const { toChunks } = require("../../helpers"); class GenericOpenAiEmbedder { constructor() { if (!process.env.EMBEDDING_BASE_PATH) throw new Error( "GenericOpenAI must have a valid base path to use for the api." ); const { OpenAI: OpenAIApi } = require("openai"); this.basePath = process.env.EMBEDDING_BASE_PATH; this.openai = new OpenAIApi({ baseURL: this.basePath, apiKey: process.env.GENERIC_OPEN_AI_EMBEDDING_API_KEY ?? null, }); this.model = process.env.EMBEDDING_MODEL_PREF ?? null; // Limit of how many strings we can process in a single pass to stay with resource or network limits this.maxConcurrentChunks = 500; // Refer to your specific model and provider you use this class with to determine a valid maxChunkLength this.embeddingMaxChunkLength = 8_191; } async embedTextInput(textInput) { const result = await this.embedChunks( Array.isArray(textInput) ? textInput : [textInput] ); return result?.[0] || []; } async embedChunks(textChunks = []) { // Because there is a hard POST limit on how many chunks can be sent at once to OpenAI (~8mb) // we concurrently execute each max batch of text chunks possible. // Refer to constructor maxConcurrentChunks for more info. const embeddingRequests = []; for (const chunk of toChunks(textChunks, this.maxConcurrentChunks)) { embeddingRequests.push( new Promise((resolve) => { this.openai.embeddings .create({ model: this.model, input: chunk, }) .then((result) => { resolve({ data: result?.data, error: null }); }) .catch((e) => { e.type = e?.response?.data?.error?.code || e?.response?.status || "failed_to_embed"; e.message = e?.response?.data?.error?.message || e.message; resolve({ data: [], error: e }); }); }) ); } const { data = [], error = null } = await Promise.all( embeddingRequests ).then((results) => { // If any errors were returned from OpenAI abort the entire sequence because the embeddings // will be incomplete. const errors = results .filter((res) => !!res.error) .map((res) => res.error) .flat(); if (errors.length > 0) { let uniqueErrors = new Set(); errors.map((error) => uniqueErrors.add(`[${error.type}]: ${error.message}`) ); return { data: [], error: Array.from(uniqueErrors).join(", "), }; } return { data: results.map((res) => res?.data || []).flat(), error: null, }; }); if (!!error) throw new Error(`GenericOpenAI Failed to embed: ${error}`); return data.length > 0 && data.every((embd) => embd.hasOwnProperty("embedding")) ? data.map((embd) => embd.embedding) : null; } } module.exports = { GenericOpenAiEmbedder, };