const { NativeEmbedder } = require("../../EmbeddingEngines/native"); const { handleDefaultStreamResponseV2, } = require("../../helpers/chat/responses"); // hybrid of openAi LLM chat completion for LMStudio class LMStudioLLM { constructor(embedder = null, modelPreference = null) { if (!process.env.LMSTUDIO_BASE_PATH) throw new Error("No LMStudio API Base Path was set."); const { OpenAI: OpenAIApi } = require("openai"); this.lmstudio = new OpenAIApi({ baseURL: process.env.LMSTUDIO_BASE_PATH?.replace(/\/+$/, ""), // here is the URL to your LMStudio instance apiKey: null, }); // Prior to LMStudio 0.2.17 the `model` param was not required and you could pass anything // into that field and it would work. On 0.2.17 LMStudio introduced multi-model chat // which now has a bug that reports the server model id as "Loaded from Chat UI" // and any other value will crash inferencing. So until this is patched we will // try to fetch the `/models` and have the user set it, or just fallback to "Loaded from Chat UI" // which will not impact users with { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); } streamingEnabled() { return "streamGetChatCompletion" in this; } static promptWindowLimit(_modelName) { const limit = process.env.LMSTUDIO_MODEL_TOKEN_LIMIT || 4096; if (!limit || isNaN(Number(limit))) throw new Error("No LMStudio token context limit was set."); return Number(limit); } // Ensure the user set a value for the token limit // and if undefined - assume 4096 window. promptWindowLimit() { const limit = process.env.LMSTUDIO_MODEL_TOKEN_LIMIT || 4096; if (!limit || isNaN(Number(limit))) throw new Error("No LMStudio token context limit was set."); return Number(limit); } async isValidChatCompletionModel(_ = "") { // LMStudio may be anything. The user must do it correctly. // See comment about this.model declaration in constructor return true; } /** * Generates appropriate content array for a message + attachments. * @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}} * @returns {string|object[]} */ #generateContent({ userPrompt, attachments = [] }) { if (!attachments.length) { return userPrompt; } const content = [{ type: "text", text: userPrompt }]; for (let attachment of attachments) { content.push({ type: "image_url", image_url: { url: attachment.contentString, detail: "auto", }, }); } return content.flat(); } /** * Construct the user prompt for this model. * @param {{attachments: import("../../helpers").Attachment[]}} param0 * @returns */ constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", attachments = [], }) { const prompt = { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; return [ prompt, ...chatHistory, { role: "user", content: this.#generateContent({ userPrompt, attachments }), }, ]; } async getChatCompletion(messages = null, { temperature = 0.7 }) { if (!this.model) throw new Error( `LMStudio chat: ${this.model} is not valid or defined model for chat completion!` ); const result = await this.lmstudio.chat.completions.create({ model: this.model, messages, temperature, }); if (!result.hasOwnProperty("choices") || result.choices.length === 0) return null; return result.choices[0].message.content; } async streamGetChatCompletion(messages = null, { temperature = 0.7 }) { if (!this.model) throw new Error( `LMStudio chat: ${this.model} is not valid or defined model for chat completion!` ); const streamRequest = await this.lmstudio.chat.completions.create({ model: this.model, stream: true, messages, temperature, }); return streamRequest; } handleStream(response, stream, responseProps) { return handleDefaultStreamResponseV2(response, stream, responseProps); } // Simple wrapper for dynamic embedder & normalize interface for all LLM implementations async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); } async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); return await messageArrayCompressor(this, messageArray, rawHistory); } } module.exports = { LMStudioLLM, };