const { NativeEmbedder } = require("../../EmbeddingEngines/native"); const { OpenAiEmbedder } = require("../../EmbeddingEngines/openAi"); const { chatPrompt } = require("../../chats"); const { writeResponseChunk } = require("../../helpers/chat/responses"); class HuggingFaceLLM { constructor(embedder = null, _modelPreference = null) { const { Configuration, OpenAIApi } = require("openai"); if (!process.env.HUGGING_FACE_LLM_ENDPOINT) throw new Error("No HuggingFace Inference Endpoint was set."); if (!process.env.HUGGING_FACE_LLM_API_KEY) throw new Error("No HuggingFace Access Token was set."); const config = new Configuration({ basePath: `${process.env.HUGGING_FACE_LLM_ENDPOINT}/v1`, apiKey: process.env.HUGGING_FACE_LLM_API_KEY, }); this.openai = new OpenAIApi(config); // When using HF inference server - the model param is not required so // we can stub it here. HF Endpoints can only run one model at a time. // We set to 'tgi' so that endpoint for HF can accept message format this.model = "tgi"; this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, }; if (!embedder) console.warn( "No embedding provider defined for HuggingFaceLLM - falling back to Native for embedding!" ); this.embedder = !embedder ? new OpenAiEmbedder() : new NativeEmbedder(); this.defaultTemp = 0.2; } #appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); } streamingEnabled() { return "streamChat" in this && "streamGetChatCompletion" in this; } promptWindowLimit() { const limit = process.env.HUGGING_FACE_LLM_TOKEN_LIMIT || 4096; if (!limit || isNaN(Number(limit))) throw new Error("No HuggingFace token context limit was set."); return Number(limit); } async isValidChatCompletionModel(_ = "") { return true; } constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", }) { // System prompt it not enabled for HF model chats const prompt = { role: "user", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; const assistantResponse = { role: "assistant", content: "Okay, I will follow those instructions", }; return [ prompt, assistantResponse, ...chatHistory, { role: "user", content: userPrompt }, ]; } async isSafe(_input = "") { // Not implemented so must be stubbed return { safe: true, reasons: [] }; } async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) { const textResponse = await this.openai .createChatCompletion({ model: this.model, temperature: Number(workspace?.openAiTemp ?? this.defaultTemp), n: 1, messages: await this.compressMessages( { systemPrompt: chatPrompt(workspace), userPrompt: prompt, chatHistory, }, rawHistory ), }) .then((json) => { const res = json.data; if (!res.hasOwnProperty("choices")) throw new Error("HuggingFace chat: No results!"); if (res.choices.length === 0) throw new Error("HuggingFace chat: No results length!"); return res.choices[0].message.content; }) .catch((error) => { throw new Error( `HuggingFace::createChatCompletion failed with: ${error.message}` ); }); return textResponse; } async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) { const streamRequest = await this.openai.createChatCompletion( { model: this.model, stream: true, temperature: Number(workspace?.openAiTemp ?? this.defaultTemp), n: 1, messages: await this.compressMessages( { systemPrompt: chatPrompt(workspace), userPrompt: prompt, chatHistory, }, rawHistory ), }, { responseType: "stream" } ); return streamRequest; } async getChatCompletion(messages = null, { temperature = 0.7 }) { const { data } = await this.openai.createChatCompletion({ model: this.model, messages, temperature, }); if (!data.hasOwnProperty("choices")) return null; return data.choices[0].message.content; } async streamGetChatCompletion(messages = null, { temperature = 0.7 }) { const streamRequest = await this.openai.createChatCompletion( { model: this.model, stream: true, messages, temperature, }, { responseType: "stream" } ); return streamRequest; } handleStream(response, stream, responseProps) { const { uuid = uuidv4(), sources = [] } = responseProps; return new Promise((resolve) => { let fullText = ""; let chunk = ""; stream.data.on("data", (data) => { const lines = data ?.toString() ?.split("\n") .filter((line) => line.trim() !== ""); for (const line of lines) { let validJSON = false; const message = chunk + line.replace(/^data:/, ""); if (message !== "[DONE]") { // JSON chunk is incomplete and has not ended yet // so we need to stitch it together. You would think JSON // chunks would only come complete - but they don't! try { JSON.parse(message); validJSON = true; } catch { console.log("Failed to parse message", message); } if (!validJSON) { // It can be possible that the chunk decoding is running away // and the message chunk fails to append due to string length. // In this case abort the chunk and reset so we can continue. // ref: https://github.com/Mintplex-Labs/anything-llm/issues/416 try { chunk += message; } catch (e) { console.error(`Chunk appending error`, e); chunk = ""; } continue; } else { chunk = ""; } } if (message == "[DONE]") { writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); resolve(fullText); } else { let error = null; let finishReason = null; let token = ""; try { const json = JSON.parse(message); error = json?.error || null; token = json?.choices?.[0]?.delta?.content; finishReason = json?.choices?.[0]?.finish_reason || null; } catch { continue; } if (!!error) { writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: null, close: true, error, }); resolve(""); return; } if (token) { fullText += token; writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: token, close: false, error: false, }); } if (finishReason !== null) { writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); resolve(fullText); } } } }); }); } // Simple wrapper for dynamic embedder & normalize interface for all LLM implementations async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); } async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); return await messageArrayCompressor(this, messageArray, rawHistory); } } module.exports = { HuggingFaceLLM, };