const lancedb = require("vectordb"); const { toChunks } = require("../../helpers"); const { OpenAIEmbeddings } = require("langchain/embeddings/openai"); const { RecursiveCharacterTextSplitter } = require("langchain/text_splitter"); const { storeVectorResult, cachedVectorInformation } = require("../../files"); const { Configuration, OpenAIApi } = require("openai"); const { v4: uuidv4 } = require("uuid"); const { chatPrompt } = require("../../chats"); // Since we roll our own results for prompting we // have to manually curate sources as well. function curateLanceSources(sources = []) { const knownDocs = []; const documents = []; for (const source of sources) { const { text: _t, vector: _v, score: _s, ...metadata } = source; if ( Object.keys(metadata).length > 0 && !knownDocs.includes(metadata.title) ) { documents.push({ ...metadata }); knownDocs.push(metadata.title); } } return documents; } const LanceDb = { uri: `${ !!process.env.STORAGE_DIR ? `${process.env.STORAGE_DIR}/` : "./storage/" }lancedb`, name: "LanceDb", connect: async function () { if (process.env.VECTOR_DB !== "lancedb") throw new Error("LanceDB::Invalid ENV settings"); const client = await lancedb.connect(this.uri); return { client }; }, heartbeat: async function () { await this.connect(); return { heartbeat: Number(new Date()) }; }, tables: async function () { const fs = require("fs"); const { client } = await this.connect(); const dirs = fs.readdirSync(client.uri); return dirs.map((folder) => folder.replace(".lance", "")); }, totalIndicies: async function () { const { client } = await this.connect(); const tables = await this.tables(); let count = 0; for (const tableName of tables) { const table = await client.openTable(tableName); count += await table.countRows(); } return count; }, embeddingFunc: function () { return new lancedb.OpenAIEmbeddingFunction( "context", process.env.OPEN_AI_KEY ); }, embedTextInput: async function (openai, textInput) { const result = await this.embedChunks(openai, textInput); return result?.[0] || []; }, embedChunks: async function (openai, chunks = []) { const { data: { data }, } = await openai.createEmbedding({ model: "text-embedding-ada-002", input: chunks, }); return data.length > 0 && data.every((embd) => embd.hasOwnProperty("embedding")) ? data.map((embd) => embd.embedding) : null; }, embedder: function () { return new OpenAIEmbeddings({ openAIApiKey: process.env.OPEN_AI_KEY }); }, openai: function () { const config = new Configuration({ apiKey: process.env.OPEN_AI_KEY }); const openai = new OpenAIApi(config); return openai; }, getChatCompletion: async function ( openai, messages = [], { temperature = 0.7 } ) { const model = process.env.OPEN_MODEL_PREF || "gpt-3.5-turbo"; const { data } = await openai.createChatCompletion({ model, messages, temperature, }); if (!data.hasOwnProperty("choices")) return null; return data.choices[0].message.content; }, similarityResponse: async function (client, namespace, queryVector) { const collection = await client.openTable(namespace); const result = { contextTexts: [], sourceDocuments: [], }; const response = await collection .search(queryVector) .metricType("cosine") .limit(5) .execute(); response.forEach((item) => { const { vector: _, ...rest } = item; result.contextTexts.push(rest.text); result.sourceDocuments.push(rest); }); return result; }, namespace: async function (client, namespace = null) { if (!namespace) throw new Error("No namespace value provided."); const collection = await client.openTable(namespace).catch(() => false); if (!collection) return null; return { ...collection, }; }, updateOrCreateCollection: async function (client, data = [], namespace) { const hasNamespace = await this.hasNamespace(namespace); if (hasNamespace) { const collection = await client.openTable(namespace); await collection.add(data); return true; } await client.createTable(namespace, data); return true; }, hasNamespace: async function (namespace = null) { if (!namespace) return false; const { client } = await this.connect(); const exists = await this.namespaceExists(client, namespace); return exists; }, namespaceExists: async function (_client, namespace = null) { if (!namespace) throw new Error("No namespace value provided."); const collections = await this.tables(); return collections.includes(namespace); }, deleteVectorsInNamespace: async function (client, namespace = null) { const fs = require("fs"); fs.rm(`${client.uri}/${namespace}.lance`, { recursive: true }, () => null); return true; }, deleteDocumentFromNamespace: async function (namespace, docId) { const { client } = await this.connect(); const exists = await this.namespaceExists(client, namespace); if (!exists) { console.error( `LanceDB:deleteDocumentFromNamespace - namespace ${namespace} does not exist.` ); return; } const { DocumentVectors } = require("../../../models/vectors"); const table = await client.openTable(namespace); const vectorIds = (await DocumentVectors.where(`docId = '${docId}'`)).map( (record) => record.vectorId ); await table.delete(`id IN (${vectorIds.map((v) => `'${v}'`).join(",")})`); return true; }, addDocumentToNamespace: async function ( namespace, documentData = {}, fullFilePath = null ) { const { DocumentVectors } = require("../../../models/vectors"); try { const { pageContent, docId, ...metadata } = documentData; if (!pageContent || pageContent.length == 0) return false; console.log("Adding new vectorized document into namespace", namespace); const cacheResult = await cachedVectorInformation(fullFilePath); if (cacheResult.exists) { const { client } = await this.connect(); const { chunks } = cacheResult; const documentVectors = []; const submissions = []; for (const chunk of chunks) { chunk.forEach((chunk) => { const id = uuidv4(); const { id: _id, ...metadata } = chunk.metadata; documentVectors.push({ docId, vectorId: id }); submissions.push({ id: id, vector: chunk.values, ...metadata }); }); } await this.updateOrCreateCollection(client, submissions, namespace); await DocumentVectors.bulkInsert(documentVectors); return true; } // If we are here then we are going to embed and store a novel document. // We have to do this manually as opposed to using LangChains `xyz.fromDocuments` // because we then cannot atomically control our namespace to granularly find/remove documents // from vectordb. const textSplitter = new RecursiveCharacterTextSplitter({ chunkSize: 1000, chunkOverlap: 20, }); const textChunks = await textSplitter.splitText(pageContent); console.log("Chunks created from document:", textChunks.length); const documentVectors = []; const vectors = []; const submissions = []; const openai = this.openai(); const vectorValues = await this.embedChunks(openai, textChunks); if (!!vectorValues && vectorValues.length > 0) { for (const [i, vector] of vectorValues.entries()) { const vectorRecord = { id: uuidv4(), values: vector, // [DO NOT REMOVE] // LangChain will be unable to find your text if you embed manually and dont include the `text` key. // https://github.com/hwchase17/langchainjs/blob/2def486af734c0ca87285a48f1a04c057ab74bdf/langchain/src/vectorstores/pinecone.ts#L64 metadata: { ...metadata, text: textChunks[i] }, }; vectors.push(vectorRecord); submissions.push({ id: vectorRecord.id, vector: vectorRecord.values, ...vectorRecord.metadata, }); documentVectors.push({ docId, vectorId: vectorRecord.id }); } } else { console.error( "Could not use OpenAI to embed document chunks! This document will not be recorded." ); } if (vectors.length > 0) { const chunks = []; for (const chunk of toChunks(vectors, 500)) chunks.push(chunk); console.log("Inserting vectorized chunks into LanceDB collection."); const { client } = await this.connect(); await this.updateOrCreateCollection(client, submissions, namespace); await storeVectorResult(chunks, fullFilePath); } await DocumentVectors.bulkInsert(documentVectors); return true; } catch (e) { console.error("addDocumentToNamespace", e.message); return false; } }, query: async function (reqBody = {}) { const { namespace = null, input, workspace = {} } = reqBody; if (!namespace || !input) throw new Error("Invalid request body"); const { client } = await this.connect(); if (!(await this.namespaceExists(client, namespace))) { return { response: null, sources: [], message: "Invalid query - no documents found for workspace!", }; } // LanceDB does not have langchainJS support so we roll our own here. const queryVector = await this.embedTextInput(this.openai(), input); const { contextTexts, sourceDocuments } = await this.similarityResponse( client, namespace, queryVector ); const prompt = { role: "system", content: `${chatPrompt(workspace)} Context: ${contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("")}`, }; const memory = [prompt, { role: "user", content: input }]; const responseText = await this.getChatCompletion(this.openai(), memory, { temperature: workspace?.openAiTemp ?? 0.7, }); return { response: responseText, sources: curateLanceSources(sourceDocuments), message: false, }; }, // This implementation of chat uses the chat history and modifies the system prompt at execution // this is improved over the regular langchain implementation so that chats do not directly modify embeddings // because then multi-user support will have all conversations mutating the base vector collection to which then // the only solution is replicating entire vector databases per user - which will very quickly consume space on VectorDbs chat: async function (reqBody = {}) { const { namespace = null, input, workspace = {}, chatHistory = [], } = reqBody; if (!namespace || !input) throw new Error("Invalid request body"); const { client } = await this.connect(); if (!(await this.namespaceExists(client, namespace))) { return { response: null, sources: [], message: "Invalid query - no documents found for workspace!", }; } const queryVector = await this.embedTextInput(this.openai(), input); const { contextTexts, sourceDocuments } = await this.similarityResponse( client, namespace, queryVector ); const prompt = { role: "system", content: `${chatPrompt(workspace)} Context: ${contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("")}`, }; const memory = [prompt, ...chatHistory, { role: "user", content: input }]; const responseText = await this.getChatCompletion(this.openai(), memory, { temperature: workspace?.openAiTemp ?? 0.7, }); return { response: responseText, sources: curateLanceSources(sourceDocuments), message: false, }; }, "namespace-stats": async function (reqBody = {}) { const { namespace = null } = reqBody; if (!namespace) throw new Error("namespace required"); const { client } = await this.connect(); if (!(await this.namespaceExists(client, namespace))) throw new Error("Namespace by that name does not exist."); const stats = await this.namespace(client, namespace); return stats ? stats : { message: "No stats were able to be fetched from DB for namespace" }; }, "delete-namespace": async function (reqBody = {}) { const { namespace = null } = reqBody; const { client } = await this.connect(); if (!(await this.namespaceExists(client, namespace))) throw new Error("Namespace by that name does not exist."); await this.deleteVectorsInNamespace(client, namespace); return { message: `Namespace ${namespace} was deleted.`, }; }, reset: async function () { const { client } = await this.connect(); const fs = require("fs"); fs.rm(`${client.uri}`, { recursive: true }, () => null); return { reset: true }; }, }; module.exports.LanceDb = LanceDb;