const { NativeEmbedder } = require("../../EmbeddingEngines/native"); const { handleDefaultStreamResponseV2, } = require("../../helpers/chat/responses"); class OpenAiLLM { constructor(embedder = null, modelPreference = null) { if (!process.env.OPEN_AI_KEY) throw new Error("No OpenAI API key was set."); const { OpenAI: OpenAIApi } = require("openai"); this.openai = new OpenAIApi({ apiKey: process.env.OPEN_AI_KEY, }); this.model = modelPreference || process.env.OPEN_MODEL_PREF || "gpt-4o"; this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, }; this.embedder = embedder ?? new NativeEmbedder(); this.defaultTemp = 0.7; } #appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); } streamingEnabled() { return "streamGetChatCompletion" in this; } promptWindowLimit() { switch (this.model) { case "gpt-3.5-turbo": case "gpt-3.5-turbo-1106": return 16_385; case "gpt-4o": case "gpt-4-turbo": case "gpt-4-1106-preview": case "gpt-4-turbo-preview": return 128_000; case "gpt-4": return 8_192; case "gpt-4-32k": return 32_000; default: return 4_096; // assume a fine-tune 3.5? } } // Short circuit if name has 'gpt' since we now fetch models from OpenAI API // via the user API key, so the model must be relevant and real. // and if somehow it is not, chat will fail but that is caught. // we don't want to hit the OpenAI api every chat because it will get spammed // and introduce latency for no reason. async isValidChatCompletionModel(modelName = "") { const isPreset = modelName.toLowerCase().includes("gpt"); if (isPreset) return true; const model = await this.openai.models .retrieve(modelName) .then((modelObj) => modelObj) .catch(() => null); return !!model; } /** * Generates appropriate content array for a message + attachments. * @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}} * @returns {string|object[]} */ #generateContent({ userPrompt, attachments = [] }) { if (!attachments.length) { return userPrompt; } const content = [{ type: "text", text: userPrompt }]; for (let attachment of attachments) { content.push({ type: "image_url", image_url: { url: attachment.contentString, detail: "high", }, }); } return content.flat(); } /** * Construct the user prompt for this model. * @param {{attachments: import("../../helpers").Attachment[]}} param0 * @returns */ constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", attachments = [], // This is the specific attachment for only this prompt }) { const prompt = { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; return [ prompt, ...chatHistory, { role: "user", content: this.#generateContent({ userPrompt, attachments }), }, ]; } async getChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `OpenAI chat: ${this.model} is not valid for chat completion!` ); const result = await this.openai.chat.completions .create({ model: this.model, messages, temperature, }) .catch((e) => { throw new Error(e.message); }); if (!result.hasOwnProperty("choices") || result.choices.length === 0) return null; return result.choices[0].message.content; } async streamGetChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `OpenAI chat: ${this.model} is not valid for chat completion!` ); const streamRequest = await this.openai.chat.completions.create({ model: this.model, stream: true, messages, temperature, }); return streamRequest; } handleStream(response, stream, responseProps) { return handleDefaultStreamResponseV2(response, stream, responseProps); } // Simple wrapper for dynamic embedder & normalize interface for all LLM implementations async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); } async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); return await messageArrayCompressor(this, messageArray, rawHistory); } } module.exports = { OpenAiLLM, };