
|
||||
return Weaviate;
|
||||
case "qdrant":
|
||||
const { QDrant } = require("../vectorDbProviders/qdrant");
|
||||
return QDrant;
|
||||
default:
|
||||
throw new Error("ENV: No VECTOR_DB value found in environment!");
|
||||
}
|
||||
|
@ -47,6 +47,14 @@ const KEY_MAPPING = {
|
||||
envKey: "WEAVIATE_API_KEY",
|
||||
checks: [],
|
||||
},
|
||||
QdrantEndpoint: {
|
||||
envKey: "QDRANT_ENDPOINT",
|
||||
checks: [isValidURL],
|
||||
},
|
||||
QdrantApiKey: {
|
||||
envKey: "QDRANT_API_KEY",
|
||||
checks: [],
|
||||
},
|
||||
|
||||
PineConeEnvironment: {
|
||||
envKey: "PINECONE_ENVIRONMENT",
|
||||
@ -112,7 +120,7 @@ function validOpenAIModel(input = "") {
|
||||
}
|
||||
|
||||
function supportedVectorDB(input = "") {
|
||||
const supported = ["chroma", "pinecone", "lancedb", "weaviate"];
|
||||
const supported = ["chroma", "pinecone", "lancedb", "weaviate", "qdrant"];
|
||||
return supported.includes(input)
|
||||
? null
|
||||
: `Invalid VectorDB type. Must be one of ${supported.join(", ")}.`;
|
||||
|
397
server/utils/vectorDbProviders/qdrant/index.js
Normal file
397
server/utils/vectorDbProviders/qdrant/index.js
Normal file
@ -0,0 +1,397 @@
|
||||
const { QdrantClient } = require("@qdrant/js-client-rest");
|
||||
const { RecursiveCharacterTextSplitter } = require("langchain/text_splitter");
|
||||
const { storeVectorResult, cachedVectorInformation } = require("../../files");
|
||||
const { v4: uuidv4 } = require("uuid");
|
||||
const { toChunks, getLLMProvider } = require("../../helpers");
|
||||
const { chatPrompt } = require("../../chats");
|
||||
|
||||
const QDrant = {
|
||||
name: "QDrant",
|
||||
connect: async function () {
|
||||
if (process.env.VECTOR_DB !== "qdrant")
|
||||
throw new Error("QDrant::Invalid ENV settings");
|
||||
|
||||
const client = new QdrantClient({
|
||||
url: process.env.QDRANT_ENDPOINT,
|
||||
...(process.env.QDRANT_API_KEY
|
||||
? { apiKey: process.env.QDRANT_API_KEY }
|
||||
: {}),
|
||||
});
|
||||
|
||||
const isAlive = (await client.api("cluster")?.clusterStatus())?.ok || false;
|
||||
if (!isAlive)
|
||||
throw new Error(
|
||||
"QDrant::Invalid Heartbeat received - is the instance online?"
|
||||
);
|
||||
|
||||
return { client };
|
||||
},
|
||||
heartbeat: async function () {
|
||||
await this.connect();
|
||||
return { heartbeat: Number(new Date()) };
|
||||
},
|
||||
totalIndicies: async function () {
|
||||
const { client } = await this.connect();
|
||||
const { collections } = await client.getCollections();
|
||||
var totalVectors = 0;
|
||||
for (const collection of collections) {
|
||||
if (!collection || !collection.name) continue;
|
||||
totalVectors +=
|
||||
(await this.namespace(client, collection.name))?.vectorCount || 0;
|
||||
}
|
||||
return totalVectors;
|
||||
},
|
||||
namespaceCount: async function (_namespace = null) {
|
||||
const { client } = await this.connect();
|
||||
const namespace = await this.namespace(client, _namespace);
|
||||
return namespace?.vectorCount || 0;
|
||||
},
|
||||
similarityResponse: async function (_client, namespace, queryVector) {
|
||||
const { client } = await this.connect();
|
||||
const result = {
|
||||
contextTexts: [],
|
||||
sourceDocuments: [],
|
||||
};
|
||||
|
||||
const responses = await client.search(namespace, {
|
||||
vector: queryVector,
|
||||
limit: 4,
|
||||
});
|
||||
|
||||
responses.forEach((response) => {
|
||||
result.contextTexts.push(response?.payload?.text || "");
|
||||
result.sourceDocuments.push({
|
||||
...(response?.payload || {}),
|
||||
id: response.id,
|
||||
});
|
||||
});
|
||||
|
||||
return result;
|
||||
},
|
||||
namespace: async function (client, namespace = null) {
|
||||
if (!namespace) throw new Error("No namespace value provided.");
|
||||
const collection = await client.getCollection(namespace).catch(() => null);
|
||||
if (!collection) return null;
|
||||
|
||||
return {
|
||||
name: namespace,
|
||||
...collection,
|
||||
vectorCount: collection.vectors_count,
|
||||
};
|
||||
},
|
||||
hasNamespace: async function (namespace = null) {
|
||||
if (!namespace) return false;
|
||||
const { client } = await this.connect();
|
||||
return await this.namespaceExists(client, namespace);
|
||||
},
|
||||
namespaceExists: async function (client, namespace = null) {
|
||||
if (!namespace) throw new Error("No namespace value provided.");
|
||||
const collection = await client.getCollection(namespace).catch((e) => {
|
||||
console.error("QDrant::namespaceExists", e.message);
|
||||
return null;
|
||||
});
|
||||
return !!collection;
|
||||
},
|
||||
deleteVectorsInNamespace: async function (client, namespace = null) {
|
||||
await client.deleteCollection(namespace);
|
||||
return true;
|
||||
},
|
||||
getOrCreateCollection: async function (client, namespace) {
|
||||
if (await this.namespaceExists(client, namespace)) {
|
||||
return await client.getCollection(namespace);
|
||||
}
|
||||
await client.createCollection(namespace, {
|
||||
vectors: {
|
||||
size: 1536, //TODO: Fixed to OpenAI models - when other embeddings exist make variable.
|
||||
distance: "Cosine",
|
||||
},
|
||||
});
|
||||
return await client.getCollection(namespace);
|
||||
},
|
||||
addDocumentToNamespace: async function (
|
||||
namespace,
|
||||
documentData = {},
|
||||
fullFilePath = null
|
||||
) {
|
||||
const { DocumentVectors } = require("../../../models/vectors");
|
||||
try {
|
||||
const { pageContent, docId, ...metadata } = documentData;
|
||||
if (!pageContent || pageContent.length == 0) return false;
|
||||
|
||||
console.log("Adding new vectorized document into namespace", namespace);
|
||||
const cacheResult = await cachedVectorInformation(fullFilePath);
|
||||
if (cacheResult.exists) {
|
||||
const { client } = await this.connect();
|
||||
const collection = await this.getOrCreateCollection(client, namespace);
|
||||
if (!collection)
|
||||
throw new Error("Failed to create new QDrant collection!", {
|
||||
namespace,
|
||||
});
|
||||
|
||||
const { chunks } = cacheResult;
|
||||
const documentVectors = [];
|
||||
|
||||
for (const chunk of chunks) {
|
||||
const submission = {
|
||||
ids: [],
|
||||
vectors: [],
|
||||
payloads: [],
|
||||
};
|
||||
|
||||
// Before sending to Qdrant and saving the records to our db
|
||||
// we need to assign the id of each chunk that is stored in the cached file.
|
||||
chunk.forEach((chunk) => {
|
||||
const id = uuidv4();
|
||||
const { id: _id, ...payload } = chunk.payload;
|
||||
documentVectors.push({ docId, vectorId: id });
|
||||
submission.ids.push(id);
|
||||
submission.vectors.push(chunk.vector);
|
||||
submission.payloads.push(payload);
|
||||
});
|
||||
|
||||
const additionResult = await client.upsert(namespace, {
|
||||
wait: true,
|
||||
batch: { ...submission },
|
||||
});
|
||||
if (additionResult?.status !== "completed")
|
||||
throw new Error("Error embedding into QDrant", additionResult);
|
||||
}
|
||||
|
||||
await DocumentVectors.bulkInsert(documentVectors);
|
||||
return true;
|
||||
}
|
||||
|
||||
// If we are here then we are going to embed and store a novel document.
|
||||
// We have to do this manually as opposed to using LangChains `Qdrant.fromDocuments`
|
||||
// because we then cannot atomically control our namespace to granularly find/remove documents
|
||||
// from vectordb.
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize: 1000,
|
||||
chunkOverlap: 20,
|
||||
});
|
||||
const textChunks = await textSplitter.splitText(pageContent);
|
||||
|
||||
console.log("Chunks created from document:", textChunks.length);
|
||||
const LLMConnector = getLLMProvider();
|
||||
const documentVectors = [];
|
||||
const vectors = [];
|
||||
const vectorValues = await LLMConnector.embedChunks(textChunks);
|
||||
const submission = {
|
||||
ids: [],
|
||||
vectors: [],
|
||||
payloads: [],
|
||||
};
|
||||
|
||||
if (!!vectorValues && vectorValues.length > 0) {
|
||||
for (const [i, vector] of vectorValues.entries()) {
|
||||
const vectorRecord = {
|
||||
id: uuidv4(),
|
||||
vector: vector,
|
||||
// [DO NOT REMOVE]
|
||||
// LangChain will be unable to find your text if you embed manually and dont include the `text` key.
|
||||
// https://github.com/hwchase17/langchainjs/blob/2def486af734c0ca87285a48f1a04c057ab74bdf/langchain/src/vectorstores/pinecone.ts#L64
|
||||
payload: { ...metadata, text: textChunks[i] },
|
||||
};
|
||||
|
||||
submission.ids.push(vectorRecord.id);
|
||||
submission.vectors.push(vectorRecord.vector);
|
||||
submission.payloads.push(vectorRecord.payload);
|
||||
|
||||
vectors.push(vectorRecord);
|
||||
documentVectors.push({ docId, vectorId: vectorRecord.id });
|
||||
}
|
||||
} else {
|
||||
console.error(
|
||||
"Could not use OpenAI to embed document chunks! This document will not be recorded."
|
||||
);
|
||||
}
|
||||
|
||||
const { client } = await this.connect();
|
||||
const collection = await this.getOrCreateCollection(client, namespace);
|
||||
if (!collection)
|
||||
throw new Error("Failed to create new QDrant collection!", {
|
||||
namespace,
|
||||
});
|
||||
|
||||
if (vectors.length > 0) {
|
||||
const chunks = [];
|
||||
|
||||
console.log("Inserting vectorized chunks into QDrant collection.");
|
||||
for (const chunk of toChunks(vectors, 500)) chunks.push(chunk);
|
||||
|
||||
const additionResult = await client.upsert(namespace, {
|
||||
wait: true,
|
||||
batch: {
|
||||
ids: submission.ids,
|
||||
vectors: submission.vectors,
|
||||
payloads: submission.payloads,
|
||||
},
|
||||
});
|
||||
if (additionResult?.status !== "completed")
|
||||
throw new Error("Error embedding into QDrant", additionResult);
|
||||
|
||||
await storeVectorResult(chunks, fullFilePath);
|
||||
}
|
||||
|
||||
await DocumentVectors.bulkInsert(documentVectors);
|
||||
return true;
|
||||
} catch (e) {
|
||||
console.error("addDocumentToNamespace", e.message);
|
||||
return false;
|
||||
}
|
||||
},
|
||||
deleteDocumentFromNamespace: async function (namespace, docId) {
|
||||
const { DocumentVectors } = require("../../../models/vectors");
|
||||
const { client } = await this.connect();
|
||||
if (!(await this.namespaceExists(client, namespace))) return;
|
||||
|
||||
const knownDocuments = await DocumentVectors.where(`docId = '${docId}'`);
|
||||
if (knownDocuments.length === 0) return;
|
||||
|
||||
const vectorIds = knownDocuments.map((doc) => doc.vectorId);
|
||||
await client.delete(namespace, {
|
||||
wait: true,
|
||||
points: vectorIds,
|
||||
});
|
||||
|
||||
const indexes = knownDocuments.map((doc) => doc.id);
|
||||
await DocumentVectors.deleteIds(indexes);
|
||||
return true;
|
||||
},
|
||||
query: async function (reqBody = {}) {
|
||||
const { namespace = null, input, workspace = {} } = reqBody;
|
||||
if (!namespace || !input) throw new Error("Invalid request body");
|
||||
|
||||
const { client } = await this.connect();
|
||||
if (!(await this.namespaceExists(client, namespace))) {
|
||||
return {
|
||||
response: null,
|
||||
sources: [],
|
||||
message: "Invalid query - no documents found for workspace!",
|
||||
};
|
||||
}
|
||||
|
||||
const LLMConnector = getLLMProvider();
|
||||
const queryVector = await LLMConnector.embedTextInput(input);
|
||||
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
||||
client,
|
||||
namespace,
|
||||
queryVector
|
||||
);
|
||||
const prompt = {
|
||||
role: "system",
|
||||
content: `${chatPrompt(workspace)}
|
||||
Context:
|
||||
${contextTexts
|
||||
.map((text, i) => {
|
||||
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
||||
})
|
||||
.join("")}`,
|
||||
};
|
||||
const memory = [prompt, { role: "user", content: input }];
|
||||
const responseText = await LLMConnector.getChatCompletion(memory, {
|
||||
temperature: workspace?.openAiTemp ?? 0.7,
|
||||
});
|
||||
|
||||
return {
|
||||
response: responseText,
|
||||
sources: this.curateSources(sourceDocuments),
|
||||
message: false,
|
||||
};
|
||||
},
|
||||
// This implementation of chat uses the chat history and modifies the system prompt at execution
|
||||
// this is improved over the regular langchain implementation so that chats do not directly modify embeddings
|
||||
// because then multi-user support will have all conversations mutating the base vector collection to which then
|
||||
// the only solution is replicating entire vector databases per user - which will very quickly consume space on VectorDbs
|
||||
chat: async function (reqBody = {}) {
|
||||
const {
|
||||
namespace = null,
|
||||
input,
|
||||
workspace = {},
|
||||
chatHistory = [],
|
||||
} = reqBody;
|
||||
if (!namespace || !input) throw new Error("Invalid request body");
|
||||
|
||||
const { client } = await this.connect();
|
||||
if (!(await this.namespaceExists(client, namespace))) {
|
||||
return {
|
||||
response: null,
|
||||
sources: [],
|
||||
message: "Invalid query - no documents found for workspace!",
|
||||
};
|
||||
}
|
||||
|
||||
const LLMConnector = getLLMProvider();
|
||||
const queryVector = await LLMConnector.embedTextInput(input);
|
||||
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
||||
client,
|
||||
namespace,
|
||||
queryVector
|
||||
);
|
||||
const prompt = {
|
||||
role: "system",
|
||||
content: `${chatPrompt(workspace)}
|
||||
Context:
|
||||
${contextTexts
|
||||
.map((text, i) => {
|
||||
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
||||
})
|
||||
.join("")}`,
|
||||
};
|
||||
const memory = [prompt, ...chatHistory, { role: "user", content: input }];
|
||||
const responseText = await LLMConnector.getChatCompletion(memory, {
|
||||
temperature: workspace?.openAiTemp ?? 0.7,
|
||||
});
|
||||
|
||||
return {
|
||||
response: responseText,
|
||||
sources: this.curateSources(sourceDocuments),
|
||||
message: false,
|
||||
};
|
||||
},
|
||||
"namespace-stats": async function (reqBody = {}) {
|
||||
const { namespace = null } = reqBody;
|
||||
if (!namespace) throw new Error("namespace required");
|
||||
const { client } = await this.connect();
|
||||
if (!(await this.namespaceExists(client, namespace)))
|
||||
throw new Error("Namespace by that name does not exist.");
|
||||
const stats = await this.namespace(client, namespace);
|
||||
return stats
|
||||
? stats
|
||||
: { message: "No stats were able to be fetched from DB for namespace" };
|
||||
},
|
||||
"delete-namespace": async function (reqBody = {}) {
|
||||
const { namespace = null } = reqBody;
|
||||
const { client } = await this.connect();
|
||||
if (!(await this.namespaceExists(client, namespace)))
|
||||
throw new Error("Namespace by that name does not exist.");
|
||||
|
||||
const details = await this.namespace(client, namespace);
|
||||
await this.deleteVectorsInNamespace(client, namespace);
|
||||
return {
|
||||
message: `Namespace ${namespace} was deleted along with ${details?.vectorCount} vectors.`,
|
||||
};
|
||||
},
|
||||
reset: async function () {
|
||||
const { client } = await this.connect();
|
||||
const response = await client.getCollections();
|
||||
for (const collection of response.collections) {
|
||||
await client.deleteCollection(collection.name);
|
||||
}
|
||||
return { reset: true };
|
||||
},
|
||||
curateSources: function (sources = []) {
|
||||
const documents = [];
|
||||
for (const source of sources) {
|
||||
if (Object.keys(source).length > 0) {
|
||||
documents.push({
|
||||
...source,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return documents;
|
||||
},
|
||||
};
|
||||
|
||||
module.exports.QDrant = QDrant;
|
@ -173,6 +173,25 @@
|
||||
dependencies:
|
||||
cross-fetch "^3.1.5"
|
||||
|
||||
"@qdrant/js-client-rest@^1.4.0":
|
||||
version "1.4.0"
|
||||
resolved "https://registry.yarnpkg.com/@qdrant/js-client-rest/-/js-client-rest-1.4.0.tgz#efd341a9a30b241e7e11f773b581b3102db1adc6"
|
||||
integrity sha512-I3pCKnaVdqiVpZ9+XtEjCx7IQSJnerXffD/g8mj/fZsOOJH3IFM+nF2izOfVIByufAArW+drGcAPrxHedba99w==
|
||||
dependencies:
|
||||
"@qdrant/openapi-typescript-fetch" "^1.2.1"
|
||||
"@sevinf/maybe" "^0.5.0"
|
||||
undici "^5.22.1"
|
||||
|
||||
"@qdrant/openapi-typescript-fetch@^1.2.1":
|
||||
version "1.2.1"
|
||||
resolved "https://registry.yarnpkg.com/@qdrant/openapi-typescript-fetch/-/openapi-typescript-fetch-1.2.1.tgz#6e232899ca0a7fbc769f0c3a229b56f93da39f19"
|
||||
integrity sha512-oiBJRN1ME7orFZocgE25jrM3knIF/OKJfMsZPBbtMMKfgNVYfps0MokGvSJkBmecj6bf8QoLXWIGlIoaTM4Zmw==
|
||||
|
||||
"@sevinf/maybe@^0.5.0":
|
||||
version "0.5.0"
|
||||
resolved "https://registry.yarnpkg.com/@sevinf/maybe/-/maybe-0.5.0.tgz#e59fcea028df615fe87d708bb30e1f338e46bb44"
|
||||
integrity sha512-ARhyoYDnY1LES3vYI0fiG6e9esWfTNcXcO6+MPJJXcnyMV3bim4lnFt45VXouV7y82F4x3YH8nOQ6VztuvUiWg==
|
||||
|
||||
"@tootallnate/once@1":
|
||||
version "1.1.2"
|
||||
resolved "https://registry.yarnpkg.com/@tootallnate/once/-/once-1.1.2.tgz#ccb91445360179a04e7fe6aff78c00ffc1eeaf82"
|
||||
@ -526,7 +545,7 @@ buffer@^5.5.0:
|
||||
base64-js "^1.3.1"
|
||||
ieee754 "^1.1.13"
|
||||
|
||||
busboy@^1.0.0:
|
||||
busboy@^1.0.0, busboy@^1.6.0:
|
||||
version "1.6.0"
|
||||
resolved "https://registry.yarnpkg.com/busboy/-/busboy-1.6.0.tgz#966ea36a9502e43cdb9146962523b92f531f6893"
|
||||
integrity sha512-8SFQbg/0hQ9xy3UNTB0YEnsNBbWfhf7RtnzpL7TkBiTBRfrQ9Fxcnz7VJsleJpyp6rVLvXiuORqjlHi5q+PYuA==
|
||||
@ -2505,6 +2524,13 @@ undefsafe@^2.0.5:
|
||||
resolved "https://registry.yarnpkg.com/undefsafe/-/undefsafe-2.0.5.tgz#38733b9327bdcd226db889fb723a6efd162e6e2c"
|
||||
integrity sha512-WxONCrssBM8TSPRqN5EmsjVrsv4A8X12J4ArBiiayv3DyyG3ZlIg6yysuuSYdZsVz3TKcTg2fd//Ujd4CHV1iA==
|
||||
|
||||
undici@^5.22.1:
|
||||
version "5.23.0"
|
||||
resolved "https://registry.yarnpkg.com/undici/-/undici-5.23.0.tgz#e7bdb0ed42cebe7b7aca87ced53e6eaafb8f8ca0"
|
||||
integrity sha512-1D7w+fvRsqlQ9GscLBwcAJinqcZGHUKjbOmXdlE/v8BvEGXjeWAax+341q44EuTcHXXnfyKNbKRq4Lg7OzhMmg==
|
||||
dependencies:
|
||||
busboy "^1.6.0"
|
||||
|
||||
unique-filename@^1.1.1:
|
||||
version "1.1.1"
|
||||
resolved "https://registry.yarnpkg.com/unique-filename/-/unique-filename-1.1.1.tgz#1d69769369ada0583103a1e6ae87681b56573230"
|
||||
|
Loading…
Reference in New Issue
Block a user