const { v4 } = require("uuid"); const { chatPrompt } = require("../../chats"); const { writeResponseChunk } = require("../../helpers/chat/responses"); class AnthropicLLM { constructor(embedder = null, modelPreference = null) { if (!process.env.ANTHROPIC_API_KEY) throw new Error("No Anthropic API key was set."); // Docs: https://www.npmjs.com/package/@anthropic-ai/sdk const AnthropicAI = require("@anthropic-ai/sdk"); const anthropic = new AnthropicAI({ apiKey: process.env.ANTHROPIC_API_KEY, }); this.anthropic = anthropic; this.model = modelPreference || process.env.ANTHROPIC_MODEL_PREF || "claude-2.0"; this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, }; if (!embedder) throw new Error( "INVALID ANTHROPIC SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use Anthropic as your LLM." ); this.embedder = embedder; this.answerKey = v4().split("-")[0]; this.defaultTemp = 0.7; } streamingEnabled() { return "streamChat" in this && "streamGetChatCompletion" in this; } promptWindowLimit() { switch (this.model) { case "claude-instant-1.2": return 100_000; case "claude-2.0": return 100_000; case "claude-2.1": return 200_000; case "claude-3-opus-20240229": return 200_000; case "claude-3-sonnet-20240229": return 200_000; default: return 100_000; // assume a claude-instant-1.2 model } } isValidChatCompletionModel(modelName = "") { const validModels = [ "claude-instant-1.2", "claude-2.0", "claude-2.1", "claude-3-opus-20240229", "claude-3-sonnet-20240229", ]; return validModels.includes(modelName); } // Moderation can be done with Anthropic, but its not really "exact" so we skip it // https://docs.anthropic.com/claude/docs/content-moderation async isSafe(_input = "") { // Not implemented so must be stubbed return { safe: true, reasons: [] }; } constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", }) { const prompt = { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; return [prompt, ...chatHistory, { role: "user", content: userPrompt }]; } async getChatCompletion(messages = null, { temperature = 0.7 }) { if (!this.isValidChatCompletionModel(this.model)) throw new Error( `Anthropic chat: ${this.model} is not valid for chat completion!` ); try { const response = await this.anthropic.messages.create({ model: this.model, max_tokens: 4096, system: messages[0].content, // Strip out the system message messages: messages.slice(1), // Pop off the system message temperature: Number(temperature ?? this.defaultTemp), }); return response.content[0].text; } catch (error) { console.log(error); return error; } } async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) { if (!this.isValidChatCompletionModel(this.model)) throw new Error( `Anthropic chat: ${this.model} is not valid for chat completion!` ); const messages = await this.compressMessages( { systemPrompt: chatPrompt(workspace), userPrompt: prompt, chatHistory, }, rawHistory ); const streamRequest = await this.anthropic.messages.stream({ model: this.model, max_tokens: 4096, system: messages[0].content, // Strip out the system message messages: messages.slice(1), // Pop off the system message temperature: Number(workspace?.openAiTemp ?? this.defaultTemp), }); return streamRequest; } async streamGetChatCompletion(messages = null, { temperature = 0.7 }) { if (!this.isValidChatCompletionModel(this.model)) throw new Error( `OpenAI chat: ${this.model} is not valid for chat completion!` ); const streamRequest = await this.anthropic.messages.stream({ model: this.model, max_tokens: 4096, system: messages[0].content, // Strip out the system message messages: messages.slice(1), // Pop off the system message temperature: Number(temperature ?? this.defaultTemp), }); return streamRequest; } handleStream(response, stream, responseProps) { return new Promise((resolve) => { let fullText = ""; const { uuid = v4(), sources = [] } = responseProps; stream.on("streamEvent", (message) => { const data = message; if ( data.type === "content_block_delta" && data.delta.type === "text_delta" ) { const text = data.delta.text; fullText += text; writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: text, close: false, error: false, }); } if ( message.type === "message_stop" || (data.stop_reason && data.stop_reason === "end_turn") ) { writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); resolve(fullText); } }); }); } #appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); } async compressMessages(promptArgs = {}, rawHistory = []) { const { messageStringCompressor } = require("../../helpers/chat"); const compressedPrompt = await messageStringCompressor( this, promptArgs, rawHistory ); return compressedPrompt; } // Simple wrapper for dynamic embedder & normalize interface for all LLM implementations async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); } } module.exports = { AnthropicLLM, };