const { v4: uuidv4 } = require("uuid"); const { WorkspaceChats } = require("../../models/workspaceChats"); const { getVectorDbClass, getLLMProvider } = require("../helpers"); const { grepCommand, recentChatHistory, VALID_COMMANDS, chatPrompt, } = require("."); const VALID_CHAT_MODE = ["chat", "query"]; function writeResponseChunk(response, data) { response.write(`data: ${JSON.stringify(data)}\n\n`); return; } async function streamChatWithWorkspace( response, workspace, message, chatMode = "chat", user = null ) { const uuid = uuidv4(); const command = grepCommand(message); if (!!command && Object.keys(VALID_COMMANDS).includes(command)) { const data = await VALID_COMMANDS[command](workspace, message, uuid, user); writeResponseChunk(response, data); return; } const LLMConnector = getLLMProvider(workspace?.chatModel); const VectorDb = getVectorDbClass(); const { safe, reasons = [] } = await LLMConnector.isSafe(message); if (!safe) { writeResponseChunk(response, { id: uuid, type: "abort", textResponse: null, sources: [], close: true, error: `This message was moderated and will not be allowed. Violations for ${reasons.join( ", " )} found.`, }); return; } const messageLimit = workspace?.openAiHistory || 20; const hasVectorizedSpace = await VectorDb.hasNamespace(workspace.slug); const embeddingsCount = await VectorDb.namespaceCount(workspace.slug); if (!hasVectorizedSpace || embeddingsCount === 0) { if (chatMode === "query") { writeResponseChunk(response, { id: uuid, type: "textResponse", textResponse: "There is no relevant information in this workspace to answer your query.", sources: [], close: true, error: null, }); return; } // If there are no embeddings - chat like a normal LLM chat interface. return await streamEmptyEmbeddingChat({ response, uuid, user, message, workspace, messageLimit, LLMConnector, }); } let completeText; const { rawHistory, chatHistory } = await recentChatHistory( user, workspace, messageLimit, chatMode ); const { contextTexts = [], sources = [], message: error, } = await VectorDb.performSimilaritySearch({ namespace: workspace.slug, input: message, LLMConnector, similarityThreshold: workspace?.similarityThreshold, topN: workspace?.topN, }); // Failed similarity search. if (!!error) { writeResponseChunk(response, { id: uuid, type: "abort", textResponse: null, sources: [], close: true, error, }); return; } // If in query mode and no sources are found, do not // let the LLM try to hallucinate a response or use general knowledge if (chatMode === "query" && sources.length === 0) { writeResponseChunk(response, { id: uuid, type: "textResponse", textResponse: "There is no relevant information in this workspace to answer your query.", sources: [], close: true, error: null, }); return; } // Compress message to ensure prompt passes token limit with room for response // and build system messages based on inputs and history. const messages = await LLMConnector.compressMessages( { systemPrompt: chatPrompt(workspace), userPrompt: message, contextTexts, chatHistory, }, rawHistory ); // If streaming is not explicitly enabled for connector // we do regular waiting of a response and send a single chunk. if (LLMConnector.streamingEnabled() !== true) { console.log( `\x1b[31m[STREAMING DISABLED]\x1b[0m Streaming is not available for ${LLMConnector.constructor.name}. Will use regular chat method.` ); completeText = await LLMConnector.getChatCompletion(messages, { temperature: workspace?.openAiTemp ?? LLMConnector.defaultTemp, }); writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: completeText, close: true, error: false, }); } else { const stream = await LLMConnector.streamGetChatCompletion(messages, { temperature: workspace?.openAiTemp ?? LLMConnector.defaultTemp, }); completeText = await handleStreamResponses(response, stream, { uuid, sources, }); } await WorkspaceChats.new({ workspaceId: workspace.id, prompt: message, response: { text: completeText, sources, type: chatMode }, user, }); return; } async function streamEmptyEmbeddingChat({ response, uuid, user, message, workspace, messageLimit, LLMConnector, }) { let completeText; const { rawHistory, chatHistory } = await recentChatHistory( user, workspace, messageLimit ); // If streaming is not explicitly enabled for connector // we do regular waiting of a response and send a single chunk. if (LLMConnector.streamingEnabled() !== true) { console.log( `\x1b[31m[STREAMING DISABLED]\x1b[0m Streaming is not available for ${LLMConnector.constructor.name}. Will use regular chat method.` ); completeText = await LLMConnector.sendChat( chatHistory, message, workspace, rawHistory ); writeResponseChunk(response, { uuid, type: "textResponseChunk", textResponse: completeText, sources: [], close: true, error: false, }); } else { const stream = await LLMConnector.streamChat( chatHistory, message, workspace, rawHistory ); completeText = await handleStreamResponses(response, stream, { uuid, sources: [], }); } await WorkspaceChats.new({ workspaceId: workspace.id, prompt: message, response: { text: completeText, sources: [], type: "chat" }, user, }); return; } // TODO: Refactor this implementation function handleStreamResponses(response, stream, responseProps) { const { uuid = uuidv4(), sources = [] } = responseProps; // Gemini likes to return a stream asyncIterator which will // be a totally different object than other models. if (stream?.type === "geminiStream") { return new Promise(async (resolve) => { let fullText = ""; for await (const chunk of stream.stream) { fullText += chunk.text(); writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: chunk.text(), close: false, error: false, }); } writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); resolve(fullText); }); } if (stream?.type === "azureStream") { return new Promise(async (resolve) => { let fullText = ""; for await (const event of stream.stream) { for (const choice of event.choices) { const delta = choice.delta?.content; if (!delta) continue; writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: delta, close: false, error: false, }); } } writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); resolve(fullText); }); } if (stream.type === "togetherAiStream") { return new Promise((resolve) => { let fullText = ""; let chunk = ""; stream.stream.data.on("data", (data) => { const lines = data ?.toString() ?.split("\n") .filter((line) => line.trim() !== ""); for (const line of lines) { let validJSON = false; const message = chunk + line.replace(/^data: /, ""); if (message !== "[DONE]") { // JSON chunk is incomplete and has not ended yet // so we need to stitch it together. You would think JSON // chunks would only come complete - but they don't! try { JSON.parse(message); validJSON = true; } catch {} if (!validJSON) { // It can be possible that the chunk decoding is running away // and the message chunk fails to append due to string length. // In this case abort the chunk and reset so we can continue. // ref: https://github.com/Mintplex-Labs/anything-llm/issues/416 try { chunk += message; } catch (e) { console.error(`Chunk appending error`, e); chunk = ""; } continue; } else { chunk = ""; } } if (message == "[DONE]") { writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); resolve(fullText); } else { let finishReason = null; let token = ""; try { const json = JSON.parse(message); token = json?.choices?.[0]?.delta?.content; finishReason = json?.choices?.[0]?.finish_reason || null; } catch { continue; } if (token) { fullText += token; writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: token, close: false, error: false, }); } if (finishReason !== null) { writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); resolve(fullText); } } } }); }); } // If stream is not a regular OpenAI Stream (like if using native model, Ollama, or most LangChain interfaces) // we can just iterate the stream content instead. if (!stream.hasOwnProperty("data")) { return new Promise(async (resolve) => { let fullText = ""; for await (const chunk of stream) { if (chunk === undefined) throw new Error( "Stream returned undefined chunk. Aborting reply - check model provider logs." ); const content = chunk.hasOwnProperty("content") ? chunk.content : chunk; fullText += content; writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: content, close: false, error: false, }); } writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); resolve(fullText); }); } return new Promise((resolve) => { let fullText = ""; let chunk = ""; stream.data.on("data", (data) => { const lines = data ?.toString() ?.split("\n") .filter((line) => line.trim() !== ""); for (const line of lines) { let validJSON = false; const message = chunk + line.replace(/^data: /, ""); // JSON chunk is incomplete and has not ended yet // so we need to stitch it together. You would think JSON // chunks would only come complete - but they don't! try { JSON.parse(message); validJSON = true; } catch {} if (!validJSON) { // It can be possible that the chunk decoding is running away // and the message chunk fails to append due to string length. // In this case abort the chunk and reset so we can continue. // ref: https://github.com/Mintplex-Labs/anything-llm/issues/416 try { chunk += message; } catch (e) { console.error(`Chunk appending error`, e); chunk = ""; } continue; } else { chunk = ""; } if (message == "[DONE]") { writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); resolve(fullText); } else { let finishReason = null; let token = ""; try { const json = JSON.parse(message); token = json?.choices?.[0]?.delta?.content; finishReason = json?.choices?.[0]?.finish_reason || null; } catch { continue; } if (token) { fullText += token; writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: token, close: false, error: false, }); } if (finishReason !== null) { writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); resolve(fullText); } } } }); }); } module.exports = { VALID_CHAT_MODE, streamChatWithWorkspace, writeResponseChunk, };