const Provider = require("./ai-provider.js"); const InheritMultiple = require("./helpers/classes.js"); const UnTooled = require("./helpers/untooled.js"); const { ChatBedrockConverse } = require("@langchain/aws"); const { HumanMessage, SystemMessage, AIMessage, } = require("@langchain/core/messages"); /** * The agent provider for the AWS Bedrock provider. */ class AWSBedrockProvider extends InheritMultiple([Provider, UnTooled]) { model; constructor(_config = {}) { super(); const model = process.env.AWS_BEDROCK_LLM_MODEL_PREFERENCE ?? null; const client = new ChatBedrockConverse({ region: process.env.AWS_BEDROCK_LLM_REGION, credentials: { accessKeyId: process.env.AWS_BEDROCK_LLM_ACCESS_KEY_ID, secretAccessKey: process.env.AWS_BEDROCK_LLM_ACCESS_KEY, }, model, }); this._client = client; this.model = model; this.verbose = true; } get client() { return this._client; } // For streaming we use Langchain's wrapper to handle weird chunks // or otherwise absorb headaches that can arise from Ollama models #convertToLangchainPrototypes(chats = []) { const langchainChats = []; const roleToMessageMap = { system: SystemMessage, user: HumanMessage, assistant: AIMessage, }; for (const chat of chats) { if (!roleToMessageMap.hasOwnProperty(chat.role)) continue; const MessageClass = roleToMessageMap[chat.role]; langchainChats.push(new MessageClass({ content: chat.content })); } return langchainChats; } async #handleFunctionCallChat({ messages = [] }) { const response = await this.client .invoke(this.#convertToLangchainPrototypes(messages)) .then((res) => res) .catch((e) => { console.error(e); return null; }); return response?.content; } /** * Create a completion based on the received messages. * * @param messages A list of messages to send to the API. * @param functions * @returns The completion. */ async complete(messages, functions = null) { try { let completion; if (functions.length > 0) { const { toolCall, text } = await this.functionCall( messages, functions, this.#handleFunctionCallChat.bind(this) ); if (toolCall !== null) { this.providerLog(`Valid tool call found - running ${toolCall.name}.`); this.deduplicator.trackRun(toolCall.name, toolCall.arguments); return { result: null, functionCall: { name: toolCall.name, arguments: toolCall.arguments, }, cost: 0, }; } completion = { content: text }; } if (!completion?.content) { this.providerLog( "Will assume chat completion without tool call inputs." ); const response = await this.client.invoke( this.#convertToLangchainPrototypes(this.cleanMsgs(messages)) ); completion = response; } // The UnTooled class inherited Deduplicator is mostly useful to prevent the agent // from calling the exact same function over and over in a loop within a single chat exchange // _but_ we should enable it to call previously used tools in a new chat interaction. this.deduplicator.reset("runs"); return { result: completion.content, cost: 0, }; } catch (error) { throw error; } } /** * Get the cost of the completion. * * @param _usage The completion to get the cost for. * @returns The cost of the completion. * Stubbed since KoboldCPP has no cost basis. */ getCost(_usage) { return 0; } } module.exports = AWSBedrockProvider;