const { NativeEmbedder } = require("../../EmbeddingEngines/native"); const { handleDefaultStreamResponseV2, } = require("../../helpers/chat/responses"); const { MODEL_MAP } = require("../modelMap"); class GroqLLM { constructor(embedder = null, modelPreference = null) { const { OpenAI: OpenAIApi } = require("openai"); if (!process.env.GROQ_API_KEY) throw new Error("No Groq API key was set."); this.openai = new OpenAIApi({ baseURL: "https://api.groq.com/openai/v1", apiKey: process.env.GROQ_API_KEY, }); this.model = modelPreference || process.env.GROQ_MODEL_PREF || "llama-3.1-8b-instant"; this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, }; this.embedder = embedder ?? new NativeEmbedder(); this.defaultTemp = 0.7; } #appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); } #log(text, ...args) { console.log(`\x1b[32m[GroqAi]\x1b[0m ${text}`, ...args); } streamingEnabled() { return "streamGetChatCompletion" in this; } static promptWindowLimit(modelName) { return MODEL_MAP.groq[modelName] ?? 8192; } promptWindowLimit() { return MODEL_MAP.groq[this.model] ?? 8192; } async isValidChatCompletionModel(modelName = "") { return !!modelName; // name just needs to exist } /** * Generates appropriate content array for a message + attachments. * @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}} * @returns {string|object[]} */ #generateContent({ userPrompt, attachments = [] }) { if (!attachments.length) return userPrompt; const content = [{ type: "text", text: userPrompt }]; for (let attachment of attachments) { content.push({ type: "image_url", image_url: { url: attachment.contentString, }, }); } return content.flat(); } /** * Last Updated: October 21, 2024 * According to https://console.groq.com/docs/vision * the vision models supported all make a mess of prompting depending on the model. * Currently the llama3.2 models are only in preview and subject to change and the llava model is deprecated - so we will not support attachments for that at all. * * Since we can only explicitly support the current models, this is a temporary solution. * If the attachments are empty or the model is not a vision model, we will return the default prompt structure which will work for all models. * If the attachments are present and the model is a vision model - we only return the user prompt with attachments - see comment at end of function for more. */ #conditionalPromptStruct({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", attachments = [], // This is the specific attachment for only this prompt }) { const VISION_MODELS = [ "llama-3.2-90b-vision-preview", "llama-3.2-11b-vision-preview", ]; const DEFAULT_PROMPT_STRUCT = [ { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }, ...chatHistory, { role: "user", content: userPrompt }, ]; // If there are no attachments or model is not a vision model, return the default prompt structure // as there is nothing to attach or do and no model limitations to consider if (!attachments.length) return DEFAULT_PROMPT_STRUCT; if (!VISION_MODELS.includes(this.model)) { this.#log( `${this.model} is not an explicitly supported vision model! Will omit attachments.` ); return DEFAULT_PROMPT_STRUCT; } return [ // Why is the system prompt and history commented out? // The current vision models for Groq perform VERY poorly with ANY history or text prior to the image. // In order to not get LLM refusals for every single message, we will not include the "system prompt" or even the chat history. // This is a temporary solution until Groq fixes their vision models to be more coherent and also handle context prior to the image. // Note for the future: // Groq vision models also do not support system prompts - which is why you see the user/assistant emulation used instead of "system". // This means any vision call is assessed independently of the chat context prior to the image. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // { // role: "user", // content: `${systemPrompt}${this.#appendContext(contextTexts)}`, // }, // { // role: "assistant", // content: "OK", // }, // ...chatHistory, { role: "user", content: this.#generateContent({ userPrompt, attachments }), }, ]; } /** * Construct the user prompt for this model. * @param {{attachments: import("../../helpers").Attachment[]}} param0 * @returns */ constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", attachments = [], // This is the specific attachment for only this prompt }) { // NOTICE: SEE GroqLLM.#conditionalPromptStruct for more information on how attachments are handled with Groq. return this.#conditionalPromptStruct({ systemPrompt, contextTexts, chatHistory, userPrompt, attachments, }); } async getChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `GroqAI:chatCompletion: ${this.model} is not valid for chat completion!` ); const result = await this.openai.chat.completions .create({ model: this.model, messages, temperature, }) .catch((e) => { throw new Error(e.message); }); if (!result.hasOwnProperty("choices") || result.choices.length === 0) return null; return result.choices[0].message.content; } async streamGetChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `GroqAI:streamChatCompletion: ${this.model} is not valid for chat completion!` ); const streamRequest = await this.openai.chat.completions.create({ model: this.model, stream: true, messages, temperature, }); return streamRequest; } handleStream(response, stream, responseProps) { return handleDefaultStreamResponseV2(response, stream, responseProps); } // Simple wrapper for dynamic embedder & normalize interface for all LLM implementations async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); } async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); return await messageArrayCompressor(this, messageArray, rawHistory); } } module.exports = { GroqLLM, };