const { NativeEmbedder } = require("../../EmbeddingEngines/native"); const { handleDefaultStreamResponseV2, } = require("../../helpers/chat/responses"); class LiteLLM { constructor(embedder = null, modelPreference = null) { const { OpenAI: OpenAIApi } = require("openai"); if (!process.env.LITE_LLM_BASE_PATH) throw new Error( "LiteLLM must have a valid base path to use for the api." ); this.basePath = process.env.LITE_LLM_BASE_PATH; this.openai = new OpenAIApi({ baseURL: this.basePath, apiKey: process.env.LITE_LLM_API_KEY ?? null, }); this.model = modelPreference ?? process.env.LITE_LLM_MODEL_PREF ?? null; this.maxTokens = process.env.LITE_LLM_MODEL_TOKEN_LIMIT ?? 1024; if (!this.model) throw new Error("LiteLLM must have a valid model set."); this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, }; this.embedder = embedder ?? new NativeEmbedder(); this.defaultTemp = 0.7; this.log(`Inference API: ${this.basePath} Model: ${this.model}`); } log(text, ...args) { console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args); } #appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); } streamingEnabled() { return "streamGetChatCompletion" in this; } static promptWindowLimit(_modelName) { const limit = process.env.LITE_LLM_MODEL_TOKEN_LIMIT || 4096; if (!limit || isNaN(Number(limit))) throw new Error("No token context limit was set."); return Number(limit); } // Ensure the user set a value for the token limit // and if undefined - assume 4096 window. promptWindowLimit() { const limit = process.env.LITE_LLM_MODEL_TOKEN_LIMIT || 4096; if (!limit || isNaN(Number(limit))) throw new Error("No token context limit was set."); return Number(limit); } // Short circuit since we have no idea if the model is valid or not // in pre-flight for generic endpoints isValidChatCompletionModel(_modelName = "") { return true; } /** * Generates appropriate content array for a message + attachments. * @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}} * @returns {string|object[]} */ #generateContent({ userPrompt, attachments = [] }) { if (!attachments.length) { return userPrompt; } const content = [{ type: "text", text: userPrompt }]; for (let attachment of attachments) { content.push({ type: "image_url", image_url: { url: attachment.contentString, }, }); } return content.flat(); } /** * Construct the user prompt for this model. * @param {{attachments: import("../../helpers").Attachment[]}} param0 * @returns */ constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", attachments = [], }) { const prompt = { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; return [ prompt, ...chatHistory, { role: "user", content: this.#generateContent({ userPrompt, attachments }), }, ]; } async getChatCompletion(messages = null, { temperature = 0.7 }) { const result = await this.openai.chat.completions .create({ model: this.model, messages, temperature, max_tokens: parseInt(this.maxTokens), // LiteLLM requires int }) .catch((e) => { throw new Error(e.message); }); if (!result.hasOwnProperty("choices") || result.choices.length === 0) return null; return result.choices[0].message.content; } async streamGetChatCompletion(messages = null, { temperature = 0.7 }) { const streamRequest = await this.openai.chat.completions.create({ model: this.model, stream: true, messages, temperature, max_tokens: parseInt(this.maxTokens), // LiteLLM requires int }); return streamRequest; } handleStream(response, stream, responseProps) { return handleDefaultStreamResponseV2(response, stream, responseProps); } // Simple wrapper for dynamic embedder & normalize interface for all LLM implementations async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); } async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); return await messageArrayCompressor(this, messageArray, rawHistory); } } module.exports = { LiteLLM, };