const { toChunks, maximumChunkLength } = require("../../helpers"); class LocalAiEmbedder { constructor() { const { Configuration, OpenAIApi } = require("openai"); if (!process.env.EMBEDDING_BASE_PATH) throw new Error("No embedding base path was set."); if (!process.env.EMBEDDING_MODEL_PREF) throw new Error("No embedding model was set."); const config = new Configuration({ basePath: process.env.EMBEDDING_BASE_PATH, ...(!!process.env.LOCAL_AI_API_KEY ? { apiKey: process.env.LOCAL_AI_API_KEY, } : {}), }); this.openai = new OpenAIApi(config); // We don't know this for user's set model so for vectorDB integrations that requires dimensionality // in schema, we will throw an error. // Applies to QDrant and Milvus. this.dimensions = null; // Limit of how many strings we can process in a single pass to stay with resource or network limits this.maxConcurrentChunks = 50; this.embeddingMaxChunkLength = maximumChunkLength(); } async embedTextInput(textInput) { const result = await this.embedChunks(textInput); return result?.[0] || []; } async embedChunks(textChunks = []) { const embeddingRequests = []; for (const chunk of toChunks(textChunks, this.maxConcurrentChunks)) { embeddingRequests.push( new Promise((resolve) => { this.openai .createEmbedding({ model: process.env.EMBEDDING_MODEL_PREF, input: chunk, }) .then((res) => { resolve({ data: res.data?.data, error: null }); }) .catch((e) => { resolve({ data: [], error: e?.error }); }); }) ); } const { data = [], error = null } = await Promise.all( embeddingRequests ).then((results) => { // If any errors were returned from LocalAI abort the entire sequence because the embeddings // will be incomplete. const errors = results .filter((res) => !!res.error) .map((res) => res.error) .flat(); if (errors.length > 0) { return { data: [], error: `(${errors.length}) Embedding Errors! ${errors .map((error) => `[${error.type}]: ${error.message}`) .join(", ")}`, }; } return { data: results.map((res) => res?.data || []).flat(), error: null, }; }); if (!!error) throw new Error(`LocalAI Failed to embed: ${error}`); return data.length > 0 && data.every((embd) => embd.hasOwnProperty("embedding")) ? data.map((embd) => embd.embedding) : null; } } module.exports = { LocalAiEmbedder, };